
Towards a benchmark for RGB-D SLAM evaluation
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Abstract— We provide a large dataset containing RGB-D
image sequences and the ground-truth camera trajectories
with the goal to establish a benchmark for the evaluation
of visual SLAM systems. Our dataset contains the color and
depth images of a Microsoft Kinect sensor and the ground-
truth trajectory of camera poses. The data was recorded at
full frame rate (30 Hz) and sensor resolution (640x480). The
ground-truth trajectory was obtained from a high-accuracy
motion-capture system with eight high-speed tracking cameras
(100 Hz). Further, we provide the accelerometer data from
the Kinect. Finally, we propose an evaluation criterion for
measuring the quality of the estimated camera trajectory of
visual SLAM systems.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) has a
long history in robotics and computer-vision research [11],
[6], [1], [15], [7], [4]. Different sensor modalities have been
explored in the past, including 2D laser scanners [12], [3],
3D scanners [14], [16], monocular cameras [13], [7], [9],
[19], [20] and stereo systems [8]. Recently, low-cost RGB-
D sensors became available, of which the most prominent
one is the Microsoft Kinect. Such sensors provide both color
images and dense depth maps at video frame rates. Henry et
al. [5] were the first to use the Kinect sensor in a 3D SLAM
system. Others have followed [2], and we expect to see more
approaches using RGB-D data for visual SLAM in the near
future.

Various datasets and benchmarks have been proposed for
laser- and camera-based SLAM, such as the Freiburg, Intel
and Newcollege datasets [18], [17]. However until now, no
suitable dataset or benchmark existed that can be used to
evaluate, measure, and compare the performance of RGB-
D SLAM systems. As we consider objective evaluation
methods to be highly important for measuring progress in the
field (and demonstrating this in a verifiable way), we decided
to provide such a dataset. To the best of our knowledge, this
is the first RGB-D dataset for visual SLAM benchmarking.

1 Jürgen Sturm and Daniel Cremers are with the Computer Vision and
Pattern Recognition Group, Computer Science Department, Technical Uni-
versity of Munich, Germany. {sturmju,cremers}@in.tum.de

2 S. Magnenat, F. Pomerlau, F. Colas and R. Seigwart are
with the Autonomous Systems Lab, ETH Zurich, Switzerland.
{stephane.magnenat,francis.colas}@mavt.ethz.ch
and f.pomerleau@gmail.com

3 Nikolas Engelhard and Wolfram Burgard are with
the Autonomous Intelligent Systems Lab, Computer
Science Department, University of Freiburg, Germany.
{engelhar,burgard}@informatik.uni-freiburg.de

(a) Typical office scene (b) Motion capture system

(c) Microsoft Kinect sensor
with reflective markers

(d) Checkerboard with reflective
markers used for calibration

Fig. 1: The office environment and the experimental setup
in which the RGB-D dataset with ground truth camera poses
was recorded.

II. EXPERIMENTAL SETUP AND DATA ACQUISITION

We acquired a large set of data recordings containing
both the RGB-D data from the Kinect and the ground truth
estimates from the mocap system. We moved the Kinect
along different trajectories in typical office environments
(see Fig. 1a). The recordings differ in their translational
and angular velocities (fast/slow movements) and the size
of the environment (one desk, several desks, whole room).
We also acquired data for three specific trajectories for
debugging purposes, i.e., we moved the Kinect (more or less)
individually along the x/y/z-axes and rotated it individually
around the x/y/z-axes.

We captured both the color and depth images from an
off-the-shelf Microsoft Kinect sensor using PrimeSense’s
OpenNI-driver. All data was logged at full resolution
(640×480) and full frame rate (30 Hz) of the sensor on a
Linux laptop running Ubuntu 10.10 and ROS Diamondback.
Further, we recorded IMU data from the accelerometer in
the Kinect at 500 Hz and also read out the internal sensor
parameters from the Kinect factory calibration.

Further, we obtained the camera trajectory by using an
external motion capturing system from MotionAnalysis at
100 Hz (see Fig. 1b). We attached reflective targets to the
Kinect (see Fig. 1c) and used a modified checkerboard for



calibration (Fig. 1d) to obtain the transformation between the
optical frame of the Kinect sensor and the coordinate system
of the motion capture system. Finally, we also video-taped
all recordings with an external video camera to capture the
camera motion and the environment from a different view
point.

The original data has been recorded as a ROS bag file.
In total, we collected 50 GB of Kinect data, divided into
separate nine sequences. The dataset is available online under
the Creative Commons Attribution license at

https://cvpr.in.tum.de/research/
datasets/rgbd-dataset

The website contains—next to additional information about
the data formats—videos for simple visual inspection of the
dataset.

III. EVALUATION

For evaluating visual SLAM algorithms on our dataset,
we propose a metric similar to the one introduced by [10].
The general idea is to compute the relative error between
the true and estimated motion w.r.t. the optical frame of the
RGB camera. As we have ground-truth pose information for
all time indices, we propose to compute the error as the sum
of distances between the relative pose at time i and time
i + ∆, i.e.,

error =

n∑
i=1

[(x̂i+∆ 	 x̂i) 	 (xi+∆ 	 xi)]
2 (1)

where i = 1, . . . , n are the time indices where ground
truth information is available, ∆ is a free parameter that
corresponds to the time scale, xi is the ground truth pose
at time index i, x̂i the estimated pose at time index i, 	
stands for the inverse motion composition operator. If the es-
timated trajectory has missing values, i.e., there are timesteps
ij1 , . . . , ijm for which no pose x̂i could be estimated, the
ratio of missing poses m/n should be stated as well.

All data necessary to evaluate our measure are present
in the dataset. We plan to release a Python script that
computes these measures automatically given the estimated
trajectory and the respective dataset. To prevent that (future)
approaches are over-fitted on the dataset, we recorded all
scenes twice, and held back the ground-truth trajectory in
these secondary recordings. With this, we plan to provide a
comparative offline evaluation benchmark for visual SLAM
systems.

IV. CONCLUSIONS

In this paper, we have presented a novel RGB-D dataset
for benchmarking visual SLAM algorithms. The dataset con-
tains color images, depth maps, and associated ground-truth
camera pose information. Further, we proposed an evaluation
metric that can be used to assess the performance of a visual
SLAM system. We thus propose a benchmark that allows
researchers to objectively evaluate visual SLAM systems.
Our next step is to evaluate our own system [2] on this dataset
in order to provide a baseline for future implementations

and evaluations. In this way, we hope to detect (and resolve)
potential problems present in our current dataset, such as
calibration and synchronization issues between the Kinect
and our mocap system as well as the effects of motion blur
and the rolling shutter of the Kinect. Furthermore, we want
to investigate ways to measure the performance of a SLAM
system not only in terms of the accuracy of the estimated
camera trajectory, but also in terms of the quality of the
resulting map of the environment.
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[14] A. Nüchter, K. Lingemann, J. Hertzberg, and H. Surmann. 6D SLAM –
3D mapping outdoor environments: Research articles. J. Field Robot.,
24:699–722, August 2007.

[15] E. Olson, J. Leonard, and S. Teller. Fast iterative optimization of pose
graphs with poor initial estimates. In Proc. of the IEEE Intl. Conf. on
Robotics and Automation (ICRA), 2006.

[16] B. Pitzer, S. Kammel, C. DuHadway, and J. Becker. Automatic recon-
struction of textured 3D models. In Proc. of the IEEE Intl. Conf. on
Robotics and Automation (ICRA), 2010.

[17] M. Smith, I. Baldwin, W. Churchill, R. Paul, and P. Newman. The new
college vision and laser data set. Intl. Journal of Robotics Research
(IJRR), 28(5):595–599, 2009.

[18] C. Stachniss, P. Beeson, D. Hähnel, M. Bosse, J. Leonard, B. Steder,
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