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Abstract This chapter describes how the kinematic models of a manipulation robot can be learned,
calibrated, monitored and adapted automatically using the perception and actuation capabilities pro-
vided by the robot’s middleware. The presented technology requires only minimal human intervention
by building on the concepts of self-observation and non-parametric learning. Specifically, the approach
is to learn the kinematic model of a robotic manipulator from scratch using self-observation via a single
monocular camera. We introduce a flexible model based on Bayesian networks that allows a robot to
simultaneously identify its kinematic structure and to learn the geometrical relationships between its
body parts as a function of the joint angles. Further, we show how the robot can monitor the prediction
quality of its internal kinematic model and how to adapt it when its body changes—for example due
to failure, repair, or material fatigue. This chapter includes experiments carried out both on real and
simulated robotic manipulators designed to verify the validity of the approach for real-world problems,
such as end-effector pose prediction and end-effector pose control.

1 Introduction

Kinematic models are widely used in robotics to describe the mechanism of a robot. For example, the
kinematic model of a manipulation robot is typically specified by the position of its joints, and the size
and orientation of its links [Craig, 1989, Sciavicco and Siciliano, 2000]. Kinematic models are usually
derived analytically by a robot engineer and thus rely heavily on prior knowledge about the geometry of
the robot. When such a model is applied to a real robot, its parameters have to be carefully calibrated
[Gatla et al., 2007] to ensure a high accuracy, for example, using expensive calibration systems at the
robot manufacturer’s site. As robotic systems become more versatile and are increasingly delivered in
completely reconfigurable ways, there is a growing demand for techniques to learn kinematic models
automatically. Ideally, such techniques would neither require human intervention nor costly calibration
equipment. This capability does not only facilitate the deployment and calibration of new robotic
systems but also enables robots to autonomously adapt their models when the kinematics change, for
example, as a result of hardware failures or material fatigue. Furthermore, the intelligent use of tools
also requires the robot to include a tool dynamically in its kinematic model [Nabeshima et al., 2006].
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Fig. 1: Schematic overview of our approach to body schema learning.

The concept of kinematic models in robotics is closely related to the concept of the body schema in
cognitive neuroscience [Stamenov, 2005, Gallagher, 2005] that refers to our internal representation of
the body. Neuro-physiological experiments indicate that humans as well as higher primates adapt their
body schema continuously [Meltzoff and Moore, 1997], for example, when handling tools [Maravita and
Iriki, 2004]. In particular in the field of developmental robotics, various researchers have applied these
concepts to robotic systems [Natale, 2004, Metta et al., 2006].

In this chapter, we develop a novel approach that allows a robot to learn its body schema using
visual self-observation and exploratory actions. Our model is based on Bayesian networks that we
use to represent the kinematic structure. We learn models for the individual joints of a robot using
Gaussian process regression and develop an efficient algorithm to estimate the full kinematic structure
of the robot. In experiments carried out in simulation and on real robots, we demonstrate that our
approach enables a manipulation robot to learn its kinematic model from scratch and to maintain it
over extended periods of time. Furthermore, we show that a robot using our approach can accurately
predict and control the pose of its end effector even in the presence of hardware failures.

Figure 1 illustrates the proposed approach. The robot sends random “motor babbling” commands to
its joints, observes the resulting pose, and estimates the kinematic model of itself from this sequence
of observations. In each iteration, the robot learns Gaussian process models for the individual joints
and searches for the kinematic structure that best explains the observed motion. The robot can use the
learned model to predict and control the pose of its end effector. We developed and tested our approach
on several simulated and two real manipulation robots as depicted in Figure 2.

This chapter is structured as follows. In Section 2, we briefly introduce kinematic models for ma-
nipulation robots and explain how they can be represented using Bayesian networks. Subsequently in
Section 3, we present our probabilistic framework for learning such kinematic models from visual self-
observations. In Section 4, we extend our framework to enable a robot to localize errors in the model
and efficiently replace mismatching parts. In Section 5, we present experimental results obtained with
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(a) 2-DOF robot (b) 7-DOF robot

Fig. 2: The manipulation robots used in this chapter to develop and test our approach.

real and simulated manipulator arms. These experiments demonstrate that our approach is able to
learn compact and accurate models and is capable of dealing robustly with noisy observations. Finally,
we conclude this chapter with a discussion of related work in Section 6.

2 Kinematic Models for Manipulation Robots

The kinematic model of a manipulation robot describes the relationship between its configuration and
its body posture, i.e., the relationship between the joint angles and the poses of the body parts in
3D space. Figure 3a shows an example of a simple 2-DOF manipulation robot. The robot consists of
two rotary joints q1 and q2, and five body parts x1, . . . ,x5. The first two body parts are connected
rigidly. This means that the geometric transformation ∆12 from the trunk x1 to the shoulder x2 is
independent of the configuration of the joints. The shoulder x2 and the upper arm x3 are connected by
the shoulder joint q1, and thus their geometric transformation ∆23(q1) depends on the joint angle of q1.
The same holds for the following parts, as the joint angle of the elbow joint q2 has direct influence on the
geometrical transformation ∆34(q2) between the upper arm x3 and the lower arm x4. The gripper x5 is
attached rigidly to the lower arm x4, such that ∆45 is a fixed transformation. The kinematic function
of this manipulator can thus be constructed by the concatenation of these individual transforms, i.e.,

f(q1, q2) := ∆12 ◦∆23(q1) ◦∆34(q2) ◦∆45. (1)

The kinematic function f(q1, q2) describes the full geometrical transformation from the coordinate
frame of the trunk to the coordinate frame of the gripper. In engineering, the kinematic function of a
manipulation robot is often constructed of the individual transformations by the specification of the
Denavit-Hartenberg (DH) parameters [Sciavicco and Siciliano, 2000].

For many robotic applications, it is necessary to compute the configuration q1 and q2 to reach a
given target position in the workspace. This requires the inversion of f , which is also called the inverse
kinematic function. As the algebraic inversion is only possible for simple manipulators, a solution to
the inverse kinematic problem is in practice often computed using an iterative numerical method such
as the Jacobian transpose, pseudo-inverse or damped-least squares method [Buss and Kim, 2005].

A fundamental insight in our work is that the kinematic model of a manipulation robot can be
represented in form of Bayesian networks. Consider the example given in Figure 3b: the configuration
variables q1 and q2, the poses of the body parts x1, . . . ,x5, and the relative transformations ∆12, . . . ,∆45

of our example robot appear as nodes in the Bayesian network. Further, the topology of the network
encodes the kinematic structure: the relative transformation ∆12 relates the first two body parts x1
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and x2, while the second relative transformation ∆23 depends additionally on the configuration q1 of
the first joint.
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Fig. 3: (a) Simple 2-DOF manipulator consisting of 5 body parts. (b) The kinematic model of this robot represented as
a Bayesian network.

We can now use standard inference techniques for Bayesian networks to predict the pose of the end
effector (given q1, . . . , qm and x1, infer xn) or to control the pose of the end effector (given x1 and xn,
infer q1, . . . , qm). Both problems can be solved by marginalizing over all other variables in the network:
solving forward kinematics corresponds to a marginalization over all intermediate body parts. As we
will elaborate in the next section, this marginalization can be solved efficiently and in closed form when
we assume that all variables in the Bayesian network are normally distributed.

3 A Bayesian Framework for Body Schema Learning

We define the robotic body schema as the joint probability distribution over joint actions q =
(q1, . . . , qm), true poses x = (x1, . . . ,xn), and pose observations y = (y1, . . . ,yn) of a manipulation
robot. The individual qi ∈ R are real-valued variables corresponding to the latest configuration request
sent to the i-th joint of the robot. The xi ∈ SE (3) encode the true poses of the body parts with respect
to a reference coordinate frame. The yi ∈ SE (3) are the robot’s pose observations of its body parts
that are generally noisy and potentially missing. Here, SE (3) refers to the special Euclidean group that
represents all three-dimensional poses (including both position and orientation). Internally, we represent
these 3D poses as homogeneous R4×4 matrices, which can be concatenated and inverted. We denote
a sequence of t action-pose observations as D =

〈
(q1,y1), (q2,y2), . . . , (qt,yt)

〉
. Formally, we seek to

learn the probability distribution

p(x1, . . . ,xn,y1, . . . ,yn | q1, . . . , qm) , (2)

which in this form is intractable for all but the simplest scenarios. Therefore, we assume that each
observation variable yi is independent from all other variables given the true pose xi of the corresponding
body part and that they can thus be fully characterized by an observation model p(yi | xi). Furthermore,
if the kinematic structure of the robot was known, a large number of pair-wise independencies between
action signals and body parts could be assumed, which in turn would lead to the much simpler, factorized
model

p(x1, . . . ,xn | q1, . . . , qm) =
∏
i

p(xi | parents(xi)) . (3)

Here, parents(xi) refers to the parent nodes of xi in the Bayesian network and comprises only those
body parts and action signals on which xi directly depends on. Note that the actions are given and,
thus, do not depend on other variables in this model. We now make the factorized structure of the
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problem explicit by introducing hidden variables ∆ij := x−1i xj corresponding to the relative geometric
transformation between all pairs (xi,xj) of body parts. Further, we denote with zij := y−1i yj the relative
geometric transformation relating the observations yi and yj that correspond to xi and xj . Using this,
we define as a local model the subgraph of our network that describes the geometric relationship between
any two body parts xi and xj given the relevant part of the action signal, if all other body parts are
ignored. Figure 4 shows a prototypical local model. Here, we denote with Qij the set of action signals
that have a direct influence on ∆ij . Any set of (n− 1) local models which forms a spanning tree over
all n body parts defines a model for the whole kinematic structure and is a solution to Eq. (3).

Note that our approach does not require a proprioceptive sensor telling the robot in which configura-
tion a particular joint is after executing an action qi. At first sight, it seems that with proprioception one
could learn the kinematic function passively from visual and proprioceptive observations only. While
this is true, one would lack the mapping from motor commands to motor encoders such that the learned
model would not suffice for manipulator control. One would either need to assume that motors and
proprioceptive sensors are calibrated precisely, or one would need to additionally learn the mapping
from actions to joint encoder values for each joint. In contrast to this, we learn a combined model that
directly maps from motor commands to body pose observations. In this way, our approach closes the
action-perception-loop, as visualized in Figure 1, and it obviates the need for the explicit calibration of
the motor encoders.

In the following, we explain how to learn local models from data and how to find the spanning tree
built from these local models that best explains the whole robot. We consider the single best solution
only and do not perform model averaging over possible alternative structures. Note that in theory, it
would be straight-forward to keep multiple structure hypotheses and to average over them for prediction
using Bayes’ rule. Control under structure uncertainty, however, is a slightly more difficult problem. One
would have to consider all possible structures and assess the individual risks and gains for alternative
actions. Then, one would select the action that maximize the overall gain while keeping all possible
risks low. In practice, we found that considering the most-likely structure only is sufficient for most
of the relevant tasks. Our approach is conservative in this respect since it requires a certain minimal
accuracy from all parts of the body schema before the model is considered complete.

3.1 Local Models

The local kinematic models are the central concept in our body schema framework. A local model M
(see Figure 4) describes the geometric relationship between two body parts i and j given a set of action
signals Qij . We propose to learn this relationship from data samples acquired while requesting random
joint configurations and observing their effects on the robot’s pose. As the learning framework for solving
this supervised regression problem, we apply Gaussian process models for regression [Rasmussen and
Williams, 2006]. The observations yi of part locations xi are obtained by tracking visual markers in 3D
space including their position and orientation [Fiala, 2005]. These markers are also depicted in Figure 2.
Note that the observations yi’s are inherently noisy and that missing observations are common, for
example, in consequence of (self-)occlusion. Formally, the task is to learn the local transformations
∆ij , each linking two body parts xi and xj . Considering Figure 4, a straight-forward approach would
be to infer the true poses xi and xj from the noisy observations yi and yj , by assuming Gaussian white
noise on the observations, i.e.,

yi ∼ N (xi, Σy). (4)

Then, one would need to integrate over the latent true poses xi and xj in order to reason about ∆ij .
However, since the absolute positions xi are irrelevant for describing the relative transformations, we

take a slightly different approach by focusing directly on the transformations zij between observations
yi and yj . Note that these virtual measurements zij are noisy observations of the true transformation
∆ij as a result of Eq. (4), i.e., we obtain

zij ∼ N (∆ij , Σz). (5)
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Fig. 4: Template of a local model that defines the kinematics between two related body parts.

With this, we can directly learn the relationships of actions Qij to relative transformations p(zij | Qij).
The problem of learning a single local model now has the form of the noisy regression problem

zij = fM(Qij) + ε (6)

that is, the regression function

fM : R|Qij
| → R16,

Qij 7→ ∆ij (7)

has to be learned from a sequence of noisy observations zij .
For simplicity, we consider the over-parametrized transformation matrices in the following with

d = 12 independent components and keep the remaining 4 elements of the homogeneous matrices fixed
to (0 0 0 1). Subsequently, we learn the functional mapping for each of the 12 components separately.
Due to this simplification, we cannot guarantee that all predictions correspond to valid, homogeneous
transformation matrices. In practice, however, they lie close to valid transformations such that a nor-
malization step resolves the problem. In particular, we ortho-normalize the rotational part of the ho-
mogeneous matrix using singular value decomposition. For solving the regression problem as stated
in Eq. (7), we learn a Gaussian process model [Rasmussen and Williams, 2006] for the transforma-
tion functions fM for all local models M and choose the squared exponential covariance function to
parametrize the process.

An example of this is given in Figure 5. The red, green and blue curves show the translational x-,
y-, and z- components of two different local models, respectively. The depicted models were learned
from real data using Gaussian process regression. In the situation shown in Figure 5a, the action
(x-axis) physically corresponds to the transformation being measured (y-axis). Thus, the data set is
self-consistent and accurate functions with low noise levels can be learned. The higher noise level for
the z-component is due to larger measurement error in this direction (i.e., the camera’s line of vision).
In the situation depicted in Figure 5b, a local model has been learned for variables that do not have
a direct physical relationship. As a result, the model predicts the observations with a high uncertainty
and thus does not explain the data well. Such a local model is likely to be discarded during the search
for the full body model.
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Fig. 5: Two local models learned from real data. (a) Example of an accurate local model. (b) Another local model that
is less likely to be selected. The shaded areas represent the uncertainty of the learned Gaussian process.

3.2 Learning a Factorized Full Body Model

We seek to find a factorized model of the kinematic model that best explains the observed data. Our
aim is to learn and evaluate this model efficiently, i.e., we aim to minimize the number of local models
that need to be learned.

We implement this by discarding all local models that are overly inconsistent with the observed
data. We define a local model M to be valid given a set of observations D, if and only if the sample
observation log-likelihood is above some threshold η, i.e.,

1

|D|
log p(D | M) > η (8)

that we will denote with the Boolean predicate validM(D). In practice, we use the 3σ confidence
interval based on the sensor noise as a threshold to reject models that are overly inconsistent with the
observations. We compute the data likelihood of a set of observations D as the product of the likelihoods
of the individual observations, i.e.,

p(D | M) :=
∏

(zij ,Qij)∈D

p(zij | Qij ,M). (9)

According to our observation model from Eq. (5), we assume Gaussian noise in the observations zij
with covariance Σy with respect to the expected pose ∆̂ij := E[∆ij | Qij ,M] as predicted from the
Gaussian process model, resulting in

p(zij | Qij ,M) :=
1√

(2π)6 |Σy|
exp

(
−1

2
(zij − ∆̂ij)

TΣ−1y (zij − ∆̂ij)

)
. (10)

To compare models with different data likelihoods and complexities, we define a model quality measure
as

q(M) := log p(D | M)︸ ︷︷ ︸
accuracy

− k log(η |D|)︸ ︷︷ ︸
complexity

(11)

where k ∈ N denotes the dimensionality of the modelM, i.e., the number |Q
ij
| of action signals that

the model depends on. This measure is proportional to both the model accuracy and to a penalty
term for model complexity. Note that this quality measure is similar to the Bayesian information
criterion [Schwarz, 1978]. The key difference of our quality measure is that it contains the likelihood
threshold as an additional factor in the complexity penalty. This formulation provides us two important
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properties that we can exploit to specify an efficient search strategy for the kinematic structure. These
two properties are:

• Given two models of the same complexity but different data likelihoods, the quality measure favors
the model with the better data fit.

• Given two valid models with different complexity, the quality measure favors the model with the
lower complexity.

The first property follows directly from the definition of the quality measure. The second property
results from the definition of valid models in Eq. (8) in combination with the threshold as a factor in
the model quality measure. If k1 < k2 and both models are valid, i.e., both log p(D | M1) > η|D| and
log p(D | M2) > η|D|, we can show that q(M1) > q(M2) as follows:

q(M1)− q(M2) = log p(D | M1)− k1 log(η |D|)− [log p(D | M2)− k2 log(η |D|)]
> log η |D| − k1 log(η |D|)− [log p(D | M2)− k2 log(η |D|)]
≥ log η |D| − k1 log(η |D|)− [log 1− k2 log(η |D|)]
≥ log η |D| − k1 log(η |D|)− [log 1− (k1 + 1) log(η |D|)]
= log η |D| − k1 log(η |D|)− 0 + k1 log(η |D|) + log(η |D|) = 0.

3.2.1 Finding the Network Topology

If no prior knowledge about the body structure of the robot exists, we initialize a fully connected
kinematic model containing a total of

∑m
k=0

(
n
2

)(
m
k

)
local models (linking m action signals to n relative

transformations). Given a set of observations, the robot first eliminates those local models that are
highly inconsistent with the data by evaluating validM(D) as described above. The remaining set of
valid models is typically still large. Certain ambiguities will, for instance, remain even after infinitely
many training samples. If, for example, p(z12 | q1,M1) has been determined to be a valid local model,
then p(z12 | q1, q2,M2) will also be. Although these alternative models might not be distinguishable
regarding their data likelihood p(D | M), they differ significantly in their complexities k and therefore
in their model quality q(M).

To find the best topology on a global level, we aim to select the minimal subset M̂ ⊂Mvalid from the
superset of all valid local models Mvalid = {M1, . . .MN} that covers all body parts and simultaneously
maximizes the overall model fit, i.e.,

M̂ := argmax
M

∑
M∈M

q(M). (12)

This subset can be found efficiently by computing the minimal spanning tree of Mvalid taking the
negative model quality measure of the individual local models as cost function. For our purposes, the
spanning tree needs to cover all body parts but not necessarily all action variables, since some of them
might not have an influence on the robot.

To connect all n body poses in the Bayesian network, exactly |M̂| = (n− 1) local models need to be
selected. This yields

(|Mvalid|
|M̂|

)
possible network structures to be considered. In the typical case, where

the robot is composed of n− 1 arbitrarily connected 1-DOF joints, this number reduces to the order of
O(n3). Regarding the scalability to higher degrees of freedom and longer kinematic chains, the growth
of the search space is of less practical importance than other factors such as the observability of local
transformations (from a given camera view point).

We illustrate our approach with an example. Figure 6 shows a simulated robot consisting of two body
parts x1 and x2 linked by a 2-DOF spherical joint with two action signals q = (q1 q2)

T . To learn its
kinematic model, the robot repeatedly samples random actions q and sends these to its joint. After the
motion comes to rest, the robot observes the resulting pose of its body parts and adds the action-pose
pair to the sequence of training data. Given these pose observations, it learns four local models relating
its two body parts, for all possible dependencies on the two action signals: the first model is indepedent
of any action signal, the second model depends on q1, the third model on q2, and the fourth model on
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Fig. 6: Example of a 2-DOF robot composed of two body parts and a single spherical joint. (a)+(b) Result after actuating
only the first DOF. (c)+(d) Result after actuating both DOF.

both action signals. Initially, we let the robot only actuate the first DOF q1 and keep q2 = 0 fixed.
Correspondingly, the robot moves its end effector on a circular arc, as visualized by the yellow cones
above the robot in Figure 6a. From this data, the robot trains all four local models. After learning,
both models M2 and M4 are evaluated to be valid, i.e., have log p(D | M) > η|D|. With respect to
our quality measure, however, M4 has a much higher complexity penalty as k2 = 1 and k4 = 2, and
correspondingly, M2 is selected. The resulting kinematic structure is visualized by the bold arrows
in Figure 6b. This situation looks different when the robot actuates both DOFs simultaneously. The
resulting area covered by the end effector then corresponds to a hemisphere, as visualized in Figure 6c.
Again, the robot trains all possible local models, but now finds that onlyM4 is valid (see Figure 6d).
AsM2 does not depend on the second DOF, its data likelihood is far below the acceptance threshold η
and thus gets rejected. These two examples demonstrate that our quality measure favors simple models
over more complex ones, but also selects more complex models if necessary.

Note that for implementing this structure search efficiently, typically not every of the
∑m

k=0

(
n
2

)(
m
k

)
possible local models needs to be evaluated. By the choice of the quality measure in Eq. (11), a valid
model with a lower complexity will always have a higher quality than any other valid model with a
larger complexity. This follows from the threshold on valid models which serves as a lower bound on the
model quality: all models with data likelihoods below this threshold are invalid and thus discarded. As
a consequence, an efficient algorithm can be devised to minimize the number of models to be evaluated.
It is sufficient to evaluate only the first k complexity layers of local models until a minimal spanning
tree is found for the first time. This spanning tree then corresponds to the global maximum of the
overall model quality. The resulting algorithm is given in Algorithm 1. Important for the efficiency is
that only the minimal set of local models actually gets trained and evaluated (line 2–3) and that the
algorithm stops training more models after the first spanning tree has been found (line 4–6).

We illustrate the effect of this property in Figure 7. In this experiment, we consider a manipulator
consisting of five body parts and four action signals. The yellow nodes correspond to all theoretically
possible local models. The local models depicted in this figure are sorted corresponding to their com-
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Fig. 7: (a) Example of a 4-DOF serial chain manipulator consisting of five body parts. (b) Recovered kinematic model.

x3 occluded →

x1 x2 x3 x4 x5
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x1 x2 x3 x4 x5
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Fig. 8: Same robot as in Figure 7, but x3 was occluded and thus never observed. As a result, a joint model from x2 to
x4 depending both on q2 and q3 is selected.
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Input: training data D
Output: kinematic structure M̂
for k ∈ {0, 1, . . . ,m} do

Let Mk := {M | log p(D | M) > η|D| ∧ |Q| = k} be the set of all valid models of complexity k;
Let M1:k :=

⋃k
i=1 Mi be the set of all valid models found so far;

if a spanning tree of x1, . . . ,xn exists in M1:k then
Compute the minimum spanning tree M̂ from M1:k, for example, using Prim’s or Kruskal’s algorithm;
Return M̂ as the optimal kinematic structure;

end
end

Algorithm 1: Estimation of the kinematic structure

plexity, i.e., the bottommost row corresponds to local models representing rigid transforms (k = 0),
the four next rows correspond to local models that depend only on a single action signal (k = 1), the
next six rows to models that depend on two action signals simultaneously (k = 2), and so on. After the
robot has evaluated the first two complexity layers (k = 0 and k = 1), it detects that the set of valid
models contains a spanning tree, and thus the evaluation of all remaining local models with k ≥ 2 can
be skipped. The best kinematic model corresponds to the minimum spanning tree between all body
parts and the local models and is visualized by the bold edges in the figure. This experiment illustrates
that the proposed quality measure contributes to the efficiency of our approach, as only the first two
layers of local models need to be evaluated to find the optimal kinematic model.

In a second experiment, we occluded the visual marker corresponding to the third body part of the
same robot. Figure 8 shows the resulting Bayesian network. As x3 was never observed, no local model
relating the other body parts to x3 could be trained. Therefore, after evaluating the local models with
complexities k = 0 and k = 1, no spanning tree exists, as no valid connection between x2 and x4 can
be established. Only after evaluating additionally all local models that simultaneously depend on two
action signals, the robot finds a local model between x2 and x4 depending both on q2 and q3. This
experiment demonstrates that our approach also works when only parts of the system are observable.
However, learning local models with high-dimensional inputs is a more complex learning problem and
usually requires more training samples before the same prediction accuracy is achieved.

3.3 Prediction and Control

Having discussed the learning of local models and the selection of the network structure, we now show
how the resulting model can be used to predict the pose of the robot for a given action (forward
kinematics) and how to infer a suitable action that moves the manipulator to a given pose (inverse
kinematics).

The kinematic forward model can be constructed directly from the local models contained in M,
since these form a tree over all body part variables xi. We can write

p(x1, . . . ,xn | q1, . . . , qm) =
∏
i

p(xi | parents(xi)) (13)

= p(xroot)
∏
Mij∈M

p(∆ij | Qij ,Mij) (14)

= p(xroot)
∏
Mij∈M

p(x−1i xj | Qij ,Mij) , (15)

where xroot is the position of the robot trunk, which serves as the reference frame for all other body
parts. We useMij to denote the local model ofM which describes the transformation between xi and xj .
From p(x1, . . . ,xn|q1, . . . , qm) in the factorized form, we can now approximate the maximum likelihood
estimate of the resulting body posture given an action q by concatenating the geometric transformations
of the individual geometric transformations. We define the kinematic function by finding the maximum
of the probability distribution
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f(q) := max
xee

p(xn | q1, . . . , qm,xroot), (16)

where xee denotes the body part corresponding to the end effector (i.e., the body part to be controlled).
As all local models evaluated for a particular action q provide a Gaussian distribution in pose space,
the marginal over the pose of the end effector can efficiently be computed as the concatenation of the
marginals of the individual local models. In particular, we are interested in the maximum likelihood
estimate for the end effector which we can compute efficiently by concatenation, i.e.,

f(q) := fM12
(Q12)fM23

(Q23) · · · fM
(n−1)n

(Q(n−1)n). (17)

Here, fMij
(Qij) refers to transformation predicted by the local modelMij and evaluated for relevant

part of the action signal Qij . Note that also the covariances of the pose estimate can be computed
efficiently by approximating the result of the multiplication of two Gaussians with a Gaussian. As each
regression function fMij

corresponds to a Gaussian process, also the expected variance is known and
can be propagated efficiently, similar to Eq. (17), through the Bayesian network. We may refer the
interested reader to Ware and Lad [2003] on this topic. In practice, however, we found that estimating
the variance directly from the training data is more reliable, as it provides us with a global estimate of
the uncertainty instead of a summation over local uncertainties.

The ordering of multiplications in Eq. (17) depends on the kinematic structure defined by M̂. This
ordering can efficiently be computed for example using Dijkstra’s algorithm to find the (shortest) path
between two nodes in the spanning tree.

In principle, the inverse kinematic model can be derived by applying Bayes’ rule,

p(q1, . . . , qm | x1, . . . ,xn) =
p(q1, . . . , qm)

p(x1, . . . ,xn)
p(x1, . . . ,xn | q1, . . . , qm), (18)

it is in practice difficult to determine the maximum likelihood (ML) solution for the action q1, . . . , qm.
This is due to the fact that the target posture is typically not fully specified for all body parts but
rather for the root part and the end effector. Thus, the Bayesian network is only constrained at both
“ends”, which results in a high-dimensional optimization problem.

For this reason, we resort to differential kinematics which uses the Jacobian to compute a configura-
tion that moves the end effector iteratively towards the desired target pose Sciavicco and Siciliano, 2000.
Since all individual functions fMi

are continuous, the maximum likelihood estimate f from Eq. (17)
of the forward kinematic model is continuous, too, and so the Jacobian of the forward model can be
computed as

Jf (q) =

[
∂f(q)

∂q1
, . . . ,

∂f(q)

∂qm

]T
. (19)

Given the Jacobian Jf (q), it is straight-forward to implement a gradient descent-based algorithm that
continuously minimizes the distance function and, thus, controls the manipulator towards the target
pose. While such a “greedy” controller may get trapped in local minima of the distance function and
might fail to plan around obstacles, it is often used in practice for manipulator control and forms the
basis of many higher-level path-planning algorithms such as probabilistic road-maps or rapidly-exploring
random trees LaValle [2006].

4 Failure Awareness and Life-Long Adaptation

So far, we have assumed that the kinematics of the robot remain unchanged during its life-time. It is
clear, however, that in many real-world applications, the kinematics of a robot will change over the
course of its life-time. This can, for example, be caused by material fatigue, wear and tear, or inaccurate
repairs. This requires that the robot revises parts of its internal model over time and can discriminate
between earlier and more recent observations to reason about such changes. We would like the robot to
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detect changes of its kinematics by testing the validity of its local models continuously. It might even be
useful for the robot to maintain multiple body schema at different time scales. Consider, for example, a
robot that uses an accurate pre-programmed model over a long period of time and that has the ability
to learn additional models in response to kinematic changes. Such a situation is depicted in Figure 9.
In this experiment, we changed the tool in the end effector without notifying the system. The task of
the robot is to detect this change and to learn a replacement for the mismatching local model.

To deal with model changes over time, we add a time index T to the local modelsMT to indicate
this dependency. Consequently, the size of the learning problem grows exponentially in time yielding
the immense upper bound of

∑m
k=0

(
n
2

)(
m
k

)
2|T | local models to be considered. As it is intractable to

evaluate all of these local models even for small periods of time, we make three additional assumptions
such that an efficient algorithm for online applications can be implemented:

1. Changes to the kinematic structure and/or kinematic properties are relatively rare events.
2. Changes happen incrementally.
3. Whatever local models were useful in the past, it is likely that similar – or even the same – local

models will be useful in the future.

Due to the first assumption, we do not have to re-learn the local models continuously and re-optimize the
network, but rather it is sufficient to monitor the data likelihood of the models until one of them is not
evaluated as being valid any more. In this case, the second assumption states that the network cannot
change completely at a given time step, but that we can recover the new structure by exchanging non-
valid local models by re-learned ones individually. Furthermore, according to our third assumption, it is
reasonable to begin the search for new models with those that are similar to previously useful models,
i.e., to keep a history of successful local models and to start searching within this history before learning
new models from scratch.

We incorporate these assumptions into an integrated system that is able to learn a body schema
from scratch and to exchange local models at a later stage whenever a misfit is detected. For rating
and ordering alternative local models, we consider the structural proximity dDBN(M1,M2) of two local
models which we define as the ratio of shared nodes in the Bayesian network. This way, models that
depend on a similar set of variables are given preference in the search. We now present an experimental
evaluation of the integrated system in simulation and on two real robotic manipulators.

5 Experiments

We tested our approach in a series of experiments on a real robot as well as in simulation. The goal of
our experiments was to verify that

1. the robot is able to learn its kinematic structure and individual transformation functions,
2. subsequent changes to the robot’s body are detected reliably (blocked joints/deformations),
3. the body schema is updated automatically without human intervention, and
4. the resulting model allows for accurate prediction and control.

The two real robots used to carry out the experiments were equipped with a 2-DOF and with a 7-DOF
manipulator, respectively, composed of Schunk PowerCube modules (see Figure 2). We compare the
learned kinematic model with a carefully hand-tuned model that uses the joint encoder measurements
for predicting the current pose. Note that our approach uses in contrast only the actions and not
proprioception for learning the model and predicting the pose. Visual perception was implemented
using a Sony DFW-SX900 FireWire camera at a resolution of 1280x960 pixels. Seven black-and-white
markers were attached to the joints of the robot and the ARToolkit vision module [Fiala, 2005] was
used to continuously estimate their 3D poses. The standard deviation of the camera noise was measured
to σmarkers = 0.044m in 3D space, which is acceptable considering that the camera was approximately
located two meters away from the robot. The prediction errors and error bars reported in the following
were evaluated using independent test sets Dtesting with 15 data samples.
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Fig. 9: Adaptation of the body schema during tool-use. (a) Initial body schema. (b) After a different tool is placed in
the gripper, the model does not fit the observations anymore. (c) The mismatching model ∆67 is revoked. (d)+(e) The
first newly sampled model (∆gp

67) has a high uncertainty because of the missing dependency on the action signal q6.

(f)+(g) The second sampled model (∆gp′

67 ) is a suitable replacement.
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5.1 Evaluation of Model Accuracy
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Fig. 10: Prediction and control errors of our model learning approach evaluated on a real 2-DOF manipulation robot.

To quantitatively evaluate the accuracy of the kinematic models learned from scratch as well as the
convergence behavior of our learning approach, we generated random action sequences and analyzed
the intermediate models using the 2-DOF robot of which the kinematic model is perfectly known.
Figure 10 gives the absolute errors of prediction and control after certain numbers of observations have
been processed. For a reference, we also give the average observation noise, i.e., the absolute localization
errors of the visual markers. As can be seen from the diagram, the body schema converges robustly
within the first 10 observations. After about 15 training samples, the accuracy of the predicted body part
positions becomes even higher than the accuracy of the direct observations. The latter is a remarkable
result as it means that, although all local models are learned from noisy observations, the system is
able to “blindly” estimate its pose more accurately than immediate perception. The figure also gives the
accuracy when the robot is using the learned model to control its position. Here, we used an additional
marker to define the target location of the end effector. We learned the full body schema from scratch
as in the previous experiment and used the gradient-based control algorithm to bring the end effector
to the desired target location. The average positioning error is in the order of the perception noise
(approximately 0.050m, see Figure 10), which is slightly higher than the prediction error alone.

(a)

q1 q2 q3 q4 q5 q6 q7

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

k = 0
k = 1
k = 2

(b)

Fig. 11: Experiment with a simulated 7-DOF-manipulator consisting of 10 body parts. Body part x4 was occluded and,
thus, never observed. (a) Picture of the simulated robot. (b) After 10 training samples, the Bayesian network has converged
to the correct kinematic structure.
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The second experiment was carried out on a 2-DOF robot of similar size in simulation. Therein, we
analyzed the convergence behavior of the local models with respect to the training size in the absence of
observation noise. We evaluated the accuracy of the learned models on independently drawn test sets.
Here, we found that the accuracy was on average below 0.002m and 1° after 20 training samples, and
below 0.001m and 0.2° after 100 training samples. This shows that the underlying Gaussian process
regression models can approximate the kinematic function arbitrarily well, given that enough training
data is available.

Further, we evaluated our algorithm on a simulated 7-DOF manipulator consisting of 10 body parts,
to verify that our approach also scales to larger manipulators. The total length of the simulated ma-
nipulator was 1.300m. The manipulator has been assembled as follows (see Figure 11):

• Body parts x1 and x2 were firmly connected to each other.
• Two fingers x9 and x10 were mounted on the 1-DOF gripper whose configuration is given by q7.
• The remaining body constituted a chain of visible body parts x2, . . . ,x8 and revolute joints q1, . . . , q6.

The structure of the learned forward model converges after around 10 samples, similar to previous
experiments. The average prediction error after around 100 samples was below 0.001m.

With these experiments, we demonstrated that our approach is able to recover the kinematic model
of several real and simulated manipulators. Furthermore, we showed that the learned models are more
accurate than the observation noise in the real robot experiment and asymptotically converge towards
zero error in the noise-free case. Finally, with the experiment on the simulated 10 part manipulator and
7 DOFs, we demonstrated that our approach applies also to more complex structures.

5.2 Recovery from a Blocked Joint

In a second experiment we used the 7-DOF robot depicted in Figure 2b to evaluated how well the
proposed system can detect a stuck joint and repair its model accordingly. To this end, we initialized
the body schema with an accurate, manually calibrated model. Upon detection of a model mismatch,
new local models were trained from a set Dtraining of 30 consecutive training samples recorded after the
model was instantiated. In order for a local model to be valid, its translational and orientational error
on the test set was required to be within 3σz,pos = 0.150m and 3σz,orient = 45°, with σz,pos and σz,orient
the standard deviations of the positional and orientational observation noise, respectively. New local
models were only sampled when no valid spanning tree could be constructed for 15 consecutive time
steps. This corresponds to the time it takes to replace the data samples in the test set – depending on
the visibility of the individual markers.

We generated a large sequence of random actions 〈q1, . . . ,qt〉. Before accepting a pose, we checked
externally that these actions would not cause any (self-)collisions and that the visual markers of interest
would potentially be visible on the monocular camera image. This sequence was sent to the robot and
after the motion of the manipulator stopped, the observed marker poses (y1, . . . ,yn) were recorded. We
allowed for arbitrary motion patterns (only constrained by the geometry of the manipulator) and thus
do not require full visibility of the markers. In the rare case of an anticipated or actual (self-)collision
during execution, the robot stopped and the sample was rejected. Analysis of the recorded data revealed
that, on average, the individual markers were visible only in 86.8% of the images. In a second run, we
blocked the end effector joint q4 so that it could not move and again recorded a log-file. An automated
test procedure was then used to evaluate the performance and robustness of our approach. For each
of the 20 recorded runs, a data sequence was sampled from the log-files, consisting of 4 blocks with
N = 100 data samples each. The first and the third block were sampled from the initial body shape,
while the second and the fourth block were sampled from the log-file where the joint got blocked.

Figure 12a shows the absolute errors of the local models predicting the end effector pose. As expected,
the prediction error of the engineered local model increases significantly after the end effector joint gets
blocked at t = 100. After a few samples, the robot detects a mismatch in its internal model and starts to
learn a new dynamic model (around t = 130), which quickly reaches the same accuracy as the original,
engineered local model. At t = 200, the joint gets repaired (unblocked). Now the estimated error of the
replacement model quickly increases while the estimated error of the engineered local model decreases



Body Schema Learning 17

0

0.1

0.2

0.3

0 50 100 150 200 250 300 350 400

p
re
d
ic
ti
on

er
ro
r
[m

]

time step

joint stuck joint repaired joint stuck

Engineered model
Learned replacement model

(a)

0

0.1

0.2

0 50 100 150 200 250 300 350 400

p
re
d
ic
ti
on

er
ro
r
[m

]

time step

joint stuck joint repaired joint stuck

Combined kinematic model

(b)

0

5

10

0 50 100 150 200 250 300 350 400

n
u
m
b
er

o
f
m
o
d
el
s

time step

Size of kinematic model
Size of training set

Size of test set

(c)

Fig. 12: Experimental evaluation of model recovery after a joint is blocked. (a) Prediction errors of the engineered and
learned replacement model of a single run. (b) Prediction error of the combined model averaged over 20 runs. (c) Number
of models in the current Bayesian network, the current training set, and the current test set. On average, our approach
only needs to sample a single model before the kinematic model is restored.



18 Jürgen Sturm, Christian Plagemann, and Wolfram Burgard

rapidly towards its initial accuracy. Later, at t = 300, the joint gets blocked again in the same position,
the accuracy of the previously learned replacement model increases significantly, and thus the robot
can re-use this local model instead of having to learn a new one.

We averaged the precision of the combined model – i.e., the engineered one fused with the one
learned after having detected the failure – over 20 runs of the experiment. The results are given in
Figure 12b. The hand-tuned initial geometrical model evaluates to an averaged error at the end effector
of approximately 0.037m. After the joint gets blocked at t = 100, the error in prediction increases
rapidly. After t = 115, a single new local model gets sampled, which already is enough to bring down
the overall error of the combined kinematic model to approximately 0.0051m. Training of the new local
model is completed at around t = 135.

Later, at t = 200, when the joint gets un-blocked, the error estimate of the combined kinematic
model increases slightly, but returns much faster to its typical accuracy: switching back to an already
known local model requires less data samples than learning a new model (see Table 1). At t = 300, the
same quick adaption can be observed when the joint gets blocked again.

Table 1: Evaluation of the number of pose observations required until the robot can re-establish a valid kinematic model
after being exposed to different types of failures. The numbers give the mean and standard deviations in 20 independent
runs.

Visibility rate Failure type Time steps until recovery

first occurrence restore/repair second occurrence

91.9% Joint stuck 16.50 ± 1.20 0.45 ± 0.86 0.65 ± 1.15
79.0% Tool exchange 20.20 ± 1.96 11.10 ± 0.83 12.10 ± 1.64

5.3 Tool Use

In a third experiment, we changed the end effector link length and orientation and applied the same
evaluation procedure as in the previous subsection. This was accomplished by placing a tool with an
attached marker in the gripper and changing its configuration during the experiment (see Figure 9).
After a different tool is placed in the gripper, the body schema does not fit the observations anymore.
In particular, the robot identifies ∆67 as the mismatching component and seeks for a replacement. The
first newly sampled model (∆gp

67) has a high uncertainty because of the missing dependency on the
action signal q6. Accordingly, the robot samples a second model ∆gp′

67 which it evaluates as a suitable
replacement. As a result, the adapted body schema is again valid and the robot can position its tool
accurately.

The quantitative results for a single run and the average over 20 runs of this experiment are given in
Figure 13. After the tool gets displaced at t = 100, two local models have to be sampled on average to
repair the kinematic model. The prediction accuracy of the whole system closely resembles the levels
that were obtained in the case of the blocked joint. On average, we measured an accuracy of 0.047m after
recovery. In Table 1, we summarize the averaged recovery times for this and the previous experiment.
As can be seen from the results, the system recovers from a blocked joint quicker than from a tool
exchange, and recalling a previously successful model is significantly faster than learning a new model
from scratch.

5.4 Controlling a Deformed Robot

Finally, we performed a series of experiments to verify that dynamically maintained body schemata can
be used for accurate positioning and control. The experiments were performed on a simulated 4-DOF
manipulator. We defined a trajectory consisting of 30 way points (in 3D space) that the manipulator
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Fig. 13: In this experiment, the tool in the end effector of the robot was repeatedly exchanged. (a) Prediction error of the
engineered and learned replacement model of a single run. (b) Prediction error of the combined model averaged over 20
runs. (c) Evolution of models being trained and tested while the kinematic model gets updated. In this case, the robot
samples on average two local models before the kinematic model is restored.
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was requested to approach using the differential kinematics using its current body schema. When the
initial geometric model was used to follow the trajectory by using the undamaged manipulator, the
robot achieved a positioning accuracy of 0.007m. After we had deformed the middle link by 45°, the
manipulator with a static body schema was significantly off course, leading to an average positioning
accuracy of 0.189m. With dynamic adaptation enabled, the precision settled at 0.015m. These results
are also summarized in Table 2 including the standard deviations of the errors computed over 20
independent runs. The results show that dynamic model adaptation enables a robot to maintain a high
positioning accuracy even after substantial changes to its kinematics.

Table 2: Evaluation of the control of a deformed robot in simulation. Experimental comparison of the control error while
following a trajectory in the presence of hardware failures.

Shape Strategy Control error [m]

initial static 0.007 ± 0.011
deformed static 0.189 ± 0.028
deformed adaptive 0.015 ± 0.002

With the experiments on blocked joints, deformed links, and tool changes, we showed that robots
equipped with our approach are able to maintain a valid kinematic model even after significant damage
or changes occur to the robot. Furthermore, our approach does not require to re-learn the complete
model, but is able to identify inaccurate parts of the Bayesian network and to replace these efficiently
using a suitable search heuristic. With our experiments on controlling a deformed robot, we demon-
strated that a robot using our approach stays operational after link deformations and hardware failures
and thus requires less human supervision.

6 Related Work

The central idea of our approach is to represent the kinematic model as a probabilistic Bayesian network
whose vertices correspond to body parts and action signals and whose edges encode the local kinematic
models. Dearden and Demiris [2005] enabled a robot to learn a Bayesian network that relates action
commands to the visual motion of its gripper. In comparison to our work, the problem considered by
Dearden and Demiris is much simpler as they deal only with two body parts observed in two-dimensional
camera images. As a result, their model does not provide a three-dimensional kinematic model of the
manipulator.

Kuipers et al. provided with the “spatial semantic hierarchy” (SSH) a set of concepts on representing
and learning sensor-motor maps for robots at different abstraction levels. Their work is inspired by the
concept of human cognitive maps [Kuipers and Byun, 1988, Kuipers et al., 2000, Remolina and Kuipers,
2004]. The general idea is to learn mappings that relate sensor input to motor commands and that enable
a robot, for example, to follow trajectories without any prior knowledge. A different approach has been
presented by Kolter and Ng [2007] who applied dimensionality reduction to find a suitable subspace
in order to learn a walking gait for a four-legged robot. Another instance of approaches based on
dimensionality reduction is given by the work of Grimes et al. [2006] who employed principal component
analysis in conjunction with Gaussian process regression to learn walking gaits for a humanoid robot.
Yoshikawa et al. [2004a] used Hebbian networks to discover the body schema from self-occlusion and
self-touching sensations, and learned classifiers for body/non-body discrimination from visual data
[Yoshikawa et al., 2004b]. By combining the sensor data across multiple modalities such as visual,
proprioceptive and tactile sensor data, Sawa et al. [2007] enabled a robot to infer the Jacobian even for
invisible hand positions.

Other approaches model the (inverse) kinematic function directly as a high-dimensional regression
problem. For example, Fiala [1994] and later Natale [2004] used neural networks to learn reaching move-
ments, Gaskett and Cheng [2003] proposed self-organizing maps to coordinate hand-eye movements,
and Kumar et al. [2010] employed radial basis function networks (RBFs) to learn the local mappings
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between configurations and end effector poses. Recurrent neural networks have also been used to learn
the kinematics and dynamics of manipulation robots [Reinhart and Steil, 2008, Rolf et al., 2009]. As no
global inverse kinematic function exists for redundant kinematic chains, D’Souza et al. [2001] estimated
the inverse kinematic function locally from observed data. As the required number of training samples
increases exponentially with the degrees of freedom of the robot, Lopes and Santos-Victor [2005] pro-
posed to learn the kinematic function incrementally, first by moving only the shoulder and elbow joints
and, subsequently, the hand. Other approaches aim to reduce the number of training samples required
to learn an accurate kinematic model. Martinez-Cantin et al. [2010] showed how active learning can
be used to reduce the number of required training samples, by actively choosing joint configurations
that maximize the expected information gain. Angulo and Torras [2005] approached this problem by
splitting the manipulator into two or more virtual robots. However, Angulo and Torras assumed that a
suitable decomposition of the manipulator is known beforehand, and thus, did not tackle the problem
of learning the kinematic structure.

The approach presented in this article is also related to the problem of parameter optimization, which
can be understood as a sub-problem of body schema learning. When the kinematic model is given in a
parametric form, the parameters can be optimized efficiently with respect to an error measure [Gatla
et al., 2007, Pradeep et al., 2010, He et al., 2010] or the data likelihood [Roy and Thrun, 1999]. Hersch
et al. [2008] showed that parameter optimization can also be used to adapt the body schema during tool-
use, for example, to estimate the tool position and orientation. Martinez-Cantin et al. [2010] extended
this approach to active learning, i.e., they generated observation actions that maximize the expected
information gain. Such methods can also be used to identify the dynamic parameters such as the center
of mass, the moments of inertia, etc. Ting et al. [2006], for example, presented a Bayesian approach for
estimating these parameters on two different manipulation robots. In principle, these methods could be
applied after our approach has bootstrapped the kinematic model, in order to refine or augment the
model and achieve a faster convergence. Genetic algorithms can also be used for parameter optimization
given a suitable parametrization of the kinematic model space. Bongard et al. [2006a,b] described
a robotic system that continuously learns its own structure from actuation-sensation relationships.
Their system generates new structure hypotheses using stochastic optimization, which are validated by
generating actions and by analyzing the following sensory input. In a more general context, Bongard
and Lipson [2007] studied structure learning in arbitrary nonlinear systems using similar mechanisms.

In contrast to all of the approaches described above, our approach learns both the structure as well as
the functional mappings for the individual building blocks of the body schema. Furthermore, it does not
require an explicit parametrization of the body schema, and the representation in form of a Bayesian
network allows a robot to quickly revise its structure and to replace invalidated local models on-the-fly.
Recently, Hoffmann et al. [2010] published a comprehensive review on body schema learning in robotics
which includes a detailed discussion of our work.

7 Summary

In this chapter, we presented a novel approach to body schema learning for manipulation robots.
Our central idea is to continuously learn a large set of local kinematic models using nonparametric
regression. Given this set of models, we search for the arrangement that best represents the full system.
Our approach recovers the kinematic structure by finding the minimum spanning tree in the set of
possible models. To the best of our knowledge, this is the first time that models of such complex
kinematic systems have been learned from scratch using visual self-observation. In experiments carried
out with real manipulation robots and in simulation, we demonstrated that our system is able to
deal with missing and noisy observations, operates in full 3D space, and allows a robot to robustly
control its end effector even in the presence of hardware failures. With our approach, we contribute an
innovative solution that increases the dependability and accuracy of manipulation robots that operate
over extended periods of time without the supervision of an expert.



22 Jürgen Sturm, Christian Plagemann, and Wolfram Burgard

References

V.R. De Angulo and C. Torras. Using PSOMs to learn inverse kinematics through virtual decomposition
of the robot. In Proc. of the Intl. Work-Conf. on Artificial Neural Networks (IWANN), Barcelona,
Spain, 2005.

J. Bongard and H. Lipson. Automated reverse engineering of nonlinear dynamical systems. Proc. of
the National Academy of Sciences, 104(24):9943–9948, 2007.

J. Bongard, V. Zykov, and H. Lipson. Resilient machines through continuous self-modeling. Science,
314(5802):1118–1121, 2006a.

J. Bongard, V. Zykov, and H. Lipson. Automated synthesis of body schema using multiple sensor modal-
ities. In Proc. of the Intl. Conf. on the Simulation and Synthesis of Living Systems, Bloomington,
IN, USA, 2006b.

S.R. Buss and J. Kim. Selectively damped least squares for inverse kinematics. Journal of Graphics
Tools, 10(3):37–49, 2005.

J.J. Craig. Introduction to Robotics: Mechanics and Control. Addison-Wesley Publishing Company,
1989.

A. Dearden and Y. Demiris. Learning forward models for robots. In Proc. of the Intl. Conf. on Artificial
Intelligence (IJCAI), Edinburgh, Scotland, 2005.

A. D’Souza, S. Vijayakumar, and S. Schaal. Learning inverse kinematics. In Proc. of the IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), Maui, HI, USA, 2001.

J.C. Fiala. A network for learning kinematics with application to human reaching models. In Proc. of
the IEEE Intl. Conf. on Neural Networks(ICNN), volume 5, pages 2759–2764, 1994.

M. Fiala. ARtag, a fiducial marker system using digital techniques. In Proc. of the IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), San Diego, CA, USA, 2005.

S. Gallagher. How the Body Shapes the Mind. Oxford University Press, USA, 2005.
C. Gaskett and G. Cheng. Online learning of a motor map for humanoid robot reaching. In Proc. of the
Intl. Conf. on Computational Intelligence, Robotics and Autonomous Systems (CIRAS), Singapore,
2003.

C.S. Gatla, R. Lumia, J. Wood, and G. Starr. An automated method to calibrate industrial robots
using a virtual closed kinematic chain. IEEE Transactions on Robotics (T-RO), 23(6):1105 –1116,
2007.

D. Grimes, R. Chalodhorn, and R. Rao. Dynamic imitation in a humanoid robot through nonparametric
probabilistic inference. In Proc. of Robotics: Science and Systems (RSS), Philadelphia, PA, USA,
2006.

R. He, Y. Zhao, S. Yang, and S. Yang. Kinematic-parameter identification for serial-robot calibration
based on POE formula. IEEE Transactions on Robotics (T-RO), 26(3):411–423, 2010.

M. Hersch, E. Sauser, and A. Billard. Online learning of the body schema. Intl. Journal of Humanoid
Robotics, 5(2):161–181, 2008.

M. Hoffmann, H. Marques, A. Hernandez Arieta, H. Sumioka, M. Lungarella, and R Pfeifer. Body
schema in robotics: a review. IEEE Transactions on Autonomous Mental Development, 2(4):304–
324, 2010.

J. Kolter and A. Ng. Learning omnidirectional path following using dimensionality reduction. In Proc. of
Robotics: Science and Systems (RSS), Atlanta, GA, USA, 2007.

B. Kuipers and Y.-T. Byun. A robust, qualitative method for robot spatial learning. In Proc. of the
National Conf. on Artificial Intelligence (AAAI), Saint Paul, MN, USA, 1988.

B. Kuipers, R. Browning, B. Gribble, M. Hewett, and E. Remolina. The spatial semantic hierarchy.
Artificial Intelligence, 119:191–233, 2000.

S. Kumar, L. Behera, and T.M. McGinnity. Kinematic control of a redundant manipulator using an
inverse-forward adaptive scheme with a KSOM based hint generator. Robotics and Autonomous
Systems (RAS), 58(5):622–633, 2010.

S.M. LaValle. Planning Algorithms. Cambridge University Press, 2006.
M. Lopes and J. Santos-Victor. Visual learning by imitation with motor representations. IEEE Trans-
actions on Systems, Man, and Cybernetics, Part B: Cybernetics, 35(3):438–449, 2005.

Angelo Maravita and Atsushi Iriki. Tools for the body (schema). Trends in Cognitive Sciences, 8(2):
79–86, 2004.



Body Schema Learning 23

R. Martinez-Cantin, M. Lopes, and L. Montesano. Body schema acquisition through active learning.
In Proc. of the IEEE Intl. Conf. on Robotics and Automation (ICRA), Anchorage, AK, USA, 2010.

A.N. Meltzoff and M.K. Moore. Explaining facial imitation: A theoretical model. Early Development
and Parenting, 6(3–4):179–192, 1997.

G. Metta, G. Sandini, L. Natale, L. Craighero, and L. Fadiga. Understanding mirror neurons: A bio-
robotic approach. Interaction Studies, 7:197–232, 2006.

C. Nabeshima, Y. Kuniyoshi, and M. Lungarella. Adaptive body schema for robotic tool-use. Advanced
Robotics, 10(20):1105–1126, 2006.

L. Natale. Linking action to perception in a humanoid robot: A developmental approach to grasping.
PhD thesis, University of Genoa, Italy, 2004.

V. Pradeep, K. Konolige, and E. Berger. Calibrating a multi-arm multi-sensor robot: A bundle adjust-
ment approach. In Intl. Symp. on Experimental Robotics (ISER), New Delhi, India, 2010.

C.E. Rasmussen and C.K.I. Williams. Gaussian Processes for Machine Learning. Adaptive Computation
and Machine Learning. The MIT Press, 2006.

R.F. Reinhart and J.J. Steil. Recurrent neural associative learning of forward and inverse kinematics
for movement generation of the redundant PA-10 robot. In Proc. of the ECSIS Symp. on Learning
and Adaptive Behaviors for Robotic Systems (LAB-RS), Edinburgh, United Kingdom, 2008.

E. Remolina and B. Kuipers. Towards a general theory of topological maps. Artificial Intelligence, 152
(1):47–104, 2004.

M. Rolf, J.J. Steil, and M. Gienger. Efficient exploration and learning of whole body kinematics. In
Proc. of the IEEE Intl. Conf. on Development and Learning (ICDL), Shanghai, China, 2009.

N. Roy and S. Thrun. Online self-calibration for mobile robots. In Proc. of the IEEE Intl. Conf. on
Robotics and Automation (ICRA), Detroit, MI, USA, 1999.

F. Sawa, M. Ogino, and M. Asada. Body image constructed from motor and tactile images with visual
information. Intl. Journal of Humanoid Robotics, 4(2):347–364, 2007.

G. Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6(2):461–464, 1978.
L. Sciavicco and B. Siciliano. Modeling and Control of Robot Manipulators. Advanced Textbooks in

Control and Signal Processing. Springer, 2000.
M.I. Stamenov. Body schema, body image, and mirror neurons, chapter 2. John Benjamins Publishing,

2005.
J. Ting, M. Mistry, J. Peters, S. Schaal, and J. Nakanishi. A Bayesian approach to nonlinear parameter

identification for rigid body dynamics. In Proc. of Robotics: Science and Systems (RSS), Philadelphia,
PA, USA, 2006.

R. Ware and F. Lad. Approximating the distribution for sums of products of normal variables. Technical
Report UCDMS 2003/15, University of Canterbury, New Zealand, 2003.

Y. Yoshikawa, K. Hosoda, and M. Asada. Binding tactile and visual sensations via unique association
by cross-anchoring between double-touching and self-occlusion. In Proc. of the Intl. Workshop on
Epigenetic Robotics, Genoa, Italy, 2004a.

Y. Yoshikawa, Y. Tsuji, K. Hosoda, and M. Asada. Is it my body? Body extraction from uninterpreted
sensory data based on the invariance of multiple sensory attributes. In Proc. of the IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), Sendai, Japan, 2004b.


