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Abstract— In this paper, we present a novel benchmark for
the evaluation of RGB-D SLAM systems. We recorded a large
set of image sequences from a Microsoft Kinect with highly
accurate and time-synchronized ground truth camera poses
from a motion capture system. The sequences contain both the
color and depth images in full sensor resolution (640× 480)
at video frame rate (30 Hz). The ground-truth trajectory was
obtained from a motion-capture system with eight high-speed
tracking cameras (100 Hz). The dataset consists of 39 sequences
that were recorded in an office environment and an industrial
hall. The dataset covers a large variety of scenes and camera
motions. We provide sequences for debugging with slow motions
as well as longer trajectories with and without loop closures.
Most sequences were recorded from a handheld Kinect with
unconstrained 6-DOF motions but we also provide sequences
from a Kinect mounted on a Pioneer 3 robot that was
manually navigated through a cluttered indoor environment. To
stimulate the comparison of different approaches, we provide
automatic evaluation tools both for the evaluation of drift of
visual odometry systems and the global pose error of SLAM
systems. The benchmark website [1] contains all data, detailed
descriptions of the scenes, specifications of the data formats,
sample code, and evaluation tools.

I. INTRODUCTION

Public datasets and benchmarks greatly support the scien-
tific evaluation and objective comparison of algorithms. Sev-
eral examples of successful benchmarks in the area computer
vision have demonstrated that common datasets and clear
evaluation metrics can significantly help to push the state-
of-the-art forward. One highly relevant problem in robotics
is the so-called simultaneous localization (SLAM) problem
where the goal is to both recover the camera trajectory and
the map from sensor data. The SLAM problem has been
investigated in great detail for sensors such as sonar, laser,
cameras, and time-of-flight sensors. Recently, novel low-cost
RGB-D sensors such as the Kinect became available, and
the first SLAM systems using these sensors have already
appeared [2]–[4]. Other algorithms focus on fusing depth
maps to a coherent 3D model [5]. Yet, the accuracy of the
computed 3D model heavily depends on how accurate one
can determine the individual camera poses.

With this dataset, we provide a complete benchmark that
can be used to evaluate visual SLAM and odometry systems
on RGB-D data. To stimulate comparison, we propose two
evaluation metrics and provide automatic evaluation tools.
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(a) Office scene (“fr1”) (b) Industrial hall (“fr2”)

(c) Handheld Kinect sensor with
reflective markers

(d) Pioneer robot with Kinect sensor

Fig. 1. We present a large dataset for the evaluation of RGB-D SLAM
systems in (a) a typical office environment and (b) an industrial hall. We
obtained the ground truth camera position from a motion capture system
using reflective markers on (c) a hand-held and (d) a robot-mounted Kinect
sensor.

Our dataset consists of 39 sequences that we recorded in
two different indoor environments. Each sequence contains
the color and depth images, as well as the ground truth
trajectory from the motion capture system. We carefully cali-
brated and time-synchronized the Kinect sensor to the motion
capture system. After calibration, we measured the accuracy
of the motion capture system to validate the calibration.
All data is available online under the Creative Commons
Attribution license (CC-BY 3.0) at

http://vision.in.tum.de/data/datasets/
rgbd-dataset

The website contains—next to additional information about
the data formats, calibration data, and example code—videos
for simple visual inspection of the dataset.

II. RELATED WORK

The simultaneous localization and mapping (or structure-
from-motion) problem has a long history both in
robotics [6]–[12] and in computer vision [9], [13]–[16].
Different sensor modalities have been explored in the past,
including 2D laser scanners [17], [18], 3D scanners [19]–
[21], monocular cameras [9], [14]–[16], [22]–[24], stereo
systems [25], [26] and recently RGB-D sensors such as the
Microsoft Kinect [2]–[4].

http://vision.in.tum.de/data/datasets/rgbd-dataset
http://vision.in.tum.de/data/datasets/rgbd-dataset
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Fig. 2. Four examples of sequences contained in our dataset. Whereas the top row shows an example image, the bottom row shows the ground truth
trajectory. The fr1/xyz sequence contains isolated motions along the coordinate axes, fr1/room and fr2/desk are sequences with several loop closures in
two different office scenes, and fr2/slam was recorded from a Kinect mounted on a Pioneer 3 robot in a search-and-rescue scenario.

For laser- and camera-based SLAM systems, there are
several well-known datasets such as the Freiburg, Intel,
Rawseeds and Newcollege datasets [27]–[29]. Geiger et
al. [30] recently presented a benchmark for visual odometry
from stereo images with ground truth poses. However the
depth maps are not provided so that an additional pre-
processing step is required. Pomerleau et al. [31] recorded
a dataset with untextured point clouds from a Kinect in a
motion capture studio. Also related is the work of Bao et
al. [32] who aimed at the evaluation of semantic mapping and
localization methods. However, in their dataset the camera
poses were estimated from the color images of the Kinect, so
that the ground truth is not accurate enough for our purpose.
To the best of our knowledge, our dataset is therefore the first
RGB-D dataset suitable for the evaluation of visual SLAM
(and visual odometry) systems, as it contains both color and
depth images and associated ground truth camera poses. An
earlier version of our benchmark was presented recently [33].
Inspired from the feedback we received, we extended the
original dataset with dynamic sequences, longer trajectories,
and sequences recorded from a Kinect mounted on a mobile
robot.

Next to the data itself, a suitable evaluation metric is
required for the benchmarking of SLAM solutions. One
common evaluation metric that does not even require a
ground truth is to measure the intrinsic errors after map opti-
mization, such as the re-projection errors or, more generally,
the χ2 error [12], [34]. However, obviously low χ2 errors
do not guarantee a good map or an accurate estimate of the
trajectory, as trivially not using any sensor data leads to zero
error. From a practical viewpoint, we therefore advocate—
similar to Olson et al. [34]—to evaluate the end-to-end
performance of the whole system by comparing its output
(map or trajectory) with the ground truth. The map can
for example be evaluated by overlaying it onto the floor
plan and searching for differences. Although, in principle,

difference images between the two maps can be computed
automatically [35], the performance is often only judged
visually by searching for thin structures, kinks or ghosts like
double walls.

The alternative to map comparison is to evaluate a SLAM
system by comparing the estimated camera motion against
the true trajectory. Two frequently employed methods are
the relative pose error (RPE) and the absolute trajectory
error (ATE). The RPE measures the difference between the
estimated motion and the true motion. It can either be used
to evaluate the drift of a visual odometry system [36] or
the accuracy at loop closures of SLAM systems [37], [38]
which is especially useful if only sparse, relative relations
are available as ground truth. Instead of evaluating relative
poses differences, the ATE first aligns the two trajectories
and then evaluates directly the absolute pose differences.
This method is well suited for the evaluation of visual
SLAM systems [34], [39] but requires that absolute ground
truth poses are available. As we provide dense and absolute
ground truth trajectories, both metrics are applicable. For
both measures, we provide a reference implementation that
computes the respective error given the estimated and the
ground truth trajectory.

In this paper, we present a novel benchmark for the evalua-
tion of visual SLAM and visual odometry systems on RGB-D
data. Inspired from successful benchmarks in computer vi-
sion such as the Middlebury optical flow dataset [40] and the
KITTI vision benchmark suite [30], we split out dataset into a
training and a testing part. While the training sequences are
fully available for offline evaluation, the testing sequences
can only be evaluated on the benchmark website [1] to avoid
over-fitting.

III. DATASET

The Kinect sensor consists of an near-infrared laser that
projects a refraction pattern on the scene, an infrared camera



that observes this pattern, and a color camera in between. As
the projected pattern is known, it is possible to compute the
disparity using block matching techniques. Note that image
rectification and block matching is implemented in hardware
and happens internally in the sensor.

We acquired a large set of data sequences containing
both RGB-D data from the Kinect and ground truth pose
estimates from the motion capture system. We recorded
these trajectories both in a typical office environment (“fr1”,
6 × 6m2) and in a large industrial hall (“fr2”, 10 × 12m2)
as depicted in Fig. 1. In most of these recordings, we used a
handheld Kinect to browse through the scene. Furthermore,
we recorded additional sequences with a Kinect mounted
on a wheeled robot. Table I summarizes statistics over the
19 training sequences, and Fig. 2 shows images of four of
them along with the corresponding camera trajectory. On
average, the camera speeds of the fr1 sequences are higher
than those of fr2. Except otherwise noted, we ensured that
each sequence contains several loop closures to allow SLAM
systems to recognize previously visited areas and use this
to reduce camera drift. We grouped the recorded sequences
into the categories “Calibration”, “Testing and Debugging”,
“Handheld SLAM”, and “Robot SLAM”.

In the following, we briefly summarize the recorded se-
quences according to these categories.

a) Calibration: For the calibration of intrinsic and
extrinsic parameters of the Kinect and the motion capture
system, we recorded for each Kinect

• one sequence with color and depth images of a handheld
8×6 checkerboard with 20 mm square size recorded by
a stationary Kinect,

• one sequence with infrared images of a handheld 8 ×
6 checkerboard with 20 mm square size recorded by a
stationary Kinect,

• one sequence with color and depth images of a sta-
tionary 8 × 7 checkerboard with 108 mm square size
recorded by a handheld Kinect.
b) Testing and Debugging: These sequences are in-

tended to facilitate the development of novel algorithms with
separated motions along and around the principal axes of the
Kinect. In the “xyz” sequences, the camera was moved ap-
proximately along the X-, Y- and Z-axis (left/right, up/down,
forward/backward) with little rotational components (see
also Fig. 2a). Similarly, in the two “rpy” (roll-pitch-yaw)
sequences, the camera was mostly only rotated around the
principal axes with little translational motions.

c) Handheld SLAM: We recorded 11 sequences with
a handheld Kinect, i.e., 6-DOF camera motions. For the
“fr1/360” sequence, we covered the whole office room by
panning the Kinect in the center of the room. The “fr1/floor”
sequence contains a camera sweep over the wooden floor.
The “fr1/desk”, “fr1/desk2” and “fr1/room” sequences cover
two tables, four tables, and the whole room, respectively
(see Fig. 2b). In the “fr2/360 hemisphere” sequence, we
rotated the Kinect on the spot and pointed it at the walls
and the ceiling of the industrial hall. In the “fr2/360 kidnap”
sequence, we briefly covered the sensor with the hand for a

(a) Motion capture system (b) Calibration procedure

Fig. 3. We use an external motion capture system from MotionAnalysis
to track the camera pose of the Kinect.

few seconds to test the ability of SLAM systems to recover
from sensor outages. For the “fr2/desk” sequence, we set up
an office environment in the middle of the motion capture
area consisting of two tables with various accessoires like
a monitor, a keyboard, books, see Fig. 2c. Additionally,
during the recording of the “fr2/desk with person” sequence
a person was sitting at one of the desks and continuously
moved several objects around.

Furthermore, we recorded two large tours through the
industrial hall, partially with poor illumination and few visual
features. In the “fr2/large no loop” sequence, special care
was taken that no visual overlap exists in the trajectory. Our
intention behind this was to provide a sequence for measur-
ing the long-term drift of (otherwise loop closing) SLAM
systems. In contrast, the “fr2/large with loop” sequence has
a large overlap between the beginning and the end of the
sequence, so that a large loop exists. It should be noted that
these tours were so large that we had to leave the motion
capture area in the middle of the industrial hall. As a result,
ground truth pose information only exists in the beginning
and in the end of the sequence.

d) Robot SLAM: We also recorded four sequences with
a Kinect that was mounted on an ActivMedia Pioneer 3 robot
(see Fig. 1d). With these sequences, it becomes possible to
demonstrate the applicability of SLAM systems to wheeled
robots. We aligned the Kinect horizontally, looking forward
into the driving direction of the robot, so that the horizon
was roughly located in the center of the image. Note that
the motion of the Kinect is not strictly restricted to a plane
because occasional tremors (as a result of bumps and wires
on the floor) deflected the orientation of the Kinect. During
recording, we joysticked the robot manually through the
scene.

In the “fr2/pioneer 360” sequence, we drove the robot
in a loop around the center of the (mostly) empty hall.
Due to the large dimensions of the hall, the Kinect could
not observe the depth of the distant walls for parts of
the sequence. Furthermore, we set up a search-and-rescue
scenario in the hall consisting of several office containers,
boxes, and other feature-poor objects, see Fig. 2d. As a
consequence, these sequences have depth, but are highly
challenging for methods that rely on distinctive keypoints.
In total, we recorded three sequences “fr2/pioneer slam”,



“fr2/pioneer slam2”, and “fr2/pioneer slam3” that differ in
the actual trajectories but all contain several loop closures.

IV. DATA ACQUISITION

All data was recorded at full resolution (640×480) and full
frame rate (30 Hz) of the Microsoft Xbox Kinect sensor on a
Linux laptop running Ubuntu 10.10 and ROS Diamondback.
For recording the RGB-D data, we used two different off-the-
shelf Microsoft Kinect sensors (one for the “fr1” sequences,
and a different sensor for the “fr2”). To access the color and
depth images, we used the openni camera package in ROS
which internally wraps PrimeSense’s OpenNI-driver [41]. As
the depth image and the color image are observed from two
different cameras, the observed (raw) images are initially
not aligned. To this aim, the OpenNI-driver has an option
to register the depth image to the color image using a
Z-buffer automatically. This is implemented by projecting
the depth image to 3D and subsequently back-projecting
it into the view of the color camera. The OpenNI-driver
uses for this registration the factory calibration stored on
the internal memory. Additionally, we used the kinect aux
driver to record the accelerometer data from the Kinect at
500 Hz.

To obtain the camera pose of the Kinect sensor, we used an
external motion capture system from MotionAnalysis [42].
Our setup consists of eight Raptor-E cameras with a camera
resolution of 1280×1024 pixels at up to 300 Hz (see Fig. 3a).
The motion capture system tracks the 3D position of passive
markers by triangulation. To enhance the contrast of these
markers, the motion capture cameras are equipped with
infrared LEDs to illuminate the scene. We verified that the
Kinect and the motion capture system do not interfere: The
motion capture LEDs appear as dim lamps in the Kinect
infrared image with no influence on the produced depth
maps, while the projector of the Kinect is not detected at
all by the motion capture cameras.

Finally, we also video-taped all experiments with an
external video camera to capture the camera motion and the
scene from a different view point. All sequences and movies
are available on our website [1].

V. FILE FORMATS, TOOLS AND SAMPLE CODE

Each sequence is provided as a single compressed TGZ
archive which consists of the following files and folders:

• “rgb/”: a folder containing all color images (PNG for-
mat, 3 channels, 8 bit per channel),

• “depth/”: same for the depth images (PNG format, 1
channel, 16 bit per channel, distance in meters scaled
by factor 5000),

• “rgb.txt”: a text file with a consecutive list of all color
images (format: timestamp filename),

• “depth.txt”: same for the depth images (format: times-
tamp filename),

• “imu.txt”: a text file containing the timestamped ac-
celerometer data (format: timestamp fx fy fz),

• “groundtruth.txt”: a text file containing the ground truth
trajectory stored as a timestamped translation vector and

Sequence Name Duration Avg. Trans. Avg. Rot.
[s] Vel. [m/s] Vel. [deg/s]

Testing and Debugging

fr1/xyz 30 0.24 8.92
fr1/rpy 28 0.06 50.15
fr2/xyz 123 0.06 1.72
fr2/rpy 110 0.01 5.77

Handheld SLAM

fr1/360 29 0.21 41.60
fr1/floor 50 0.26 15.07
fr1/desk 23 0.41 23.33
fr1/desk2 25 0.43 29.31
fr1/room 49 0.33 29.88
fr2/360 hemisphere 91 0.16 20.57
fr2/360 kidnap 48 0.30 13.43
fr2/desk 99 0.19 6.34
fr2/desk with person 142 0.12 5.34
fr2/large no loop 112 0.24 15.09
fr2/large with loop 173 0.23 17.21

Robot SLAM

fr2/pioneer 360 73 0.23 12.05
fr2/pioneer slam 156 0.26 13.38
fr2/pioneer slam2 116 0.19 12.21
fr2/pioneer slam3 112 0.16 12.34

TABLE I
LIST OF AVAILABLE RGB-D SEQUENCES

dataset camera fx fy cx cy

Freiburg 1 color 517.3 516.5 318.6 255.3
infrared 591.1 590.1 331.0 234.0
depth ds = 1.035

Freiburg 2 color 520.9 521.0 325.1 249.7
infrared 580.8 581.8 308.8 253.0
depth ds = 1.031

TABLE II
INTRINSIC PARAMETERS OF THE COLOR AND INFRARED CAMERAS FOR

THE TWO KINECTS USED IN OUR DATASET, INCLUDING THE FOCAL

LENGTH (FX/FY) AND THE OPTICAL CENTER (CX/CY). FURTHERMORE,
WE ESTIMATED A CORRECTION FACTOR FOR THE DEPTH VALUES (DS).

unit quaternion (format: timestamp tx ty tz qx qy qz
qw).

Furthermore, all sequences are also available in the ROS
bag format1 and the rawlog format of the mobile robot
programming toolkit (MRPT)2. Additionally, we provide a
set of useful tools and sample code on our website for data
association, evaluation and conversion [1].

VI. CALIBRATION AND SYNCHRONIZATION

All components of our setup, i.e., the color camera, depth
sensor, motion capture system require intrinsic and extrinsic
calibration. Furthermore, the time stamps of the sensor
messages need to be synchronized, due to time delays in
the pre-processing, buffering, and data transmission of the
individual sensors.

1http://www.ros.org
2http://www.mrpt.org/



A. Motion capture system calibration

We calibrated the motion capture system using the Cortex
software provided by MotionAnalysis [42]. The calibration
procedure requires waving a calibration stick with three
markers extensively through the motion capture area, as
illustrated in Fig. 3b. From these point correspondences, the
system computes the poses of the motion capture cameras. To
validate the result of this calibration procedure, we equipped
a metal rod of approximately 2 m length with two reflective
markers at both ends and checked whether its observed
length was constant at different locations in the motion
capture area. The idea behind this experiment is that if and
only if the length of the metal rod is constant in all parts of
the scene, then the whole motion capture area is Euclidean.
In our experiment, we measured a standard deviation of
1.96 mm in the length of the stick over the entire motion
capture area of 7× 7Ḟrom this and further experiments, we
conclude that the position estimates of the motion capture
system are highly accurate, Euclidean and stable over time.

B. Kinect calibration

Next, we estimated the intrinsic camera parameters of both
the color and the infrared camera using the OpenCV library
from the “rgb” and “ir” calibration sequences. As a result
of this calibration, we obtained the focal lengths (fx/fy),
the optical center (cx/cy) and distortion parameters of both
cameras. These parameters are summarized in Tab. II.

Secondly, we validated the depth measurements of the
Kinect by comparing the depth of four distinct points on the
checkerboard as seen in the RGB image. As can be seen in
Fig. 4a, the values of both Kinects do not exactly match the
real depth as computed by the checkerboard detector from
the calibrated RGB camera, but have slightly different scale.
The estimated correction factor for the depth images is given
in Tab. II. We applied this correction factor already to the
dataset, so that no further action from the users is required.
We evaluated the residual noise in the depth values as a
function of the distance to the checkerboard. The result of
this experiment is depicted in Fig. 4b. As can be seen from
this plot, the noise in the depth values is around 1 cm until
2 m distance and around 5 cm in 4 m distance. A detailed
analysis of Kinect calibration and the resulting accuracy has
been recently published by Smisek et al. [43].

C. Extrinsic calibration

For tracking a rigid body in the scene (like the Kinect sen-
sor or the checkerboard), the motion capture system requires
at least three reflective markers. In our experiments, we
attached four reflective markers on each Kinect sensor (see
Fig. 1c+1d) and five markers on the calibration checkerboard
(see Fig. 5a). We placed four of the markers as accurately
as possible on the outer corners of the checkerboard, such
that the transformation between the visual checkerboard and
the motion capture markers is known. Given these point
observations and the point model, we can compute its pose
with respect to the coordinate system of the motion capture
system.
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Fig. 4. (a) Validation of the depth values of the fr1 and fr2 sensor by
means of a checkerboard and (b) analysis of the noise in the depth values
with respect to the camera distance.

We measured the average error between the point obser-
vations and the model to 0.60 mm in the office (“fr1”) and
0.86 mm in the industrial hall (“fr2”). Given these noise
values, we expect an error in the estimated orientations
of around 0.34 deg and 0.49 deg, respectively. While this
error is rather low, the reader should keep in mind that this
means that reconstructed 3D models given the pose of the
motion capture system – assuming a noise-free depth image
for the moment – will have an error 30 mm and 43 mm,
respectively in 5 m distance from the camera. Therefore, we
emphasize that the pose estimates of the motion capture
system cannot directly be used to generate (or evaluate)
highly accurate 3D models of the scene. However, for
evaluating the trajectory accuracy of visual SLAM systems,
an absolute sub-millimeter and sub-degree accuracy is high
enough to evaluate current (and potentially future) state-of-
the-art methods.

As the next calibration step, we estimated the transfor-
mation between the pose from the motion capture system
and the optical frame of the Kinect using the calibration
checkerboard. We validated our calibration by measuring the
distance of the four corner points of the checkerboard as
observed in the RGB image and the corner points predicted
by the motion capture system. We measured an average error
of 3.25 mm for the “fr1” Kinect and of 4.03 mm for the
“fr2” Kinect. Note that these residuals contain both the noise
induced by the motion capture system and the noise induced
by the visual checkerboard detection. With respect to the
high accuracy of the motion capture system, we attribute
these errors mostly to (zero-mean) noise of the checkerboard
detector.

From our measurements obtained during calibration, we
conclude that the relative error on a frame-to-frame basis
in the ground truth data is lower than 1 mm and 0.5 deg
measured in the optical center of the Kinect. Furthermore, the
absolute error over the whole motion capture area is lower
than 10 mm and 0.5 deg. Therefore, we claim that our dataset
is valid to assess the performance of visual odometry and
visual SLAM systems as long as these systems have (RPE
and ATE) errors significantly above these values.
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Fig. 5. (a) Checkerboard used for the calibration and the time synchro-
nization. (b) Analysis of the time delay between the motion capture system
and the color camera of the Kinect sensor.

D. Time synchronization

We determined the time delay between the motion capture
system and the color camera of the Kinect using the same
method, i.e., we evaluated the residuals for different time de-
lays to determine the delay (see Fig. 5b). In this experiment,
we found that the poses from the motion capture system
were approximately 20 ms earlier than the color images of
the Kinect. We corrected for this delay already in our dataset,
so no further action is required by the user.

There is also a small time delay between the color and
depth images as delivered by the Kinect. During the evalu-
ation of our own SLAM and visual odometry systems, we
found that the depth images arrive on average around 20 ms
later than the color images. However, we decided to keep
the unmodified time stamps of color and depth images in
the dataset. To simplify the association of color and depth
images for the user, we provide the “associate.py” script that
outputs pairs of color and depth images according to the
users preferences (such as time offset and maximum time
difference).

Another challenge in the image data that users should keep
in mind is that the Kinect uses a rolling shutter for the color
camera which can lead to image distortions when the camera
is moved quickly. As the Kinect automatically chooses the
exposure time depending on the scene illumination, the
strength of this effect can vary significantly in some of the
sequences in the dataset.

VII. EVALUATION METRICS

A SLAM system generally outputs the estimated camera
trajectory along with an estimate of the resulting map. While
it is in principle possible to evaluate the quality of the
resulting map, accurate ground truth maps are difficult to
obtain. Therefore, we propose to evaluate the quality of the
estimated trajectory from a given input sequence of RGB-
D images. This approach simplifies the evaluation process
greatly. Yet, it should be noted that a good trajectory does
not necessarily imply a good map, as for example even a
small error in the map could prevent the robot from working
in the environment (obstacle in a doorway).

For the evaluation, we assume that we are given a sequence
of poses from the estimated trajectory P1, . . . ,Pn ∈ SE(3)
and from the ground truth trajectory Q1, . . . ,Qn ∈ SE(3).
For simplicity of notation, we assume that the sequences are
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Fig. 6. Evaluating the drift by means of the relative pose error (RPE) of
two visual odometry approaches on the fr1/desk sequence. As can be seen
from this plot, RBM is has lower drift and fewer outliers than GICP. For
more details, see [44].

time-synchronized, equally sampled, and both have length n.
In practice, these two sequences have typically different sam-
pling rates, lengths and potentially missing data, so that an
additional data association and interpolation step is required.
Both sequences consist of homogeneous transformation ma-
trices that express the pose of the RGB optical frame of the
Kinect from an (arbitrary) reference frame. This reference
frame does not have to be the same for both sequences,
i.e., the estimated sequence might start in the origin, while
the ground truth sequence is an absolute coordinate frame
which was defined during calibration. While, in principle, the
choice of the reference frame on the Kinect is also arbitrary,
we decided to use the RGB optical frame as the reference
because the depth images in our dataset have already been
registered to this frame. In the remainder of this section, we
define two common evaluation metrics for visual odometry
and visual SLAM evaluation. For both evaluation metrics, we
provide easy-to-use evaluation scripts for download on our
website as well as an online version of this script to simplify
and standardize the evaluation procedure for the users.

A. Relative pose error (RPE)

The relative pose error measures the local accuracy of the
trajectory over a fixed time interval ∆. Therefore, the relative
pose error corresponds to the drift of the trajectory which is
in particular useful for the evaluation of visual odometry
systems. We define the relative pose error at time step i as

Ei :=
(
Q−1

i Qi+∆

)−1(
P−1

i Pi+∆

)
. (1)

From a sequence of n camera poses, we obtain in this
way m = n − ∆ individual relative pose errors along the
sequence. From these errors, we propose to compute the
root mean squared error (RMSE) over all time indicies of
the translational component as

RMSE(E1:n,∆) :=

(
1

m

m∑
i=1

‖trans(Ei)‖2
)1/2

, (2)

where trans(Ei) refers to the translational components of
the relative pose error Ei. It should be noted that some
researchers prefer to evaluate the mean error instead of
the root mean squared error which gives less influence to
outliers. Alternatively, it is also possible to compute the



median instead of the mean, which attributes even less
influence to outliers. If desired, additionally the rotational
error can be evaluated, but usually we found the comparison
by translational errors to be sufficient (as rotational errors
show up as translational errors when the camera is moved).
Furthermore, the time parameter ∆ needs to be chosen. For
visual odometry systems that match consecutive frames, ∆ =
1 is an intuitive choice; RMSE(E1:n) then gives the drift per
frame. For systems that use more than one previous frame,
larger values of ∆ can also be appropriate, for example, for
∆ = 30 gives the drift per second on a sequence recorded at
30 Hz. It should be noted that a common (but poor) choice
is to set ∆ = n which means that the start point is directly
compared to the end point. This metric can be misleading as
it penalizes rotational errors in the beginning of a trajectory
more than towards the end [37], [45]. For the evaluation of
SLAM systems, it therefore makes sense to average over all
possible time intervals ∆, i.e., to compute

RMSE(E1:n) :=
1

n

n∑
∆=1

RMSE(E1:n,∆). (3)

Note that the computational complexity of this expression
is quadratic in the trajectory length. Therefore, we propose
to approximate it by computing it from a fixed number of
relative pose samples. Our automated evaluation script allows
both the exact evaluation as well as the approximation for a
given number of samples.

An example of the relative pose error is given in Fig. 6.
Here, the relative pose errors have been evaluated for two
visual odometry approaches [44]. As can be seen from this
figure, the RBM method has both lower drift and fewer
outliers compared to GICP.

B. Absolute trajectory error (ATE)
For visual SLAM systems, additionally the global consis-

tency of the estimated trajectory is an important quantity.
The global consistency can be evaluated by comparing the
absolute distances between the estimated and the ground
truth trajectory. As both trajectories can be specified in
arbitrary coordinate frames, they first need to be aligned.
This can be achieved in closed form using the method
of Horn [46], which finds the rigid-body transformation S
corresponding to the least-squares solution that maps the
estimated trajectory P1:n onto the ground truth trajectory
Q1:n. Given this transformation, the absolute trajectory error
at time step i can be computed as

Fi := Q−1
i SPi. (4)

Similar to the relative pose error, we propose to evaluate
the root mean squared error over all time indices of the
translational components, i.e.,

RMSE(F1:n) :=

(
1

n

n∑
i=1

‖trans(Fi)‖2
)1/2

. (5)

A visualization of the absolute trajectory error is given in
Fig. 7a. Here, RGB-D SLAM [47] was used to estimate the
camera trajectory from the “fr1/desk2” sequence.
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Fig. 7. (a) Visualization of the absolute trajectory error (ATE) on the
“fr1/desk2” sequence. (b) Comparison of ATE and RPE measures. Both
plots were generated from trajectories estimated by the RGB-D SLAM
system [47].

Alternatively, also the RPE can be used to evaluate the
global error of a trajectory by averaging over all possible
time intervals. Note that the RPE considers both translational
and rotational errors, while the ATE only considers the
translational errors. As a result, the RPE is always slightly
larger than the ATE (or equal if there is no rotational
error). This is also visualized in Fig. 7b, where both the
RPE and the ATE were computed on various estimated
trajectories from the RGB-D SLAM system. Therefore, the
RPE metric provides an elegant way to combine rotational
and translational errors into a single measure. However,
rotational errors typically also manifest themselves in wrong
translations and are thus indirectly also captured by the
ATE. From a practical perspective, the ATE has an intuitive
visualization which facilitates visual inspection. Nevertheless
the two metrics are strongly correlated: In all our experiments
we never encountered a substantial difference between the
situations in which RPE and ATE were used. In fact, often the
relative order remained the same independently from which
measure was actually used.

VIII. CONCLUSIONS

In this paper, we presented an benchmark for the evalua-
tion of RGB-D SLAM systems. The dataset contains color
images, depth maps, and associated ground-truth camera
pose information. Further, we proposed two evaluation met-
rics that can be used to assess the performance of a visual
odometry and visual SLAM system. Accurate calibration and
rigorous validation ensures the high quality of the resulting
dataset. We approved the validity of our dataset and the
corresponding evaluation metrics by the evaluation of our
own recent approaches [44], [47]. To conclude, we presented
a high-quality dataset with a suitable set of evaluation metrics
that constitutes a full benchmark for the evaluation of visual
SLAM systems.
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matic appearance-based loop detection from 3D laser data using the
normal distributions transform,” Journal of Field Robotics, vol. 26, no.
11–12, pp. 892–914, 2009.

[21] A. Segal, D. Haehnel, and S. Thrun, “Generalized-icp,” in Robotics:
Science and Systems (RSS), 2009.

[22] K. Koeser, B. Bartczak, and R. Koch, “An analysis-by-synthesis
camera tracking approach based on free-form surfaces,” in German
Conf. on Pattern Recognition (DAGM), 2007.

[23] K. Konolige and J. Bowman, “Towards lifelong visual maps,” in
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2009.

[24] H. Strasdat, J. Montiel, and A. Davison, “Scale drift-aware large scale
monocular SLAM,” in Proc. of Robotics: Science and Systems (RSS),
2010.

[25] K. Konolige, M. Agrawal, R. Bolles, C. Cowan, M. Fischler, and
B. Gerkey, “Outdoor mapping and navigation using stereo vision,”
in Intl. Symp. on Experimental Robotics (ISER), 2007.

[26] A. Comport, E. Malis, and P. Rives, “Real-time quadrifocal visual
odometry,” Intl. Journal of Robotics Research (IJRR), vol. 29, pp.
245–266, 2010.

[27] C. Stachniss, P. Beeson, D. Hähnel, M. Bosse, J. Leonard,
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