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Abstract— In this paper, we present the TUM RGB-D bench-
mark for visual odometry and SLAM evaluation and report on
the first use-cases and users of it outside our own group. The
benchmark contains a large set of image sequences recorded
from a Microsoft Kinect associated with highly accurate and
time-synchronized ground truth camera poses from an external
motion capture system. The dataset consists in total of 39
sequences that were recorded in different environments and
cover a large variety of scenes and camera motions. In this
work, we discuss and briefly summarize the evaluation results
of the first users from outside our group. Our goal with this
analysis is to better understand (1) how other researcher use
our dataset to date and (2) how to improve it further in the
future.

I. INTRODUCTION

Public datasets and benchmarks greatly support the scien-
tific evaluation and objective comparison of algorithms. Sev-
eral examples of successful benchmarks in the area computer
vision have demonstrated that common datasets and clear
evaluation metrics can significantly help to push the state-
of-the-art forward. One highly relevant problem in robotics
is the so-called simultaneous localization (SLAM) problem
where the goal is to both recover the camera trajectory and
the map from sensor data. The SLAM problem has been
investigated in great detail for sensors such as sonar, laser,
cameras, and time-of-flight sensors. Recently, novel low-cost
RGB-D sensors such as the Kinect became available, and
the first SLAM systems using these sensors have already
appeared [1]–[3]. Other algorithms focus on fusing depth
maps to a coherent 3D model [4]. Yet, the accuracy of the
computed 3D model heavily depends on how accurate one
can determine the individual camera poses.

With this dataset, we provide a complete benchmark that
can be used to evaluate visual SLAM and odometry systems
on RGB-D data. To stimulate comparison, we propose two
evaluation metrics and provide automatic evaluation tools.

The TUM RGB-D benchmark [5] consists of 39 sequences
that we recorded in two different indoor environments. Each
sequence contains the color and depth images, as well as the
ground truth trajectory from the motion capture system. We
carefully calibrated and time-synchronized the Kinect sensor
to the motion capture system. After calibration, we measured
the accuracy of the motion capture system to validate the
calibration.
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Fig. 1. Since July 2011, we offer a large dataset for the quantitative and
objective evaluation of RGB-D SLAM systems. The benchmark website
contains the dataset, evaluation tools and additional information.

The benchmark website contains—next to additional infor-
mation about the data formats, calibration data, and example
code—videos for simple visual inspection of the dataset.
All data is available online under the Creative Commons
Attribution license (CC-BY 3.0) at

http://vision.in.tum.de/data/datasets/
rgbd-dataset

Since the launch of the benchmark website in July
2011 [6], six peer-reviewed scientific publications (plus one
master’s thesis) have appeared in which our benchmark has
been used to evaluate egomotion estimation and SLAM
approaches [7]–[13]. Therefore, we want to take the oppor-
tunity to discuss the results and to relate the evaluations to
one another where applicable. Our goal is to learn from this
analysis how our benchmark is received by the community
and how to refine it in the near future.

II. RELATED WORK

The simultaneous localization and mapping (or structure-
from-motion) problem has a long history both in
robotics [14]–[20] and in computer vision [17], [21]–[24].
Different sensor modalities have been explored in the past,
including 2D laser scanners [25], [26], 3D scanners [27]–
[29], monocular cameras [17], [22]–[24], [30]–[32], stereo
systems [33], [34] and recently RGB-D sensors such as the
Microsoft Kinect [1]–[3].

http://vision.in.tum.de/data/datasets/rgbd-dataset
http://vision.in.tum.de/data/datasets/rgbd-dataset
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Fig. 2. Four examples of sequences contained in our dataset. Whereas the top row shows an example image, the bottom row shows the ground truth
trajectory. The fr1/xyz sequence contains isolated motions along the coordinate axes, fr1/room and fr2/desk are sequences with several loop closures in
two different office scenes, and fr2/slam was recorded from a Kinect mounted on a Pioneer 3 robot in a search-and-rescue scenario.

For laser- and camera-based SLAM systems, there are
several well-known datasets such as the Freiburg, Intel,
Rawseeds and Newcollege datasets [35]–[37]. Geiger et
al. [38] recently presented a benchmark for visual odometry
from stereo images with ground truth poses. However the
depth maps are not provided so that an additional pre-
processing step is required. Also the first Kinect datasets
have appeared. Pomerleau et al. [39] recorded a dataset with
untextured point clouds from a Kinect in a motion capture
studio. Also related is the work of Bao et al. [40] who
aimed at the evaluation of semantic mapping and localization
methods. However, in their dataset the camera poses were
estimated from the color images of the Kinect, so that the
ground truth is not accurate enough for our purpose. To
the best of our knowledge, our dataset is therefore the first
RGB-D dataset suitable for the evaluation of visual SLAM
(and visual odometry) systems, as it contains both color and
depth images and associated ground truth camera poses. An
earlier version of our benchmark was presented recently [6].
Inspired from the feedback we received, we extended the
original dataset with dynamic sequences, longer trajectories,
and sequences recorded from a Kinect mounted on a mobile
robot.

Next to the data itself, a suitable evaluation metric is
required for the benchmarking of SLAM solutions. We
advocate—similar to Olson et al. [41]—to evaluate the end-
to-end performance of the whole system by comparing its
output (map or trajectory) with the ground truth. The map
can for example be evaluated by overlaying it onto the floor
plan and searching for differences. Although, in principle,
difference images between the two maps can be computed
automatically [42], the performance is often only judged
visually by searching for thin structures, kinks or ghosts
like double walls. The alternative to map comparison is
to evaluate a SLAM system by comparing the estimated
camera motion against the true trajectory. Two frequently

employed methods are the relative pose error (RPE) and
the absolute trajectory error (ATE). The RPE measures the
difference between the estimated motion and the true motion.
It can either be used to evaluate the drift of a visual
odometry system [43], [44] or the accuracy at loop closures
of SLAM systems [45], [46] which is especially useful if
only sparse, relative relations are available as ground truth.
Instead of evaluating relative poses differences, the ATE first
aligns the two trajectories and then evaluates directly the
absolute pose differences. This method is well suited for the
evaluation of visual SLAM systems [41], [47] but requires
that absolute ground truth poses are available. As we provide
dense and absolute ground truth trajectories, both metrics
are applicable. For both measures, we provide a reference
implementation that computes the respective error given the
estimated and the ground truth trajectory.

In this paper, we first describe the TUM RGB-D bench-
mark and how it can be used to evaluate visual SLAM and
odometry systems as presented recently [5]. In extension to
this, we additionally discuss recent results other researchers
have obtained by using our benchmark for evaluation and
draw conclusions on how to improve further it.

III. DATASET

The Kinect sensor consists of an near-infrared laser that
projects a refraction pattern on the scene, an infrared camera
that observes this pattern, and a color camera in between. As
the projected pattern is known, it is possible to compute the
disparity using block matching techniques. Note that image
rectification and block matching is implemented in hardware
and happens internally in the sensor.

We acquired a large set of data sequences containing
both RGB-D data from the Kinect and ground truth pose
estimates from the motion capture system. We recorded
these trajectories both in a typical office environment (“fr1”,
6 × 6m2) and in a large industrial hall (“fr2”, 10 × 12m2)



as depicted in Fig. 1. In most of these recordings, we used a
handheld Kinect to browse through the scene. Furthermore,
we recorded additional sequences with a Kinect mounted
on a wheeled robot. Table I summarizes statistics over the
19 training sequences, and Fig. 2 shows images of four of
them along with the corresponding camera trajectory. On
average, the camera speeds of the fr1 sequences are higher
than those of fr2. Except otherwise noted, we ensured that
each sequence contains several loop closures to allow SLAM
systems to recognize previously visited areas and use this to
reduce camera drift. Inspired from successful benchmarks
in computer vision such as the Middlebury optical flow
dataset [48] and the KITTI vision benchmark suite [38], we
split out dataset into a training and a testing part. While the
training sequences are fully available, the testing sequences
can only be evaluated on the benchmark website [49] to avoid
over-fitting.

We grouped the recorded sequences into the categories
“Calibration”, “Testing and Debugging”, “Handheld SLAM”,
and “Robot SLAM”. In the following, we briefly summarize
the recorded sequences according to these categories.

a) Calibration: For the calibration of intrinsic and
extrinsic parameters of the Kinect and the motion capture
system, we recorded for each Kinect

• one sequence with color and depth images of a handheld
8×6 checkerboard with 20 mm square size recorded by
a stationary Kinect,

• one sequence with infrared images of a handheld 8 ×
6 checkerboard with 20 mm square size recorded by a
stationary Kinect,

• one sequence with color and depth images of a sta-
tionary 8 × 7 checkerboard with 108 mm square size
recorded by a handheld Kinect.
b) Testing and Debugging: These sequences are in-

tended to facilitate the development of novel algorithms with
separated motions along and around the principal axes of the
Kinect. In the “xyz” sequences, the camera was moved ap-
proximately along the X-, Y- and Z-axis (left/right, up/down,
forward/backward) with little rotational components (see
also Fig. 2a). Similarly, in the two “rpy” (roll-pitch-yaw)
sequences, the camera was mostly only rotated around the
principal axes with little translational motions.

c) Handheld SLAM: We recorded 11 sequences with
a handheld Kinect, i.e., 6-DOF camera motions. For the
“fr1/360” sequence, we covered the whole office room by
panning the Kinect in the center of the room. The “fr1/floor”
sequence contains a camera sweep over the wooden floor.
The “fr1/desk”, “fr1/desk2” and “fr1/room” sequences cover
two tables, four tables, and the whole room, respectively
(see Fig. 2b). In the “fr2/360 hemisphere” sequence, we
rotated the Kinect on the spot and pointed it at the walls
and the ceiling of the industrial hall. In the “fr2/360 kidnap”
sequence, we briefly covered the sensor with the hand for a
few seconds to test the ability of SLAM systems to recover
from sensor outages. For the “fr2/desk” sequence, we set up
an office environment in the middle of the motion capture
area consisting of two tables with various accessoires like

(a) Motion capture system (b) Kinect sensor with reflective motion
capture markers

Fig. 3. We use an external motion capture system from MotionAnalysis
to track the camera pose of the Kinect.

a monitor, a keyboard, books, see Fig. 2c. Additionally,
during the recording of the “fr2/desk with person” sequence
a person was sitting at one of the desks and continuously
moved several objects around.

Furthermore, we recorded two large tours through the
industrial hall, partially with poor illumination and few visual
features. In the “fr2/large no loop” sequence, special care
was taken that no visual overlap exists in the trajectory. Our
intention behind this was to provide a sequence for measur-
ing the long-term drift of (otherwise loop closing) SLAM
systems. In contrast, the “fr2/large with loop” sequence has
a large overlap between the beginning and the end of the
sequence, so that a large loop exists. It should be noted that
these tours were so large that we had to leave the motion
capture area in the middle of the industrial hall. As a result,
ground truth pose information only exists in the beginning
and in the end of the sequence.

d) Robot SLAM: We also recorded four sequences with
a Kinect that was mounted on an ActivMedia Pioneer 3 robot.
With these sequences, it becomes possible to demonstrate
the applicability of SLAM systems to wheeled robots. We
aligned the Kinect horizontally, looking forward into the
driving direction of the robot, so that the horizon was roughly
located in the center of the image. Note that the motion of the
Kinect is not strictly restricted to a plane because occasional
tremors (as a result of bumps and wires on the floor) deflected
the orientation of the Kinect. During recording, we joysticked
the robot manually through the scene.

In the “fr2/pioneer 360” sequence, we drove the robot
in a loop around the center of the (mostly) empty hall.
Due to the large dimensions of the hall, the Kinect could
not observe the depth of the distant walls for parts of
the sequence. Furthermore, we set up a search-and-rescue
scenario in the hall consisting of several office containers,
boxes, and other feature-poor objects, see Fig. 2d. As a
consequence, these sequences have depth, but are highly
challenging for methods that rely on distinctive keypoints.
In total, we recorded three sequences “fr2/pioneer slam”,
“fr2/pioneer slam2”, and “fr2/pioneer slam3” that differ in
the actual trajectories but all contain several loop closures.

IV. DATA ACQUISITION

All data was recorded at full resolution (640×480) and full
frame rate (30 Hz) of the Microsoft Xbox Kinect sensor on a



Linux laptop running Ubuntu 10.10 and ROS Diamondback.
For recording the RGB-D data, we used two different off-the-
shelf Microsoft Kinect sensors (one for the “fr1” sequences,
and a different sensor for the “fr2”). To access the color and
depth images, we used the openni camera package in ROS
which internally wraps PrimeSense’s OpenNI-driver [50]. As
the depth image and the color image are observed from two
different cameras, the observed (raw) images are initially
not aligned. To this aim, the OpenNI-driver has an option
to register the depth image to the color image using a
Z-buffer automatically. This is implemented by projecting
the depth image to 3D and subsequently back-projecting
it into the view of the color camera. The OpenNI-driver
uses for this registration the factory calibration stored on
the internal memory. Additionally, we used the kinect aux
driver to record the accelerometer data from the Kinect at
500 Hz.

To obtain the camera pose of the Kinect sensor, we used an
external motion capture system from MotionAnalysis [51].
Our setup consists of eight Raptor-E cameras with a camera
resolution of 1280×1024 pixels at up to 300 Hz (see Fig. 3a).
The motion capture system tracks the 3D position of passive
markers by triangulation. To enhance the contrast of these
markers, the motion capture cameras are equipped with
infrared LEDs to illuminate the scene. We verified that the
Kinect and the motion capture system do not interfere: The
motion capture LEDs appear as dim lamps in the Kinect
infrared image with no influence on the produced depth
maps, while the projector of the Kinect is not detected at
all by the motion capture cameras.

Finally, we also video-taped all experiments with an
external video camera to capture the camera motion and the
scene from a different view point. All sequences and movies
are available on our website [49].

All components of our setup have been carefully cali-
brated, in particular the intrinsic and extrinsic calibration of
the color camera, depth sensor and motion capture system.
Furthermore, we synchronized the timings between all com-
ponents due to time delays in pre-processing, buffering, and
data transmission of the individual sensors. For more details,
and a description of the file formats etc., we refer to the
original benchmark paper [5].

V. EVALUATION METRICS

A SLAM system generally outputs the estimated camera
trajectory along with an estimate of the resulting map. While
it is in principle possible to evaluate the quality of the
resulting map, accurate ground truth maps are difficult to
obtain. Therefore, we propose to evaluate the quality of the
estimated trajectory from a given input sequence of RGB-
D images. This approach simplifies the evaluation process
greatly. Yet, it should be noted that a good trajectory does
not necessarily imply a good map, as for example even a
small error in the map could prevent the robot from working
in the environment (obstacle in a doorway).

For the evaluation, we assume that we are given a sequence
of poses from the estimated trajectory P1, . . . ,Pn ∈ SE(3)

Sequence Name Duration Avg. Trans. Avg. Rot.
[s] Vel. [m/s] Vel. [deg/s]

Testing and Debugging

fr1/xyz 30 0.24 8.92
fr1/rpy 28 0.06 50.15
fr2/xyz 123 0.06 1.72
fr2/rpy 110 0.01 5.77

Handheld SLAM

fr1/360 29 0.21 41.60
fr1/floor 50 0.26 15.07
fr1/desk 23 0.41 23.33
fr1/desk2 25 0.43 29.31
fr1/room 49 0.33 29.88
fr2/360 hemisphere 91 0.16 20.57
fr2/360 kidnap 48 0.30 13.43
fr2/desk 99 0.19 6.34
fr2/desk with person 142 0.12 5.34
fr2/large no loop 112 0.24 15.09
fr2/large with loop 173 0.23 17.21

Robot SLAM

fr2/pioneer 360 73 0.23 12.05
fr2/pioneer slam 156 0.26 13.38
fr2/pioneer slam2 116 0.19 12.21
fr2/pioneer slam3 112 0.16 12.34

TABLE I
LIST OF AVAILABLE RGB-D SEQUENCES

and from the ground truth trajectory Q1, . . . ,Qn ∈ SE(3).
For simplicity of notation, we assume that the sequences are
time-synchronized, equally sampled, and both have length
n. In practice, these two sequences have typically different
sampling rates, lengths and potentially missing data, so
that an additional data association and interpolation step is
required.

A. Relative pose error (RPE)

The relative pose error measures the local accuracy of the
trajectory over a fixed time interval ∆. Therefore, the relative
pose error corresponds to the drift of the trajectory which is
in particular useful for the evaluation of visual odometry
systems. We define the relative pose error at time step i as

Ei :=
(
Q−1

i Qi+∆

)−1(
P−1

i Pi+∆

)
. (1)

From a sequence of n camera poses, we obtain in this
way m = n − ∆ individual relative pose errors along the
sequence. From these errors, we propose to compute the
root mean squared error (RMSE) over all time indicies of
the translational component as

RMSE(E1:n,∆) :=

(
1

m

m∑
i=1

‖trans(Ei)‖2
)1/2

, (2)

where trans(Ei) refers to the translational components of
the relative pose error Ei. It should be noted that some
researchers prefer to evaluate the mean error instead of
the root mean squared error which gives less influence to
outliers. Alternatively, it is also possible to compute the
median instead of the mean, which attributes even less



influence to outliers. If desired, additionally the rotational
error can be evaluated, but usually we found the comparison
by translational errors to be sufficient (as rotational errors
show up as translational errors when the camera is moved).
Furthermore, the time parameter ∆ needs to be chosen. For
visual odometry systems that match consecutive frames, ∆ =
1 is an intuitive choice; RMSE(E1:n) then gives the drift per
frame. For systems that use more than one previous frame,
larger values of ∆ can also be appropriate, for example, for
∆ = 30 gives the drift per second on a sequence recorded at
30 Hz. It should be noted that a common (but poor) choice
is to set ∆ = n which means that the start point is directly
compared to the end point. This metric can be misleading as
it penalizes rotational errors in the beginning of a trajectory
more than towards the end [43], [45]. For the evaluation of
SLAM systems, it therefore makes sense to average over all
possible time intervals ∆, i.e., to compute

RMSE(E1:n) :=
1

n

n∑
∆=1

RMSE(E1:n,∆). (3)

Note that the computational complexity of this expression
is quadratic in the trajectory length. Therefore, we propose
to approximate it by computing it from a fixed number of
relative pose samples. Our automated evaluation script allows
both the exact evaluation as well as the approximation for a
given number of samples.

B. Absolute trajectory error (ATE)

For visual SLAM systems, additionally the global consis-
tency of the estimated trajectory is an important quantity.
The global consistency can be evaluated by comparing the
absolute distances between the estimated and the ground
truth trajectory. As both trajectories can be specified in
arbitrary coordinate frames, they first need to be aligned.
This can be achieved in closed form using the method
of Horn [52], which finds the rigid-body transformation S
corresponding to the least-squares solution that maps the
estimated trajectory P1:n onto the ground truth trajectory
Q1:n. Given this transformation, the absolute trajectory error
at time step i can be computed as

Fi := Q−1
i SPi. (4)

Similar to the relative pose error, we propose to evaluate
the root mean squared error over all time indices of the
translational components, i.e.,

RMSE(F1:n) :=

(
1

n

n∑
i=1

‖trans(Fi)‖2
)1/2

. (5)

VI. CASE STUDIES

We are interested in learning how our dataset and bench-
mark has been received by the research community. Fur-
thermore, we want to find out how the benchmark is used
(in particular, which sequences have been found to be most
useful), which evaluation metric are applied, and above all,
to check to what degree (if at all) the benchmark actually
contributes to scientific progress in the field. Therefore, we

searched for scientific publications that used our benchmark
for evaluation purposes using Google Scholar. We found a
total of six peer-reviewed conference papers and one master
thesis that used our benchmark for evaluation.

Endres et al. [8] analyzed in collaboration with our group
the properties of the open-source RGB-D SLAM system [2].
The system is based on feature matching and Graph SLAM.
The evaluation was carried out on all nine “fr1” sequences
using the RPE metric. This evaluation was already performed
during the creation of the dataset, and we made all estimated
trajectories publicly available as a reference. On average,
we measured the average error of RGB-D SLAM to 9.7
cm and 3.95◦ over all sequences. Furthermore, we analyzed
the influence of the chosen feature descriptor and matcher
and found that SURF provides the best trade-off between
computation time and accuracy.

Osteen et al. [10] describe an approach to recover the
rotational egomotion by matching two depth images using
Fourier analysis. The key insight is that a convolution in the
position space is equivalent to single product in frequency
space which saves one order of magnitude in terms of
computational complexity. As error metric, they computed
the rotational error on a frame-to-frame basis (RPE). The
error evolution was analyzed in great detail on the “fr1/room”
and “fr1/360” sequences and an exhaustive evaluation over
all “fr1” sequences was presented. Osteen et al. compared
two variants of their approach to (1) GICP, (2) GICP in
combination with visual odometry from OpenCV, and (3)
the RGB-D SLAM system.

Thierfelder [11] investigated particle swarm optimization
for egomotion estimation in her master’s thesis. Particle
swarm optimization can be seen as an extension of particle
filtering where the particles interact with each other, i.e., are
subject to attractive and repulsive forces. For the evaluation,
the RPE was chosen as the error metric because for egomo-
tion estimation the relative drift is the important quantity. A
parameter study was conducted on two debugging sequences
(“fr2/xyz” and “fr2/rpy”), followed by a quantitative compar-
ison of their approach with the egomotion estimation of the
RGB-D SLAM system on all “fr1”-sequences.

Andreasson and Stoyanov [9] convert the point clouds
into a Gaussian mixture model using the normal distribution
transform (NDT) in combination with visual features. The
registration is carried out in the reduced space which is
much more efficient than point-based ICP. In their evaluation,
various variants of the algorithm are compared to each
other on six benchmark sequences (“fr1/360”, “fr1/desk”,
“fr1/desk2”, “fr1/floor”, “fr1/room”, “fr2/desk”) for which
both the frame-to-frame RPE is specified.

Steinbrücker et al. [7] (from our group) developed and
analyzed an energy-based approach to egomotion estimation
based on image warping. In this approach, the transformation
between two RGB-D frames is directly computed maxi-
mizing photo-consistency using non-linear minimization. In
the evaluation, only the “fr1/desk” and “fr2/desk” sequence
were analyzed. During debugging, “fr1/xyz” and “fr2/xyz”
were used extensively. The accuracy and robustness of their



method was compared to GICP.
Stückler and Behnke [12], [13] extend the NDT approach

for real-time applications. In particular, registration is per-
formed from coarse-to-fine and the map is stored in an oct-
tree to increase memory efficiency. The maximum level of
the oct-tree depends on the distance to the sensor which
better reflects the noise characteristics. As the (local) maps
accumulate information from several frames, the robustness
for larger camera motions is significantly increased in com-
parison to GICP and our warping method. The evaluation
was performed on the “fr1/desk” and “fr2/desk” sequences
and compared to the results of Steinbrücker et al. [7].

We also analyzed the log files of our webserver. Over the
past 12 month, the benchmark website had more than 13.000
unique visitors. In total, we counted more than 290.000 file
downloads (including the preview thumbnails, movies, and
archives) with a total volume of almost 60 TB. Note that each
sequence of the dataset has a size of 0.5–3 GB, while all files
offered by us sum to 250 GB (with some redundancy, i.e.,
including both the tgz and bag files). Our online evaluation
service was used more than 4.000 times.

VII. DISCUSSION

In all before mentioned studies, the researchers evaluated
the relative pose error (RPE) as proposed in our recent
paper [5]. While this choice clearly facilitates comparisons of
alternative approaches and relieves researchers from develop-
ing their own metrics (let alone, their re-implementation), the
second proposed metric, the absolute trajectory error (ATE),
has not been applied at all so far. To reduce ambiguities
in the evaluation procedure, we therefore plan to retract the
ATE and to encourage new users to solely evaluate the RPE.
Our motivation for proposing the ATE for SLAM evaluation
is that it can easily be visualized, but it is also strongly
correlated to the RPE and thus redundant.

A second point for discussion is that in all of the published
studies only a subset of the available sequences was used
for benchmarking. Three of the five studies evaluated the
approaches on all “fr1” sequences, while the other performed
the evaluation on the “fr1/desk” and “fr2/desk” sequences.
One reason for this might be that the “fr2” sequences
were published three months later and are generally more
challenging than the “fr1” sequences (larger room, robot-
mounted Kinect, etc). Moreover, from the perspective of
the individual researchers, it is also tedious to evaluate an
approach on all available sequences. Therefore, we think
that it might be helpful to pre-select a minimal subset of
sequences for evaluation. This selection could either be
recommended by us or could evolve naturally. For example,
we believe that the “desk” sequences have often be chosen
because they cover a large motion, end with a loop closure
and contain both sufficient texture and structure and thus
might be a good choice for one of the reference sequences.

The testing sequences, i.e., the sequences without public
groundtruth, have not been used at all for evaluation so far.
We believe that the reason for this is that the benchmark is
still quite new and it makes at first more sense to evaluate

one’s approach on the training sequences. We hope that
later, when more competitive and elaborate studies appear,
these testing sequences will prove useful as an independent
and unbiased performance measurement. To support this
development, we plan to extend our website with automated
submission and ranking tools. To add the ranking of a new
algorithm to this website, it will then be necessary to evaluate
the approach on a minimal set of (to be selected) essential
sequences.

Lastly, we have been asked by several researchers whether
we could provide additional log files with certain properties,
for example, to record additional sequences with dynamic
objects, a longer sequence in a household environment,
sequences without texture and/or without structure, and data
recorded with an Asus Xtion sensor. We started preparations
to add these sequences. Given that we have already 39
sequences listed on the benchmark website, we plan to
reduce the information overload for new benchmark users by
re-organizing the list of sequences into meaningful groups of
essential and additional sequences.

VIII. CONCLUSIONS

In general, the benefits of a benchmark are (1) that it is an
effective and affordable way of evaluating such approaches
and (2) that it comes with well-defined performance metrics.
In this paper, we presented the TUM RGB-D benchmark and
discussed its two error metrics. Furthermore, we reviewed the
first scientific publications where it was used for evaluation.
From this analysis, we conclude that the benchmark has
evolved into a valuable tool for several researchers working
on egomotion estimation and SLAM approaches. Based on
the valuable discussions and feedback we obtained so far, we
plan (1) to simplify the benchmark by reducing it to a few,
relevant sequences and to a single error metric, (2) provide
additional data for special purpose evaluations (which will
however not become part of the regular benchmark), and (3)
adding an automated submission and ranking system to the
benchmark website to stimulate the comparison of alternative
methods.
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[20] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Bur-
gard, “g2o: A general framework for graph optimization,” in IEEE
Intl. Conf. on Robotics and Automation (ICRA), 2011.

[21] H. Jin, P. Favaro, and S. Soatto, “Real-time 3-D motion and structure
of point features: Front-end system for vision-based control and inter-
action,” in IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2000.

[22] M. Pollefeys and L. Van Gool, “From images to 3D models,” Commun.
ACM, vol. 45, pp. 50–55, July 2002.

[23] D. Nistér, “Preemptive ransac for live structure and motion estimation,”
Machine Vision and Applications, vol. 16, pp. 321–329, 2005.

[24] J. Stühmer, S. Gumhold, and D. Cremers, “Real-time dense geometry
from a handheld camera,” in DAGM Symposium on Pattern Recogni-
tion (DAGM), 2010.

[25] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM:
A factored solution to the simultaneous localization and mapping
problem,” in Prof. of the National Conf. on Artificial Intelligence
(AAAI), 2002.

[26] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for
grid mapping with rao-blackwellized particle filters,” IEEE Transac-
tions on Robotics (T-RO), vol. 23, pp. 34–46, 2007.
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