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Abstract

Mobile manipulation robots are envisioned to pro-
vide many useful services both in domestic envi-
ronments as well as in the industrial context. In
this paper, we present novel approaches to allow
mobile maniplation systems to autonomously adapt
to new or changing situations. The approaches de-
veloped in this paper cover the following four top-
ics: (1) learning the robot’s kinematic structure
and properties using actuation and visual feedback,
(2) learning about articulated objects in the envi-
ronment in which the robot is operating, (3) using
tactile feedback to augment visual perception, and
(4) learning novel manipulation tasks from human
demonstrations.

1 Introduction
The development of flexible mobile manipulation robots is
widely envisioned as a large breakthrough in technology and
is expected to have a significant impact on our economy
and society in the future. Mobile manipulation robots that
are equipped with one or more gripper arms could fulfill
various useful services in private homes including cleaning,
tidying up as well as fetch and carry tasks. Robust solu-
tions to all of these tasks obviously would mean a signifi-
cant time benefit to their owners. For example, by support-
ing elderly and mobility-impaired people in the activities of
daily living, appropriate service robots can reduce the depen-
dency on external caregivers and support such people to live
a self-determined and autonomous life. In addition, small
and medium-sized enterprises would profit enormously from
robotic co-workers that they can easily reconfigure to new
production tasks. This technology would significantly lower
the production costs of smaller companies and thus provide
them with a significant competitive advantage. The goal of
this work is to provide novel approaches that enable mobile
manipulation robots to be flexibly used in everyday life. The

∗The dissertation on which this extended abstract is based was
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2011 and was shortlisted for the EURON Georges Giralt Award
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Figure 1: Illustration of the four research questions addressed in
this thesis. (a) Body schema learning using visual self-observation.
(b) Learning to operate articulated objects, here: a fridge. (c) Us-
ing tactile sensing to estimate the state of a container. (d) Imitation
learning to acquire novel manipulation skills.

challenge in these applications is that robots operating in un-
structured environments have to cope with less prior knowl-
edge about themselves and their surroundings. Therefore,
they need to be able to autonomously learn suitable proba-
bilistic models from their own sensor data to robustly fulfill
their tasks.

For decades, stationary manipulation robots have success-
fully been used in industrial mass production. In these ap-
plications strong assumptions about the physical setup and
a controlled environment allow the creation of efficient but



highly engineered approaches. These solutions are custom-
tailored to specific applications which makes them difficult to
adapt: typically, changes in the application require the man-
ual adaptation of the robot’s control code, a new layout of its
work cell, and possibly the reconfiguration of its hardware.
For this reason, industrial manipulators require the supervi-
sion of experts on a regular basis, and are therefore only cost-
effective for the mass production. In contrast, the environ-
ment of mobile manipulators used for domestic service tasks
or in small series production is largely unstructured, i.e., it
can neither be exactly specified nor easily controlled. To deal
with these uncertainties, mobile manipulation robots need to
be considerably more flexible, robust, and adaptive than their
stationary predecessors.

This paper provides an overview on the PhD thesis of
Jürgen Sturm [Sturm, 2011], which is available online at
http://vision.in.tum.de/members/sturmju/

phd_thesis

and published as a hardcover by Springer [Sturm, 2013]. Next
to the thesis itself, this website contains additional material
such as videos, research papers, and freely available datasets.

2 Challenges
To illustrate the relevance of the topics presented in this the-
sis, we motivate our work using a typical example task of a
domestic service robot. We assume that the robot is given
the task to deliver a drink, which requires the robot to open
the fridge, pick up the right bottle, and pour its content into
a glass. To be able to accurately use its manipulator, the
robot first needs to verify its body schema using visual self-
observation (Figure 1a) This enables the robot to compen-
sate for mechanical inaccuracies and detect potential hard-
ware failures. Once the robot established its body schema, it
navigates to the fridge to retrieve a drink (Figure 1b). To open
the fridge, the robot identifies the fridge door and generates
a suitable trajectory for opening it. This, in turn, requires a
kinematic model of the fridge. Being able to learn kinematic
models is fundamental for versatile service robots, as there
are too many different cabinet doors and drawers in domestic
environments to exclusively rely on predefined models. After
the robot has successfully opened the fridge, it picks up a bot-
tle. By using its tactile sensors (Figure 1c), the robot verifies
that it has grasped the correct object and that this object is in
the expected state. The next step of the delivery task is to pour
the drink into a glass (Figure 1d). This skill, however, might
not be part of the robot’s current programming. In this case,
the user can teach the robot this novel manipulation skill by
demonstrating it to the robot. From this demonstration, the
robot learns and generalizes a description of the task that it
can subsequently use to reliably reproduce it. Such an in-
tuitive programming interface is an essential prerequisite for
the usability of service robots in everyday life.

This motivating example leads us to the four research ques-
tions that we tackle in this thesis:
• How can a manipulation robot learn to accurately posi-

tion its arm?
• How can a manipulation robot robustly operate doors

and drawers?

• How can a manipulation robot infer the state of the ob-
jects it manipulates?

• How can a user intuitively teach novel manipulation
tasks to a robot?

A robot that operates in unstructured environments with
no or minimal human supervision needs to be able to per-
ceive the world through its own sensors, and subsequently,
build from this data an internal, up-to-date representation of
the world. As sensor data is always noisy and potentially in-
complete, a robot requires robust techniques to interpret and
integrate it intelligently into its own models of the world. A
robot can then use these models to estimate the state of ob-
jects in the world, simulate the consequences of its actions,
generate plans, and, finally, verify the success of its actions.

Our work is based on state-of-the-art Bayesian learning
techniques such as graphical models, Gaussian processes and
robust estimation methods. The probabilistic formulation
of our approaches allows a robot to deal with uncertainties
in the sensor observations and action execution and to con-
sider them adequately during action planning. In an exhaus-
tive set of experiments on real robots and in simulation we
demonstrate that our approaches significantly reduce the de-
pendency of manipulation robots on hand-crafted models and
structured environments. In sum, this thesis provides novel
probabilistic learning techniques that enable a manipulation
robot

• to learn the body schema of its arm from scratch using
self-observation, and to monitor and adapt this model
over extended periods of time,

• to learn kinematic models of articulated objects from
observation or interaction to reliably operate doors and
drawers,

• to learn tactile object models to estimate the identity and
state of the objects being manipulated, and

• to learn novel manipulation tasks from human demon-
strations, and to reproduce them robustly in similar situ-
ations.

3 Thesis Outline
The thesis is organized as follows. In Chapter 2, we provide
the technical background in machine learning and probabilis-
tic modeling that we require for the remainder of the thesis. In
Chapter 3, we present a novel approach that enables a robot to
learn the body schema of its manipulator from scratch using
visual self-observation (see Figure 2a). In contrast to pre-
vious approaches, we estimate both the kinematic structure
and the kinematic properties of the robot arm [Sturm et al.,
2008b]. We model the observations of each link of the arm
as a Gaussian process and learn a Bayesian network that de-
scribes the kinematics of the whole system. An example of
such a learned body schema is visualized in Figure 4. The
explicit representation of the kinematic structure allows the
robot to detect and localize deviations between the model and
the real arm to specific components of the network [Sturm et
al., 2008a]. Our approach provides a flexible, probabilistic
representation of robot kinematics and, furthermore, enables



∆gp'
67 →

x6 →

x7 →

(a) online adaptation of the
body schema

revolute

(b) learned kinematic model of a
fridge door

Figure 2: Examples of our solutions to kinematic model learning.
(a) With our approach, robots can autonomously adapt their body
schema in case of hardware failures and tool changes. (b) Our frame-
work also applies to passively-actuated articulated objects and en-
ables robots to reliably operate typical household objects such as
cabinets, fridges and dishwashers.

(a) tactile sensing (b) imitation learning

Figure 3: More examples of model learning using our approaches.
(a) This service robot learns to haptically discrimate empty from
full bottles and uses this knowledge to tidy up a table. (b) This robot
learns its instructions (here: cleaning the white board) from human
demonstrations.

a manipulation robot to position its end effector accurately
even in the presence of hardware failures. Our results show
that robots using our approach require less maintenance and
can be used over longer periods of time without human inter-
vention [Sturm et al., 2009a].

A central task of service robots is to interact with artic-
ulated objects, for example, to open doors in order to nav-
igate between rooms or to pick up objects from cabinets
or drawers. In Chapter 4, we show how our approach on
body schema learning can be generalized to such articulated
objects. We extend our approach by additional parametric
models and use Bayesian model comparison to choose be-
tween the alternatives [Sturm et al., 2009b; 2010a]. This in-
creases the robustness and efficiency of our approach while
we keep the high flexibility of the Gaussian process mod-
els. In contrast to previous work, our approach applies to a
significantly larger class of articulated objects and provides
more accurate kinematic models. Furthermore, we can esti-
mate the degrees of freedom of an articulated object and dis-
cover kinematic loops [Sturm et al., 2011]. Complimentary to
this, we demonstrate in Chapter 5 how a manipulation robot
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Figure 4: The central concept in our work is to learn compact prob-
abilistic models from sensor data. This enables service robots to
robustly deal with substantial changes in their environment. For ex-
ample for body schema learning, we use (a) Gaussian processes and
(b) Bayesian networks to represent the kinematic model of a robot.

can recognize cabinet doors and drawers on dense depth im-
ages without requiring visual markers [Sturm et al., 2010b;
Rühr et al., 2012].

In addition to articulated objects, service robots also need
to manipulate many other objects such as bottles, silver-
ware, or dishes. If a robot has tactile sensors in its grip-
per, it can use them to obtain additional information about
the objects it is interacting with. In Chapter 6 and Chap-
ter 7, we present two novel approaches that manipulation
robots can use to learn tactile object models. The first
approach is based on the bag-of-features method and en-
ables a robot to verify whether it has grasped the correct
object [Schneider et al., 2009]. In our second approach,
we analyze the dynamics of the tactile signal to recognize
the internal state of liquid containers [Chitta et al., 2010;
2011]. This ability is, for example, important for a domes-
tic service robot that tidies up a table and needs to decide
whether a juice bottle is full or empty and should be stored in
the fridge or disposed in the trash can (as illustrated in Fig-
ure 3a). Our results indicate that tactile sensing is a useful
source of information for a robot to augment its perceptions
during object manipulation.

Another prerequisite for successful service robotics appli-
cations is that normal users can quickly and intuitively in-
struct the robot to perform novel tasks. Inspired by work on
imitation learning, we develop in Chapter 8 a novel approach
to learn manipulation tasks by observing a human instruc-
tor demonstrating a certain manipulation task [Eppner et al.,
2009]. From these demonstrations, the robot extracts invari-
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Figure 5: Three state-of-the-art mobile manipulation robots that we
used for developing and testing our approaches.

ances in the execution of the task and infers from them a gen-
eralized task model (see Figure 3b). In contrast to existing
approaches, the factorized representation of the manipulation
task as a dynamic Bayesian network allows us to dynamically
add new constraints, for example, to avoid obstacles during
reproduction, or to prefer a particular body posture. Our ap-
proach allows normal users to provide novel task descriptions
to a manipulation robot in an intuitive way, which we con-
sider an important prerequisite for the daily use of manipula-
tion robots. Finally, we conclude the thesis with a summary
of our results in Chapter 9 and give an outlook to future work.

To develop and test our approaches, we used three differ-
ent state-of-the-art mobile manipulators as depicted in Fig-
ure 5. By evaluating our approaches successfully on different
experimental platforms, we ensure that our approaches also
generalize to other mobile manipulation robots.

All of our approaches are based on state-of-the-art
Bayesian learning techniques such as Gaussian processes,
sample consensus methods, and graphical models. The prob-
abilistic formulation of our approaches allows a robot to deal
with uncertainties in the sensor observations and action ex-
ecution and to consider them adequately during action plan-
ning. Furthermore, we show that our approaches substantially
increase the flexibility, adaptability and robustness of manip-
ulation robots.

4 Software
We released parts of our software as open-source to offer
other researchers the opportunity to verify our results, eval-
uate our approaches on different data, and use our software in
their research. In particular, we provide free software imple-
mentations our body schema learning approach and the com-
plete framework for kinematic model learning of articulated
objects.

• The ZORA framework1 implements our approach on
body schema learning as described in Chapter 3. It is
freely available under the GPL license. Furthermore, a
detailed tutorial explains how to reproduce our results
on various simulated manipulators.

1http://www.informatik.uni-freiburg.de/
˜sturm/zora.html

• The ARTICULATION stack2 provides several software li-
braries for learning kinematic models of articulated ob-
jects as described in Chapter 4 and Chapter 5. We re-
leased the software stack under the BSD license. Fur-
ther, we provide several tutorials that explain in de-
tail how kinematic models of articulated objects can be
learned from observed trajectories and how the frame-
work can be used with Python and C++.

Our open-source software for operating articulated ob-
jects with mobile manipulators is currently being used in the
demonstrators of several renowned research labs across Eu-
rope (U Freiburg, TU Munich, TU Eindhoven, ETH Zurich)
and the United States (Bosch Research, Georgia Tech) and
thus both in academia and in industry. Several ongoing re-
search projects are currently using or extending our approach
on learning kinematic models of articulated objects. The
RoboEarth project3 aims at the creation of a worldwide ob-
ject database and annotates articulated objects with the mod-
els learned using our approach. The goal of the SFB/TR 84 is
to investigate the cognitive foundations for human-centered
spatial assistance systems, and plans in project A8 to extend
our approach to learn 3D models of the rigid parts of artic-
ulated objects. The First-MM project5 aims to enable robots
to acquire new manipulation skills which also involve grasp-
ing and operating articulated objects using our approach. The
goal of the TidyUpRobot project6 is to use the PR2 robot in
various tidying-up tasks.

5 Conclusion
We think that the field of mobile manipulation bears a large
market potential in the near future. In this work, we presented
several innovative approaches to relevant problems that arise
when mobile manipulators are applied in unstructured envi-
ronments and changing situations. We hope that our work
increases the dependability, flexibility, and ease of use of ma-
nipulation robots and thereby contributes to the development
of truly useful robotic assistants for industry and society.

2http://www.ros.org/wiki/articulation
3RoboEarth is a reseach project funded by the European Union

Seventh Framework Programme FP7/248942 (2009–2013).
4The Transregional Collaborative Research Center Spatial Cog-

nition: Reasoning, Action, Interaction has been established by the
German Research Foundation (DFG) (2003–2014).

5First-MM is another research project founded under the Eu-
ropean Union Seventh Framework Programme FP7/248258 (2010–
2014).

6The TidyUpRobot project is part of the PR2 beta program spon-
sored by Willow Garage (2010–2012).
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