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Abstract. We propose a real-time RGB-based pipeline for object de-
tection and 6D pose estimation. Our novel 3D orientation estimation
is based on a variant of the Denoising Autoencoder that is trained on
simulated views of a 3D model using Domain Randomization.

This so-called Augmented Autoencoder has several advantages over ex-
isting methods: It does not require real, pose-annotated training data,
generalizes to various test sensors and inherently handles object and view
symmetries. Instead of learning an explicit mapping from input images to
object poses, it provides an implicit representation of object orientations
defined by samples in a latent space. Experiments on the T-LESS and
LineMOD datasets show that our method outperforms similar model-
based approaches and competes with state-of-the art approaches that
require real pose-annotated images.
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1 Introduction

One of the most important components of modern computer vision systems for
applications such as mobile robotic manipulation and augmented reality is a
reliable and fast 6D object detection module. Although, there are very encour-
aging recent results [I7/I540I3812], a flexible, general, robust and fast solution
is not available, yet. The reasons for this are manifold. First and foremost, cur-
rent solutions are not robust enough against typical challenges such as object
occlusions, different kinds of background clutter, and dynamic changes of the
environment. Second, existing methods often require certain object properties
such as enough textural surface structure or an asymmetric shape to avoid con-
fusions. And finally, current systems are not efficient in terms of run-time and
in the amount of annotated training data they require.

Therefore, we propose a novel approach that directly addresses these issues.
Concretely, our method operates on single RGB images, which significantly in-
creases the usability as no depth information is required. We note though that
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Single Shot
Multibox Detector

Fig.1: Our 6D Object Detection pipeline with homogeneous transformation
Heam2obj € R (top-right) and depth-refined result H, (refined) (bottom-right)

cam?2obj

depth maps may be incorporated optionally to refine the estimation. As a first
step, we apply a Single Shot Multibox Detector (SSD) [22] that provides ob-
ject bounding boxes and identifiers. On the resulting scene crops, we employ
our novel 3D orientation estimation algorithm, which is based on a previously
trained deep network architecture. While deep networks are also used in exist-
ing approaches, our approach differs in that we do not explicitly learn from 3D
pose annotations during training. Instead, we implicitly learn representations
from rendered 3D model views. This is accomplished by training a generalized
version of the Denoising Autoencoder [39], that we call ’Augmented Autoen-
coder (AAE)’, using a novel Domain Randomization [36] strategy. Our approach
has several advantages: First, since the training is independent from concrete
representations of object orientations within SO(3) (e.g. quaternions), we can
handle ambiguous poses caused by symmetric views because we avoid one-to-
many mappings from images to orientations. Second, we learn representations
that specifically encode 3D orientations while achieving robustness against oc-
clusion, cluttered backgrounds and generalizing to different environments and
test sensors. Finally, the AAE does not require any real pose-annotated training
data. Instead, it is trained to encode 3D model views in a self-supervised way,
overcoming the need of a large pose-annotated dataset. A schematic overview of
the approach is shown in Fig[l]

2 Related Work

Depth-based methods (e.g. using Point Pair Features (PPF) [38/12]) have shown
robust pose estimation performance on multiple datasets, winning the SIXD
challenge 2017 [I4]. However, they usually rely on the computationally expensive
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evaluation of many pose hypotheses. Furthermore, existing depth sensors are
often more sensitive to sunlight or specular object surfaces than RGB cameras.

Convolutional Neural Networks (CNNs) have revolutionized 2D object de-
tection from RGB images [2922]20]. But, in comparison to 2D bounding box
annotation, the effort of labeling real images with full 6D object poses is magni-
tudes higher, requires expert knowledge and a complex setup [I5]. Nevertheless,
the majority of learning-based pose estimation methods use real labeled images
and are thus restricted to pose-annotated datasets. [35/40/4128)]

In consequence, some works [I7/40] have proposed to train on synthetic im-
ages rendered from a 3D model, yielding a great data source with pose labels
free of charge. However, naive training on synthetic data does not typically gen-
eralize to real test images. Therefore, a main challenge is to bridge the domain
gap that separates simulated views from real camera recordings.

2.1 Simulation to Reality Transfer

There exist three major strategies to generalize from synthetic to real data:

Photo-Realistic Rendering of object views and backgrounds has shown mixed
generalization performance for tasks like object detection and viewpoint estima-
tion [26J3425/30]. It is suitable for simple environments and performs well if
jointly trained with a relatively small amount of real annotated images. How-
ever, photo-realistic modeling is always imperfect and requires much effort.

Domain Adaptation (DA) [5] refers to leveraging training data from a source
domain to a target domain of which a small portion of labeled data (supervised
DA) or unlabeled data (unsupervised DA) is available. Generative Adversar-
ial Networks (GANs) have been deployed for unsupervised DA by generating
realistic from synthetic images to train classifiers [33], 3D pose estimators [3]
and grasping algorithms [2]. While constituting a promising approach, GANs
often yield fragile training results. Supervised DA can lower the need for real
annotated data, but does not abstain from it.

Domain Randomization (DR) builds upon the hypothesis that by training a
model on rendered views in a variety of semi-realistic settings (augmented with
random lighting conditions, backgrounds, saturation, etc.), it will also generalize
to real images. Tobin et al. [36] demonstrated the potential of the Domain Ran-
domization (DR) paradigm for 3D shape detection using CNNs. Hinterstoisser
et al. [I3] showed that by training only the head network of FasterRCNN [29]
with randomized synthetic views of a textured 3D model, it also generalizes well
to real images. It must be noted, that their rendering is almost photo-realistic
as the textured 3D models have very high quality. Recently, Kehl et al. [I7] pi-
oneered an end-to-end CNN, called 'SSD6D’, for 6D object detection that uses
a moderate DR strategy to utilize synthetic training data. The authors ren-
der views of textured 3D object reconstructions at random poses on top of MS
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COCO background images [21] while varying brightness and contrast. This lets
the network generalize to real images and enables 6D detection at 10Hz. Like us,
for very accurate distance estimation they rely on Iterative Closest Point (ICP)
post-processing using depth data. In contrast, we do not treat 3D orientation
estimation as a classification task.

2.2 Learning representations of 3D orientations

We describe the difficulties of training with fixed SO(3) parameterizations which
will motivate the learning of object-specific representations.

Regression. Since rotations live in a continuous space, it seems natural to
directly regress a fixed SO(3) parameterizations like quaternions. However, rep-
resentational constraints and pose ambiguities can introduce convergence issues
[32]. In practice, direct regression approaches for full 3D object orientation esti-
mation have not been very successful [23].

Classification of 3D object orientations requires a discretization of SO(3). Even
rather coarse intervals of ~ 5° lead to over 50.000 possible classes. Since each
class appears only sparsely in the training data, this hinders convergence. In
SSD6D [17] the 3D orientation is learned by separately classifying a discretized
viewpoint and in-plane rotation, thus reducing the complexity to O(n?). How-
ever, for non-canonical views, e.g. if an object is seen from above, a change
of viewpoint can be nearly equivalent to a change of in-plane rotation which
yields ambiguous class combinations. In general, the relation between different
orientations is ignored when performing one-hot classification.

Symmetries are a severe issue when relying on fixed representations of 3D ori-
entations since they cause pose ambiguities (Fig. . If not manually addressed,
identical training images can have different orientation labels assigned which
can significantly disturb the learning process. In order to cope with ambiguous
objects, most approaches in literature are manually adapted [40J9IT7I28]. The
strategies reach from ignoring one axis of rotation [40l9] over adapting the dis-
cretization according to the object [I7] to the training of an extra CNN to predict
symmetries [28]. These depict tedious, manual ways to filter out object symme-
tries in advance, but treating ambiguities due to self-occlusions and
occlusions are harder to address. Symmetries do not only affect regression
and classification methods, but any learning-based algorithm that discriminates
object views solely by fixed SO(3) representations.

Descriptor Learning can be used to learn a representation that relates ob-
ject views in a low-dimensional space. Wohlhart et al. [40] introduced a CNN-
based descriptor learning approach using a triplet loss that minimizes/maximizes
the Euclidean distance between similar/dissimilar object orientations. Although
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(a) Object symmetries (b) Self-occlusion (c) Occlusion
induced symmetries induced symmetries

Fig. 2: Causes of pose ambiguities

mixing in synthetic data, the training also relies on pose-annotated sensor data.
Furthermore, the approach is not immune against symmetries because the loss
can be dominated by ambiguous object views that appear the same but have
opposite orientations. Baltnas et al. [I] extended this work by enforcing propor-
tionality between descriptor and pose distances. They acknowledge the problem
of object symmetries by weighting the pose distance loss with the depth differ-
ence of the object at the considered poses. This heuristic increases the accuracy
on symmetric objects with respect to [40]. Our work is also based on learning
descriptors, but we train self-supervised Augmented Autoencoders (AAEs) such
that the learning process itself is independent of any fixed SO(3) representation.
This means that descriptors are learned solely based on the appearance of ob-
ject views and thus symmetrical ambiguities are inherently regarded. Assigning
3D orientations to the descriptors only happens after the training. Furthermore,
unlike [1[40] we can abstain from the use of real labeled data for training.

Kehl et al. [I8] train an Autoencoder architecture on random RGB-D scene
patches from the LineMOD dataset [10]. At test time, descriptors from scene and
object patches are compared to find the 6D pose. Since the approach requires the
evaluation of a lot of patches, it takes about 670ms per prediction. Furthermore,
using local patches means to ignore holistic relations between object features
which is crucial if few texture exists. Instead we train on holistic object views
and explicitly learn domain invariance.

3 Method

In the following, we mainly focus on the novel 3D orientation estimation tech-
nique based on the Augmented Autoencoder (AAE).

3.1 Autoencoders

The original Autoencoder (AE), introduced by Hinton et al. [3I], is a dimen-
sionality reduction technique for high dimensional data such as images, audio or
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depth. It consists of an Encoder ¢ and a Decoder ¥, both arbitrary learnable
function approximators which are usually neural networks. The training objec-
tive is to reconstruct the input 2 € R? after passing through a low-dimensional
bottleneck, referred to as the latent representation z € R™ with n << D :

&= (Vo )(z) = U(2) (1)

The per-sample loss is simply a sum over the pixel-wise L2 distance

b= [l @ —2a) ll2 (2)
i€D

The resulting latent space can, for example, be used for unsupervised clustering.
Denoising Autoencoders [39] have a modified training procedure. Here, artificial
random noise is applied to the input images x € R? while the reconstruction
target stays clean. The trained model can be used to reconstruct denoised test
images. But how is the latent representation affected?
Hypothesis 1: The Denoising AE produces latent representations which are
mwvariant to noise because it facilitates the reconstruction of de-noised images.
We will demonstrate that this training strategy actually enforces invariance not
only against noise but against a variety of different input augmentations. Finally,
it allows us to bridge the domain gap between simulated and real data.

3.2 Augmented Autoencoder

The motivation behind the AAE is to control what the latent representation
encodes and which properties are ignored. We apply random augmentations
faugm(.) to the input images = € RP against which the encoding shall become
invariant. The reconstruction target remains eq. but eq. becomes

&= (P o®0 faugm)(x) = (Vo P)(a') = V() 3)

To make evident that Hypothesis 1 holds for geometric transformations, we
learn latent representations of binary images depicting a 2D square at different
scales, in-plane translations and rotations. Our goal is to encode only the in-
plane rotations r € [0, 2] in a two dimensional latent space z € R? independent
of scale or translation. Fig. [3| depicts the results after training a CNN-based AE
architecture similar to the model in Fig. [5l It can be observed that the AEs
trained on reconstructing squares at fixed scale and translation (1) or random
scale and translation (2) do not clearly encode rotation alone, but are also sen-
sitive to other latent factors. Instead, the encoding of the AAE (3) becomes
invariant to translation and scale such that all squares with coinciding orien-
tation are mapped to the same code. Furthermore, the latent representation is
much smoother and the latent dimensions imitate a shifted sine and cosine func-
tion with frequency f = % respectively. The reason is that the square has two
perpendicular axes of symmetry, i.e. after rotating 7 the square appears the
same. This property of representing the orientation based on the appearance of
an object rather than on a fixed parametrization is valuable to avoid ambiguities
due to symmetries when teaching 3D object orientations.
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Fig. 3: Left: 64x64 squares from four distributions (a,b,c and d) distinguished by
scale (s) and translation (t;,) that are used for training and testing [24]. Right:
Normalized latent dimensions z; and zo for all rotations (r) of the distribution
(a), (b) or (c) after training ordinary AEs (1),(2) and an AAE (3) to reconstruct
squares of the same orientation.

3.3 Learning 3D Orientation from Synthetic Object Views

Our toy problem showed that we can explicitly learn representations of object
in-plane rotations using a geometric augmentation technique. Applying the same
geometric input augmentations we can encode the whole SO(3) space of views
from a 3D object model (CAD or 3D reconstruction) while being robust against
inaccurate object detections. However, the encoder would still be unable to re-
late image crops from real RGB sensors because (1) the 3D model and the real
object differ, (2) simulated and real lighting conditions differ, (3) the network
can’t distinguish the object from background clutter and foreground occlusions.
Instead of trying to imitate every detail of specific real sensor recordings in sim-
ulation we propose a Domain Randomization (DR) technique within the AAE
framework to make the encodings invariant to insignificant environment and
sensor variations. The goal is that the trained encoder treats the differences to
real camera images as just another irrelevant variation. Therefore, while keep-
ing reconstruction targets clean, we randomly apply additional augmentations
to the input training views: (1) rendering with random light positions and ran-
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Fig.4: Training process for the AAE; a) reconstruction target batch
of uniformly sampled SO(3) object views; b) geometric and color aug-
mented input; ¢) reconstruction & after 30000 iterations

domized diffuse and specular reflection (simple Phong model [27] in OpenGL),
(2) inserting random background images from the Pascal VOC dataset [6], (3)
varying image contrast, brightness, Gaussian blur and color distortions, (4) ap-
plying occlusions using random object masks or black squares. Fig. |4] depicts an
exemplary training process for synthetic views of object 5 from T-LESS [I5].

3.4 Network Architecture and Training Details

The convolutional Autoencoder architecture that is used in our experiments is
depicted in Fig. o We use a bootstrapped pixel-wise L2 loss which is only com-
puted on the pixels with the largest errors (per image bootstrap factor b=4).
Thereby, finer details are reconstructed and the training does not converge to
local minima. Using OpenGL, we render 20000 views of each object uniformly at
random 3D orientations and constant distance along the camera axis (700mm).
The resulting images are quadratically cropped and resized to 128 x 128 x 3 as
shown in Fig.[4] All geometric and color input augmentations besides the render-
ing with random lighting are applied online during training at uniform random
strength, parameters are found in the supplement. We use the Adam [19] opti-
mizer with a learning rate of 2 x 10~%, Xavier initialization [7], a batch size = 64
and 30000 iterations which takes ~ 4 hours on a single Nvidia Geforce GTX 1080.

3.5 Codebook Creation and Test Procedure

After training, the AAE is able to extract a 3D object from real scene crops
of many different camera sensors (Fig. . The clarity and orientation of the
decoder reconstruction is an indicator of the encoding quality. To determine 3D
object orientations from test scene crops we create a codebook (Fig. [6] (top)):
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2
3 convbHxH convbxh  convHxH convHxH flatten  fe resize2x resize2x resize2x resize2x 3
stride2 stride2 stride2 stride2 fc  reshape convix5 convbx5 convbxb  convbxH
ReLu ReLu ReLu ReLu ReLu  ReLu ReLu  Sigmoid

Fig. 5: Autoencoder CNN architecture with occluded test input

1) Render clean, synthetic object views at equidistant viewpoints from a full
view-sphere (based on a refined icosahedron [§])

2) Rotate each view in-plane at fixed intervals to cover the whole SO(3)

3) Create a codebook by generating latent codes z € R'?® for all resulting
images and assigning their corresponding rotation Reqma2ob; € R3»3

At test time, the considered object(s) are first detected in an RGB scene. The
area is quadratically cropped and resized to match the encoder input size. After
encoding we compute the cosine similarity between the test code z.q € R
and all codes z; € R™2 from the codebook:

z’i ztest (4)

€08; =
U lzllllzees

The highest similarities are determined in a k-Nearest-Neighbor (kNN) search
and the corresponding rotation matrices {Riyn} from the codebook are re-
turned as estimates of the 3D object orientation. We use cosine similarity be-
cause (1) it can be very efficiently computed on a single GPU even for large
codebooks. In our experiments we have 2562 equidistant viewpoints x 36 in-
plane rotation = 92232 total entries. (2) We observed that, presumably due to
the circular nature of rotations, scaling a latent test code does not change the
object orientation of the decoder reconstruction (Fig. E[)

3.6 Extending to 6D Object Detection

Training the Object Detector. We finetune SSD with VGG16 base [22] using
object recordings on black background from different viewpoints which are pro-
vided in the training datasets of LineMOD and T-LESS. We also train RetinaNet
[20] with ResNet50 backbone which is slower but more accurate. Multiple objects
are copied in a scene at random orientation, scale and translation. Bounding box
annotations are adapted accordingly. As for the AAE, the black background is
replaced with Pascal VOC images. During training with 60000 scenes, we apply
various color and geometric augmentations.
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LD {RrnN}
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Fig. 6: Top: creating a codebook from the encodings of discrete synthetic
object views; bottom: object detection and 3D orientation estimation using
the nearest neighbor(s) with highest cosine similarity from the codebook

Fig. 7: AAE decoder reconstruc-  Fig.8: AAE decoder reconstruc-
tion of a test code zp g € R128 tion of LineMOD (left) and T-
scaled by a factor s € [0,2.5] LESS (right) scene crops

Projective Distance Estimation. We estimate the full 3D translation #p,eq
from camera to object center, similar to [I7]. Therefore, for each synthetic object
view in the codebook, we save the diagonal length [,y ; of its 2D bounding box.
At test time, we compute the ratio between the detected bounding box diag-
onal ltcs; and the corresponding codebook diagonal lsypn maz_cos, i-€. at similar
orientation. The pinhole camera model yields the distance estimate tpeq, -

l
tpred,z _ tsyn,z % SYN,mar_cos ftest (5)
ltest fsyn
with synthetic rendering distance tsy, . and focal lengths fiest, foyn of the test

sensor and synthetic views. It follows that
tpred,:r _ tp’f‘ed,Z (bbcent,test,w - ptest,z) - (bbcent,syn,w - psyn,a:) (6)
ftest (bbcent,test,y - ptest,y) - (bbcent,syn,y - psyn,y)

with principal points piest, Psyn and bounding box centers bbeent,tests bbeent,syn-
In contrast to [I7], we can predict the 3D translation for different test intrinsics.

tpred,y

ICP Refinement. Optionally, the estimate is refined on depth data using a
standard ICP approach [41] taking ~ 200ms on CPU. Details in supplement.
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Table 1: Inference time of RGB Table 2: Single object pose esti-

pipeline blocks mation runtime w/o refinement
4 CPUs GPU Method fps
SSD - ~17ms Vidal et al. [38] 0.2
Encoder - ~5ms Brachmann et al. [4] 2
Cosine Similarity 2.5ms 1.3ms Kehl et al. [18] 2
Nearest Neighbor 0.3ms 3.2ms BBS8 [28] 4
Projective Distance 0.4ms - SSD6D [17] 12
OURS 42
~24ms Tekin et al. [35] 50

Inference Time. SSD with VGG16 base and 31 classes plus the AAE (Fig. [5)
with a codebook size of 92232 x 128 yield the average inference times depicted
in Table [II We conclude that the RGB-based pipeline is real-time capable at
~42Hz on a Nvidia GTX 1080. This enables augmented reality and robotic
applications and leaves room for tracking algorithms. Multiple encoders and
corresponding codebooks fit into the GPU memory, making multi-object pose
estimation feasible.

4 Evaluation

We evaluate the AAE and the whole 6D detection pipeline on the T-LESS [15]
and LineMOD [10] datasets. Example sequences are found in the supplement.

4.1 Test Conditions

Few RGB-based pose estimation approaches (e.g. [I7I37]) only rely on 3D model
information. Most methods make use of real pose annotated data and often even
train and test on the same scenes (e.g. at slightly different viewpoints) [40/T4].
It is common practice to ignore in-plane rotations or only consider object poses
that appear in the dataset [28/40] which also limits applicability. Symmetric
object views are often individually treated [28/1] or ignored [40]. The SIXD
challenge [14] is an attempt to make fair comparisons between 6D localization
algorithms by prohibiting the use of test scene pixels. We follow these strict
evaluation guidelines, but treat the harder problem of 6D detection where it
is unknown which of the considered objects are present in the scene. This is
especially difficult in the T-LESS dataset since objects are very similar.

4.2 Metrics

The Visible Surface Discrepancy (errysq) [16] is an ambiguity-invariant pose
error function that is determined by the distance between the estimated and
ground truth visible object depth surfaces. As in the SIXD challenge, we report
the recall of correct 6D object poses at err,sq < 0.3 with tolerance 7 = 20mm
and > 10% object visibility. Although the Average Distance of Model Points
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Table 3: Ablation study on color augmentations for different test sensors.
Object 5, all scenes, T-LESS [I5]. Standard deviation of three runs in brackets.
Train RGB Test RGB dyn. light add contrast multiply invert AUC,sq

3D Reconstruction Primesense v 0.472 (£ 0.013)
v v 0.611 (+ 0.030)
v VR 0.825 (& 0.015)
v VR v 0.876 (£ 0.019)
v v o v v/ 0.877 (& 0.005)
VA v 0.861 (£ 0.014)
Primesense Primesense v v v 0.890 (£ 0.003)
3D Reconstruction  Kinect v 0.461 (£ 0.022)
v v 0.580 (+ 0.014)
v VR 0.701 (< 0.046)
v oo v 0.855 (£ 0.016)
v VR v v/ 0.897 (£ 0.008)
VA v 0.903 (< 0.016)
Kinect Kinect v v v 0.917 (& 0.007)
0.90+
0.85
90.80
X
075F
—— CAD model
0.70 11 L L L —— textured reconstruction
4816 32 64 X 128 0 5000 10000 15000 20000 25000
latent space size Tterations
(a) Effect of latent space size, (b) Training on CAD model (bottom) vs.
standard deviation in red textured 3D reconstruction (top)

Fig.9: Testing object 5 on all 504 Kinect RGB views of scene 2 in T-LESS

(ADD) [II]) metric can’t handle pose ambiguities, we also present it for the
LineMOD dataset following the protocol in [II] (k,, = 0.1). For objects with
symmetric views (eggbox, glue), [IT] computes the average distance to the closest
model point. In our ablation studies we also report the AUC),s4, which represents
the area under the ’err,qq vs. recall’ curve: AUC,sq = fol recall(errysq) derrysq

4.3 Ablation Studies

To assess the AAE alone, in this subsection we only predict the 3D orientation of
Object 5 from the T-LESS dataset on Primesense and Kinect RGB scene crops.
Table [3] shows the influence of different input augmentations. It can be seen
that the effect of different color augmentations is cumulative. For textureless ob-
jects, even the inversion of color channels seems to be beneficial since it prevents
overfitting to synthetic color information. Furthermore, training with real ob-
ject recordings provided in T-LESS with random Pascal VOC background and
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Table 4: T-LESS: Object recall for err,s;q < 0.3 on all Primesense test scenesﬂ

| 6D Detection - SSD |6D Detection - Retina | 6D Localization w/ GT 2D BBs
Object| OURS OURS OURS OURS Kehl [18] Vidal [38] |OURS OURS
RGB +Depth(ICP)| RGB +Depth(ICP)|RGB-D +ICP Depth +ICP| RGB +Depth(ICP)
1| 5.65 15.79 8.87 22.32 - 43 12.33 28.05
2| 5.46 22.14 13.22 29.49 - 47 11.23 37.30
3| 7.05 32.65 12.47 38.26 - 69 13.11 46.15
4| 4.61 18.58 6.56 23.07 - 63 12.71 35.30
5| 36.45 69.39 34.80 76.10 - 69 66.70 90.29
6] 23.15 61.32 20.24 67.64 - 67 52.30 88.28
7| 15.97 68.45 16.21 73.88 - 7 36.58 81.75
8| 10.86 43.18 19.74 67.02 - 79 22.05 82.65
9] 19.59 67.12 36.21 78.24 - 90 46.49 84.38
10| 10.47 58.61 11.55 77.65 - 68 14.31 83.12
11| 4.35 32.52 6.31 35.89 - 69 15.01 57.26
12| 7.80 40.53 8.15 49.30 - 82 31.34 73.75
13| 3.30 29.31 4.91 42.50 - 56 13.60 65.01
14| 2.85 26.12 4.61 30.53 - 47 45.32 76.05
15| 7.90 52.34 26.71 83.73 - 52 50.00 90.56
16| 13.06 61.64 21.73 67.42 - 81 36.09 70.57
17| 41.70 77.46 64.84 86.17 - 83 81.11 90.49
18| 47.17 81.08 14.30 84.34 - 80 52.62 87.47
19| 15.95 45.48 22.46 50.54 - 55 50.75 82.50
20| 2.17 7.60 5.27 14.75 - 47 37.75 53.84
21| 19.77 38.98 17.93 40.31 - 63 50.89 72.10
22| 11.01 25.42 18.63 35.23 - 70 47.60 61.74
23| 7.98 30.24 18.63 42.52 - 85 35.18 54.65
24| 4.74 49.48 4.23 59.54 - 70 11.24 81.34
25| 21.91 50.00 18.76 70.89 - 48 37.12 88.54
26| 10.04 57.85 12.62 66.20 - 55 28.33 90.66
27| 7.42 47.22 21.13 73.51 - 60 21.86 77.63
28| 21.78 44.80 23.07 61.20 - 69 42.58 67.10
29| 15.33 53.71 26.65 73.05 - 65 57.01 87.68
30| 34.63 86.34 29.58 92.90 - 84 70.42 96.45
Mean‘ 14.67 46.51 ‘ 18.35 57.14 35.9 66.3 ‘ 36.79 72.76

augmentations yields only slightly better performance than the training with
synthetic data. Fig. [0a] depicts the effect of different latent space sizes on the 3D
pose estimation accuracy. Performance starts to saturate at dim = 64. In Fig.
OB we demonstrate that our Domain Randomization strategy even allows the
generalization from untextured CAD models.

4.4 6D Object Detection

First, we report RGB-only results consisting of 2D detection, 3D orientation es-
timation and projective distance estimation. Although these results are visually
appealing, the distance estimation is refined using a simple cloud-based ICP to
compete with state-of-the-art depth-based methods. Table [4] presents our 6D
detection evaluation on all scenes of the T-LESS dataset, which contains a lot of
pose ambiguities. Our refined results outperform the recent local patch descrip-
tor approach from Kehl et al. [I§] even though they only do 6D localization.
The state-of-the-art (in terms of average accuracy in the SIXD challenge[14])

3 Since the 3D reconstructions of the T-LESS plugs (Objects 19-23) are missing the
pins, we instead use their untextured CAD models
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Table 5: LineMOD: Object recall (ADD [11] metric) using
different training and test data, results taken from [35]

Test data| RGB |+Depth (ICP)
Train data‘ RGB w/o Real Pose Labels‘ RGB with Real Pose Labels ‘ +Depth
Object | SSD6D[17] OURS | Brachmann[4] BB8 [28] Tekin [35] | OURS SSD6D[17]
Ape 0.00 3.96 - 27.9 21.62 20.55 65
Benchvise 0.18 20.92 - 62.0 81.80 64.25 80
Cam 0.41 30.47 - 40.1 36.57 63.20 78
Can 1.35 35.87 - 48.1 68.80 76.09 86
Cat 0.51 17.90 - 45.2 41.82 72.01 70
Driller 2.58 23.99 - 58.6 63.51 41.58 73
Duck 0.00 4.86 - 32.8 27.23 32.38 66
Eggbox 8.90 81.01 - 40.0 69.58 98.64 100
Glue 0.00 45.49 - 27.0 80.02 96.39 100
Holepuncher 0.30 17.60 - 42.4 42.63 49.88 49
Iron 8.86 32.03 - 67.0 74.97 | 63.11 78
Lamp 8.2 60.47 - 39.9 71.11 |91.69 73
Phone 0.18 33.79 - 35.2 47.74 70.96 79
Mean|  2.42 28.65 \ 32.3 43.6 55.95 | 64.67 79

from Vidal et al. [38] performs a time consuming search through pose hypothe-
ses (average of 4.9 seconds/object). Our approach yields comparable accuracy
while being much more efficient. The right part of Table [4] shows results with
ground truth bounding boxes yielding an upper limit on the pose estimation per-
formance. The appendix shows some failure cases, mostly stemming from missed
detections or strong occlusions. In Table [5| we compare our method against the
recently introduced SSD6D [I7] and other methods on the LineMOD dataset.
SSD6D also trains on synthetic views of 3D models, but their performance seems
quite dependent on a sophisticated occlusion-aware, projective ICP refinement
step. Our basic ICP sometimes converges to similarly shaped objects in the
vicinity. In the RGB domain our method outperforms SSD6D.

5 Conclusion

We have proposed a new self-supervised training strategy for Autoencoder archi-
tectures that enables robust 3D object orientation estimation on various RGB
sensors while training only on synthetic views of a 3D model. By demanding the
Autoencoder to revert geometric and color input augmentations, we learn repre-
sentations that (1) specifically encode 3D object orientations, (2) are invariant to
a significant domain gap between synthetic and real RGB images, (3) inherently
regard pose ambiguities from symmetric object views. Around this approach, we
created a real-time (42 fps), RGB-based pipeline for 6D object detection which
is especially suitable when pose-annotated RGB sensor data is not available.
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A Appendix

A.1 Latent Space Visualization

-0.6

-0.4
0 -0.2

-0.4
0.4
0.6 -0.6

0.0
pc1

Fig.10: 3 principle components pc; of the latent space; red: all test encodings
of scene 2, object 5, T-LESS (upper hemisphere); other colors: encodings of
synthetic model views (whole view-sphere, color is defined by elevation)

0.2

A.2 Augmentation Parameters

Table 6: Augmentation Parameters; Scale and translation is in relation
to image shape and occlusion is in proportion of the object mask
add contrast  multiply invert Gaussian blur

U(—25,25) U(0.4,2.3) U(0.6,1.4) per channel

U(0.0,1.20)

50% chance
(30% per channel)

diffuse specular scale translation  occlusion

U(0.7,0.9) 1(0.2,0.4) 1(0.8,1.2) U(—0.15,0.15) 2(0,0.25)

ambient

0.4



Augmented Autoencoders for 6D Object Detection 19

A.3 Failure Cases

Different kinds of failure cases:

Fig. 11: Failure cases; Blue: True poses; Green: Predictions; (a) Failed detections
due to occlusions and object ambiguity, (b) failed AAE predictions of Glue
(middle) and Eggbox (right) due to occlusion, (c) inaccurate AAE predictions
due to occlusion.

A.4 ICP Refinement Details

We first project the depth image crops into a 3D point cloud and generate 3000
random points on the surface of the object CAD model. The ICP is performed
between these point sets based on the implementation of https://github.com/
ClayFlannigan/icp. The refinement is first applied in direction of the camera
axis where most of the RGB-based errors stem from and then on the full 6D pose.
If the 3D orientation changes more than 20°, the latter refinement is discarded.

A.5 Example Sequences T-LESS


https://github.com/ClayFlannigan/icp
https://github.com/ClayFlannigan/icp

®

LESS objects;
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(green) 6D pose of T

and estimated

(blue)
tested on scene 15;

Fig.12: Ground truth

no green box means that 2D detection failed

?
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Fig. 13: Ground truth (blue) and estimated (green) 6D pose of T-LESS objects;
tested on scene 11
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~

Fig. 14: Incomplete IKEA mug 3D orientation estimation from webcam stream
(left), nearest training neighbors (right)

Fig. 15: Ground truth (blue) and estimated (green) 6D pose of LineMOD
objects, occlusion set (last row) tested with ground truth 2D bounding boxes
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