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A Region-based Gauss-Newton Approach to
Real-Time Monocular Multiple Object Tracking

Henning Tjaden, Ulrich Schwanecke, Elmar Schömer and Daniel Cremers

Abstract—We propose an algorithm for real-time 6DOF pose tracking of rigid 3D objects using a monocular RGB camera. The key idea
is to derive a region-based cost function using temporally consistent local color histograms. While such region-based cost functions
are commonly optimized using first-order gradient descent techniques, we systematically derive a Gauss-Newton optimization scheme
which gives rise to drastically faster convergence and highly accurate and robust tracking performance. We furthermore propose a
novel complex dataset dedicated for the task of monocular object pose tracking and make it publicly available to the community.
To our knowledge, it is the first to address the common and important scenario in which both the camera as well as the objects
are moving simultaneously in cluttered scenes. In numerous experiments - including our own proposed dataset - we demonstrate
that the proposed Gauss-Newton approach outperforms existing approaches, in particular in the presence of cluttered backgrounds,
heterogeneous objects and partial occlusions.

Index Terms—pose estimation, tracking, image segmentation, region-based, optimization, dataset
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1 INTRODUCTION
Tracking the pose of a rigid object in monocular videos is
a fundamental challenge in computer vision with numerous
applications in mixed reality, robotics, medical navigation and
human-computer interaction [21]. Given an image sequence,
the aim is to robustly and accurately determine the translation
and rotation of a known rigid object relative to the camera
between frames. While this problem has been intensively stud-
ied, accurate real-time 6DOF pose estimation that is robust to
background clutter, partial occlusions, motion blur or defocus
remains an important open problem (see Figure 1).

1.1 Real-Time Monocular Object Tracking
Especially in the constantly growing fields of mixed reality
and robotics, object pose estimation is typically only one of
many complex tasks that must all be computed simultaneously
in real-time on often battery powered hardware. Therefore,
low runtime and power consumption of dedicated solutions
are crucial aspects for them to be practical in such scenarios.
In particular the latter can be achieved by using as few sensors
as possible e.g. only a single camera. Also as for most other
computer vision problems, such monocular approaches are
usually the most convenient compared to e.g. multi-camera
stereo systems because they keep calibration requirements at
a minimum and suffer least from visibility issues.

In the past several different strategies have been proposed to
the problem of monocular object pose tracking. One popular
approach is to detect intensity gradient-based features such
as corners or edges in the images and then perform pose
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estimation by matching these against a suitable 3D model
representation (see e.g. [37], [30], [12], [38], [17], [20]). Since
here the input image is directly reduced to a sparse set of
features a major advantage of such approaches is that they
can typically be computed in real-time even on low powered
hardware. The main drawback of especially point feature-
based methods is, however, that they require the objects to
be well-textured in order to show sufficient local intensity
variation in the images from all perspectives. In manmade
environments this usually significantly limits the variety of
suitable objects to those with text or image graphics printed
on them.

For weakly-textured or textureless objects, for many years
edge features, describing either their contour or strong in-
tensity gradients of angular structures inside the projected
object region, have been shown to be more suitable alternative.
Methods relying on image edges are however prone to fail in
cluttered scenes that show strong gradients frequently in the
background. This potentially causes the pose estimation to end
up in local minima (see also e.g. [32]). Feature based methods
furthermore struggle with motion blur, low lighting conditions
and increasing distance to the camera, generally causing the
features to appear less distinct in the images.

More recently, so-called region-based methods have gained
increasing popularity (see e.g. [29], [7], [3], [31], [26], [11],
[36]) since they are potentially suitable for a large variety
of objects in complex scenarios regardless of local intensity
gradients, i.e. their texture. These approaches assume differing
image statistics between the object and the background region.
Based on a suitable statistical appearance model as well
as a 3D shape prior (i.e. a 3D model of the object), here
pose estimation essentially works by aligning two silhouettes.
Here, the target is the extracted object’s silhouette in the
current image using the segmentation model while the other
is rendered synthetically from the shape prior parametrized
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Fig. 1. A few examples of our proposed method estimating the pose of a single or multiple complex objects under
different challenging conditions. These include cluttered scenes/backgrounds, strong occlusions as well as direct
sunlight. Top: The raw RGB input frames. Bottom: A mixed reality visualization of the tracking result where the input
images are virtually augmented with renderings of the corresponding 3D models using the estimated poses. All results
were obtained within ∼16 ms per object. This shows the robustness and accuracy of our approach in a variety of
situations that are typically difficult for monocular pose estimation.

by the sought pose. The discrepancy between these two
shapes is then minimized by changing the pose parameters
used for the synthetic projection. In return, given the objects
pose in the current frame, the rendered silhouette provides
an accurate pixel-wise segmentation mask that is typically
used for updating the foreground and background statistics
of the appearance model in order to dynamically adapt to
scene changes. Therefore, given the pose in the first frame
of an image sequence allows to initialize the statistical model.
Pose tracking is then performed recursively in an interleaved
manner by first estimating the pose based on that in the
previous frame and then updating the segmentation model
afterwards using the mask information in the current frame.

Very recently the first object pose tracking approach that
utilizes deep learning techniques to robustly handle occlusions
and lighting changes has been proposed in [6]. However, it
requires manual labeling of so-called stable parts for each
object individually. Also, this approach, even when using a
powerful GPU, is not real-time capable.

For the sake of completeness we also want to mention
that ever since so-called RGB-D cameras (also known as
depth sensors) have become available as consumer hardware a
couple of years ago, another major category of pose tracking
algorithms has emerged that rely on these devices (see e.g. [4],
[18], [16], [28], [33]). These sensors potentially measure the
per pixel distance to the camera in real-time by combining
an infrared light emitter, that actively projects light onto
the scene, with an monochrome camera and often an RGB
camera in a rigid stereo setup. Due to the additional depth
modality such methods commonly outperform those only
based on monocular RGB image data. However, due to the
active lighting strategy they only operate properly within about
10 meters proximity to the device, generally struggle in the
presence of sunlight and shiny surfaces and have a higher
power consumption than a regular camera. We therefore do
not include methods requiring such sensors as related works
since we do not consider them sufficiently comparable to the
monocular setting.

1.2 Related Work
When only using a single regular RGB camera, to our
best knowledge region-based approaches relying on statistical
level-set segmentation [5] are currently achieving state-of-the-
art performance for the task of 6DOF object pose tracking.
For this reason and due to the large amount of literature on
other methods in this domain, here we strictly focus on work
that is directly related to our proposed region-based approach.
By also presenting a newly constructed complex dataset, we
address a gap in literature regarding current publicly available
datasets for monocular 6DOF pose tracking of 3D objects.
Thus, the seconds part of this section gives a comprehensive
overview of related datasets and their shortcomings compared
to the one we present in this work.

Region-based Pose Tracking Methods – Early region-
based pose tracking methods were not real-time capable [29],
[3], [31] but already showed the vast potential of the general
strategy, by presenting promisingly robust results in many
complex scenarios. In these works image segmentation was
based on level-sets together with pixel-wise likelihoods used
to explicitly extract the object’s contour in each camera frame.
Here, pose estimation was based on an iterative closest points
(ICP) approach by solving a linear system, set up from 2D-to-
3D point correspondences between the extracted contour and
the 3D model. These correspondences are re-established after
each iteration in the 2D image plane to the evolving synthetic
contour projection.

In [26] the authors presented PWP3D, the first region-based
approach that achieved real-time frame rates (20–25 Hz) by
relying heavily on GPGPU acceleration. Here, pose estimation
is performed using a pixel-wise gradient-based optimization
scheme similar to the variational approach suggested in [7].
But instead of separately integrating over the foreground and
background region, PWP3D uses a level-set pose embedding
in a cost function similar to the very early methods above in
order to simplify computations and make it real-time capable.
Additionally, based on the idea presented in [1] the previously
proposed pixel-wise likelihoods were exchanged for pixel-wise
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posterior probabilities which have been shown to provide a
wider basin of convergence.

There have been several successive works recently that build
upon the general concept of PWP3D. These mostly address
two main potential improvements of the original algorithm.
The first being the first-order gradient descent used for pose
optimization involving four different fixed step sizes that have
to be adjusted experimentally for each model individually.
It also uses a fixed number of iterations to maintain real-
time performance and thus suffers from commonly related
convergence issues. This optimization was replaced in [35]
with a second-order so-called Gauss-Newton-like optimization
where the Hessian matrix is approximated from first-order
derivatives based on linearized twist parametrization. This
strategy vastly enhanced the convergence properties resulting
in significantly increased robustness towards fast rotations and
scale changes. Furthermore, by performing this optimization
in an hierarchical coarse-to-fine manner the overall runtime of
the proposed mainly CPU-based implementation (it only uses
OpenGL for rendering) was reduced to achieve frame rates of
50–100 Hz for a single object on a commodity laptop. How-
ever, in [35] the optimization strategy was discovered from
empirical studies and thus not properly derived analytically.

Another CPU-based approach was presented in [25] that
achieves around 30 Hz on a mobile phone by using an
hierarchical Levenberg-Marquardt optimization strategy for
the translation parameters and approximating the level-set
related computations. However the main speed-up was enabled
by including the phone’s gyroscope to obtain the rotation
estimate that is only corrected for drift every tenth frame by
a single gradient descent step. Due to this sensor fusion the
method presented in [25] can technically not be considered a
monocular solution and is furthermore restricted to application
scenarios in which the phone moves around a static object.

The second main disadvantage of the original PWP3D
method is the rather simple segmentation model based on
global foreground and background color histograms which is
prone to fail in cluttered scenes. Therefore the authors of [41]
introduce a boundary constraint for improvement, that is how-
ever not real-time capable. In [11] based on the idea presented
in [19], a localized segmentation model was proposed that also
relies on pixel-wise posteriors but uses multiple local color
histograms to better capture spatial variations of the objects.
However, in [11] this approach was neither evaluated for pose
tracking in video sequences nor shown to be real-time capable.

In the latest work on region-based pose estimation [36]
presents a real-time capable implementation of [11] in com-
bination with the ideas of [35] and further extends the seg-
mentation model by introducing temporally consistency and
a pose detection strategy to recover from tracking losses.
The resulting algorithm currently achieves state-of-the-art real-
time tracking performance by using the Gauss-Newton-like
optimization and a segmentation model based on so-called
temporally consistent local color histograms.

The Gauss-Newton-like optimization was recently also
adopted in [16] which directly builds up on [35]. Here, an
extended cost function with respect to the depth modality of
an RGB-D device is derived in order to improve on both the

Fig. 2. Example images extracted from different related
pose tracking datasets. Top left: [24], top right: [4], bottom
left: [40] (cropped to fit aspect ratio) and bottom right: [34].

robustness of the pose estimation as well as the object segmen-
tation in cluttered environments. To obtain the object pose it
is suggested to combine the Gauss-Newton-like approach for
the RGB-based term with a standard Gauss-Newton strategy
for the depth-based term in a joint optimization.

Object Pose Tracking Datasets – There are several dif-
ferent aspects that can potentially be covered by an object
pose tracking dataset. One important feature is the type
and complexity of motion included in the respective image
sequences. Here, the type of motion refers to whether they
include either movement of only the camera, only the object
or both simultaneously. This is particularly important because
it has a direct impact on e.g. the intensity gradients (i.e.
shading) inside the object region that depend on the lighting in
the scene and how quickly the background changes. Another
aspect is whether the light sources in the scene are moving.
It is closely related to the case of object motion but typi-
cally has an even stronger impact on the objects appearance
(e.g. self-shadowing). With regard to the previously discussed
gradient-based image features, it should also be considered to
include both well-textured as well as weakly textured objects.
Datasets can furthermore contain a single or multiple objects,
occlusions, different amount of background clutter and motion
blur to simulate common problems in real scenarios.

Another essential question when generating an object track-
ing dataset is how the ground truth pose information is
obtained for each frame, since this is basically a chicken-
egg problem. One popular and straightforward approach is
to render synthetic image sequences from artificial and thus
fully controllable 3D scenes. However, the resulting images
often lack of photo-realism and require sophisticated rendering
techniques and expert knowledge in 3D animation. On the
other hand, in case of real-data image sequences typically
some sort of fiducial markers are placed in the scene to provide
a reference pose from all perspectives independent of the rest
of the scene. This requires the relative pose between markers



4

and object to remain static at all times. Datasets of this kind
thus often only contain motion of the camera unless markers
are also attached to the object which, however, changes its
appearance in an unnatural and undesired way.

In the context of 6DOF object pose tracking a third,
sort of intermediate strategy can be applied, where semi-
synthetic image sequences are created, combining advantages
of both previous solutions. Here, animated renderings of a
realistically textured 3D model are composed with a real
image sequence providing for a background in each frame
(see Section 5.2 for details). This technique has been used for
the Rigid Pose dataset presented in [24], which we consider
most closely related to the one we propose. Here semi-
synthetic stereo image pair sequences of six different objects
are provided, each available in a noise-free, a noisy and an
occluded version. However, five out of the six objects used
within this dataset are particularly well textured. Also the
objects are rendered using a Lambertian illumination model
without including any directional light source, meaning that
the intensity of corresponding pixels between frames does not
change. These renderings are furthermore simply pasted onto
real images without e.g. blurring their contours in order to
smooth the transition between the object and the background
(e.g. Figure 2, top left).

Then there is the RGB-D Object Pose Tracking dataset of [4]
that contains two real-data and four fully synthetic sequences
including four different objects that are static in the scene.
However, ground truth information is only provided for the
four synthetic sequences which were primarily designed for
depth-based tracking. Here, apart from the respective object
itself the rest of the scene is very simple and completely
texture-less, which is why the resulting RGB color images
look very artificial overall (e.g. Figure 2, top right).

Very recently the OPT dataset was presented in [40], being
the most complex 6DOF object pose tracking dataset yet.
It contains multiple real-data RGB-D sequences of six 2D
patterns and six 3D objects that vary in texture and complexity.
The images were captured with a camera mounted on a robot
arm that moves around each single object at different speeds
and varying lighting conditions. The dataset thereby even
covers scenarios with a moving light source and contains
motion blur. Despite its complexity the data does not include
object motion, background clutter or occlusions, since in all
sequences the object is placed statically in front of an entirely
white background surrounded by a passive black and white
marker pattern (e.g. Figure 2, bottom left).

Lastly, there is the dataset of [34], that contains six real-data
RBG-D sequences involving six different objects and partial
occlusions. In each sequence multiple static instances of the
same object are placed on a cluttered table each surrounded by
a marker pattern (e.g. Figure 2, bottom right). Therefore, the
dataset also only contains movement of the camera. Although
this dataset does provide test sequences of consecutive video
frames, it was primarily designed for the task of 6DOF object
pose detection. In that case the object pose is supposed to
be recovered from only a single image as opposed to an
image sequence in case of pose tracking. Other pose detection
datasets (e.g. [13]) typically do not contain any consecutive

frames at all and can therefore not be used for pose tracking,
although the two tasks are actually strongly related.

To summarize, there are currently only a few datasets that
have been created explicitly for the task of monocular 6DOF
pose tracking. Of those available, [24], [4], [34] are relatively
small and do not cover many of the initially mentioned
aspects. The most complex data set currently available [40]
unfortunately also does not simulate scenarios in which both
the object and the camera are moving (e.g. a hand-held object
in a cluttered environment), which we are targeting here.

1.3 Contribution
In this work, we derive a cost function for estimating the 6DOF
pose of a familiar 3D object observed through a monocular
RGB-camera. Our region-based approach involves a statistical
image segmentation model built from multiple overlapping
local image regions along the contour of the object in each
frame. The core of this model are temporally consistent local
color histograms (tclc-histograms) computed from these image
regions, each anchored to a unique location on the object’s
surface, which allows to update them with each new frame.

While traditionally such cost functions have been optimized
by means of gradient descent, we derive a suitable Gauss-
Newton optimization scheme. This is not straightforward since
the cost function is not in the traditional nonlinear least-
squares form. In numerous experiments, we demonstrate the
effectiveness of our approach in different complex scenarios,
including motion of both the camera and the objects, partial
occlusions, strong lighting changes and cluttered backgrounds
in comparison to the previous state of the art.

This work builds up on two prior conference publica-
tions [35], [36]. It expands these works on several levels:
Firstly, we propose a systematic derivation of a Gauss-Newton
optimization by means of reformulating the optimization prob-
lem as a reweighted nonlinear least-squares problem. This
further improves the convergence rate and thus the tracking ro-
bustness significantly compared to the previous Gauss-newton-
like scheme of [35]. Secondly, we explain how our method
using tclc-histograms can be extended to multi-object tracking
and thereby handle strong mutual occlusions in cluttered
scenes and demonstrate its potential for real-time applications
of mixed-reality scenarios. Thirdly, we propose a novel large
semi-synthetic 6DOF object pose tracking dataset, that covers
most of the previously mentioned important aspects. In our
opinion this closes a gap in the current literature on object
pose tracking datasets since it is the first to simulate the
common scenario in which the camera and the objects are
moving simultaneously under challenging conditions.

The rest of the article is structured as follows: Section 2
presents the derivation of the cost function as well as
the involved statistical segmentation model based on tclc-
histograms. The systematic derivation of the Gauss-Newton
optimization for pose estimation of this cost function is given
in Section 3. This is followed by implementation details in
Section 4 and the introduction of our dataset in Section 5,
where also an extensive experimental evaluation of our ap-
proach is provided. The article concludes with Section 6 and
the acknowledgements in Section 7.
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Fig. 3. An overview of our region-based pose estimation setting for a single object. Left: The object pose T relative
to a camera based on a color image Ic and a 3D model of the object. Middle: The object’s silhouette Is generated by
projecting the 3D surface model into the 2D image plane using an estimated pose T . Right: A combined 2D/3D plot of
the level-set pose embedding Φ(x) in form of an Euclidean signed distance transform of the projected silhouette.

2 TEMPORALLY CONSISTENT LOCAL COLOR
HISTOGRAMS FOR POSE TRACKING

We begin by giving an overview of basic mathematical con-
cepts and the notation used within this work. Then we will
derive the region-based cost function based on tclc-histograms.
To simplify notation, we first consider the case of tracking a
single object and then extend it to multiple objects.

2.1 Preliminaries
In this work we represent each object by a 3D model in form
of a triangle mesh with vertices Xi = [Xi, Yi, Zi]

> ∈ R3, i =
1, . . . , n. We denote a camera RGB color image by Ic : Ω ⊂
R2 → {0, . . . , 255}3 assuming 8-bit quantization per intensity
channel. The color at a pixel location x = [x, y]> ∈ R2 in the
2D image plane is then given by y = Ic(x). By projecting a
3D model into the image plane we obtain a binary silhouette
mask denoted by Is : Ω ⊂ R2 → {0, 1} that yields a contour
C splitting the image into a foreground region Ωf ⊂ Ω and a
background region Ωb = Ω \ Ωf (see Figure 3).

The pose of an object describing the rigid body transform
from its 3D model coordinate frame to the camera coordinate
frame is represented by a 4× 4 homogeneous matrix

T =

[
R t
0 1

]
∈ SE(3), with R ∈ SO(3) and t ∈ R3 (1)

being an element of the Lie-group SE(3). We assume the
intrinsic parameters of the camera to be known from an
offline pre-calibration step. By denoting the linear projection
parameters in form of a 3× 3 matrix

K =

fx 0 cx
0 fy cy
0 0 1

 ∈ R3×3, (2)

and assuming that all images have been rectified by removing
lens distortion, we describe the projection of a 3D model
surface point X into the image plane by

x = π
(
K(T X̃)3×1

)
, (3)

with π(X) = [X/Z, Y/Z]>. Here, the tilde-notation marks the
homogeneous representation X̃ = [X,Y, Z, 1]> of the point
X = [X,Y, Z]> = (X̃)3×1.

For pose tracking we denote a time-discrete sequence of
images by Ic(tk). Each image is captured at time tk ∈ R,
k = 0, . . . , l, with Ic(tl) being the current live image. Accord-
ingly, we compute the trajectory of an object by estimating a
sequence of rigid body transformations T (tk), k = 0, . . . , l,
each corresponding to the related video frame. By assuming
that the pose T (tl−1) in the previous frame Ic(tl−1) is known,
we perform pose tracking in form of a so-called recursive
pose estimation. For this we express the current live pose
as T (tl) = ∆TT (tl−1). Here ∆T = T (tl)T

−1(tl−1) is the
pose difference that occurred between the last and the current
frame. For a new live image Ic(tl) we thus always only need
to compute the remaining ∆T in order to obtain the current
live pose T (tl), as long we do not lose tracking.

For pose optimization, we model the rigid body motion ∆T
between Ic(tl−1) and Ic(tl) with twists

ξ̂ =

[
ŵ v
0 0

]
∈ se(3), with ŵ ∈ so(3) and v ∈ R3 (4)

being elements of the Lie-algebra se(3) corresponding to
the Lie-group SE(3). Each twist is parametrized by a six-
dimensional vector of so-called twist coordinates

ξ =

[
w
v

]
= [ω1, ω2, ω3, v1, v2, v3]> ∈ R6, (5)

and the matrix exponential

∆T = exp(ξ̂) ∈ SE(3) (6)

maps a twist to its corresponding rigid body transformation.
For detailed information on Lie groups and Lie algebra please
refer to e.g. [22].

2.2 The Region-based Cost Function
Our approach is essentially based on statistical image segmen-
tation [5]. As usual in this context, we represent the object’s
silhouette implicitly by a so-called shape-kernel Φ(x). This
is a level-set embedding of the object’s shape such that the
zero-level line C = {x | Φ(x) = 0} gives its contour, i.e. the
boundary between Ωf and Ωb. Here, we use the shape-kernel

Φ(x) =

{
−d(x,C) ∀x ∈ Ωf

d(x,C) ∀x ∈ Ωb
, (7)
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with
d(x,C) = min

c∈C
‖c− x‖2, (8)

being the Euclidean distance between a pixel position x and
the contour of the binary silhouette mask Is.

For shape matching and segmentation we adopt the proba-
bilistic formulation, as originally derived in [1] and later used
within PWP3D [26]:

P (Φ|Ic) =
∏
x∈Ω

(
He(Φ(x))Pf (x)

+ (1−He(Φ(x)))Pb(x)
)
.

(9)

It describes the posterior probability of the shape kernel Φ
given an image Ic, with He being a smoothed Heaviside
step function. Here, Pf (x) and Pb(x) represent the per pixel
foreground and background region membership probability,
based on the underlying statistical appearance models (see
Section 2.3). In the general context of 2D region-based image
segmentation, the closed curve C would be evolved in an
unconstrained manner such that it maximizes P (Φ|Ic) and
thus the discrepancy between the foreground and background
appearance model statistics. In our scenario, however, the
evolution of the objects contour C is constrained by the known
shape prior in form of a 3D model. Therefore, the shape kernel
only depends on the pose parameters, i.e. Φ(x(ξ)). Assuming
pixel-wise independence and taking the negative log of (9),
we obtain the region-based cost function

E(ξ) = −
∑
x∈Ω

log
(
He(Φ(x(ξ)))Pf (x)

+ (1−He(Φ(x(ξ))))Pb(x)
)
.

(10)

This function can be optimized with respect to twist coordi-
nates ξ for pose estimation based on 2D-to-3D shape matching.
In our approach we define the Heaviside function explicitly as

He (Φ(x)) =
1

π

(
− atan(s · Φ(x)) +

π

2

)
, (11)

with s determining the pitch of the smoothed transition (see
Section 4 for details).

2.3 Statistical Segmentation Model
In the past, different appearance models have been proposed
to compute Pf (x) and Pb(x) used in (10). Initially [1] used
a global appearance model based on the color distribution
in both Ωf and Ωb. Here each region has its own model
denoted by P (y|Mf ) for the foreground, i.e. the object and
P (y|Mb) for the background. Each of them is represented with
a global color histogram. Based on this, the region membership
probabilities are calculated in form of pixel-wise posteriors as

Pf (x) = P (Mf |y) =
P (y|Mf )

ηfP (y|Mf ) + ηbP (y|Mb)
,

Pb(x) = P (Mb|y) =
P (y|Mb)

ηfP (y|Mf ) + ηbP (y|Mb)
,

(12)

where y = Ic(x) and

ηf =
∑
x∈Ω

He(Φ(x)), ηb =
∑
x∈Ω

1−He(Φ(x)). (13)

Xi

Ic

P̄f (x) − P̄b(x) Pf (x) − Pb(x)

Fig. 4. Object segmentation using tclc-histograms. Top
left: Schematic 3D visualization of a tclc-histogram at-
tached to a mesh vertex Xi of a 3D squirrel model. Top
right: A color image Ic of a heterogeneous squirrel in a
cluttered scene overlayed with the local regions. These
are depicted by colored circles where the RGB value re-
lates to the coordinates of the corresponding Xi. Bottom
left: Per pixel segmentation (visualized as P̄f (x)−P̄b(x) >
0) computed from the tclc-histograms (20). Bottom right:
Segmentation result from global color histograms (12) for
comparison.

This model is also used within PWP3D [26] where it is further
suggested to keep the appearance models temporally consis-
tent, in order to adapt to scene changes while tracking the ob-
ject. Having successfully estimated the current live pose T (tl)
allows to render a corresponding silhouette mask denoted by
Is(tl). Ideally, this mask provides an exact segmentation of
the object region in the current camera frame Ic(tl) and can
thus be used in order to compute up-to-date color histograms
P tl(y|Mf ) and P tl(y|Mb). Instead of always using the latest
color distribution for the appearance models, [26] suggested
to recursively adjust the histograms by

P (y|Mf ) = (1− αf )P tl−1(y|Mf ) + αfP
tl(y|Mf ),

P (y|Mb) = (1− αb)P tl−1(y|Mb) + αbP
tl(y|Mb),

(14)

to prevent them from being corrupted by occlusions or pose
estimation inaccuracies. Here, αf and αb denote foreground
and background learning rates.

All the above is based on the assumption that the global
color distribution is sufficiently descriptive in order to dis-
tinguish between the foreground and the background region.
Therefore, this appearance model has been shown to work
particularly well with homogeneous objects of a distinct color
that is not dominantly present in the rest of the scene. However,
for objects with heterogeneous surfaces and in case of cluttered
scenes this global model is prone to fail.

Hence, in [11] a localized appearance model was proposed
for the PWP3D approach that better captures spatial variations
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of the object’s surface. The idea is to build the segmentation
model from multiple overlapping circular image regions along
the object’s contour as originally introduced in [19]. We denote
each such local region by Ωi = {x

∣∣ ‖x − xi‖2 < r} with
radius r, centered at pixel xi ∈ C. Now, Is splits each Ωi
into a foreground region Ωfi ⊂ Ωi and a background region
Ωbi = Ωi \ Ωfi (see Figure 3). This allows to compute local
foreground and background color histograms for each region.
In [11] this led to the localized cost function

E = − 1

n

n∑
i=1

∑
x∈Ω

log
(
He(Φ(x))Pfi(x)

+ (1−He(Φ(x)))Pbi(x)
)
Bi(x),

(15)

using the masking function

Bi(x) =

{
1 ∀x ∈ Ωi

0 ∀x 6∈ Ωi
, (16)

which indicates whether a pixel x lies within a local re-
gion or not. Here, the local region membership probabilities
Pfi(x) and Pbi(x) are computed individually from the local
histograms as

Pfi(x) =
P (y|Mfi)

ηfiP (y|Mfi) + ηbiP (y|Mbi)
,

Pbi(x) =
P (y|Mbi)

ηfiP (y|Mfi) + ηbiP (y|Mbi)
,

(17)

where y = Ic(x) and

ηfi =
∑
x∈Ωi

He(Φ(x)), ηbi =
∑
x∈Ωi

1−He(Φ(x)), (18)

in analogy to the global model. In [11], however, temporal
consistency of the local appearance models was not addressed.
The local region centers xi were calculated as arbitrary sets of
pixel locations along C for each image. Thus, this approach
in general does not allow to establish correspondences of the
centers across multiple frames (i.e. xi(tl)↔ xi(tl−1)) which
is required in order to update the respective histograms.

This issue has been addressed in [36] by introducing a
segmentation model based on temporally consistent local
color histograms (tclc-histograms), which we adopt in this
work. Here, each 3D model vertex Xi is associated with a
local foreground and background histogram (see Figure 4).
In contrast to [11] this allows us to compute the histogram
centers by projecting all model vertices into the image plane,
i.e. xi = π

(
K(T X̃i)3×1

)
and selecting the subset of all xi ∈

C. Since each histogram is anchored to the objects surface,
center correspondences xi(tl) ↔ xi(tl−1) between frames
are simply given by the projection of corresponding surface
points, i.e. π

(
K(T (tl)X̃i)3×1

)
↔ π

(
K(T (tl−1)X̃i)3×1

)
.

This ensures to keep the individual histograms temporally
consistent. Whenever a model vertex projects onto the contour
for the first time, its corresponding histograms are initialized
from the local region around its center in the current frame.
Otherwise, if its histograms already contain information from
a previous frame, we update them as

P (y|Mfi) = (1− αf )P tl−1(y|Mfi) + αfP
tl(y|Mfi),

P (y|Mbi) = (1− αb)P tl−1(y|Mbi) + αbP
tl(y|Mbi),

(19)

in analogy to (14).
In [36] it has furthermore been shown that computing the

average energy (15) over all local regions Ωi potentially suffers
from the same segmentation problems locally, as the previous
approach based on the global appearance model. More robust
results can be obtained by computing the average posteriors
from all local histograms instead as

P̄f (x) =
1∑n

i=1 Bi(x)

n∑
i=1

Pfi(x)Bi(x),

P̄b(x) =
1∑n

i=1 Bi(x)

n∑
i=1

Pbi(x)Bi(x),

(20)

and use these within (10). We now can define the energy
function

E(ξ) = −
∑
x∈Ω

log
(
He(Φ(x(ξ)))P̄f (x)

+ (1−He(Φ(x(ξ))))P̄b(x)
)
,

(21)

that we use for our pose tracking approach based on tclc-
histograms.

2.4 Extension to Using Multiple Objects

In the following, we will explain how our approach easily
extends to tracking multiple objects simultaneously, similar
to [26]. For this each object is represented by its own 3D
model, with corner vertices Xj

i , j = 1, . . . ,m, where m
is the total number of objects. Accordingly, the individual
poses are denoted by T j . Projecting all models into the image
plane yields a common segmentation mask Is : Ω ⊂ R2 →
{1, . . . ,m}. It contains m contours Cj that split the image into
multiple foreground regions Ωjf ⊂ Ω and background regions
Ωjb = Ω \ Ωjf (see Figure 5).

For pose tracking we optimize a separate energy function
for each object denoted by

Ej(ξj) = −
∑
x∈Ω

log
(
He(Φ

j(x)(ξj))P̄ jf (x)

+ (1−He(Φ
j(x)))P̄ jb (x)

)
,

(22)

with its own level-set Φj and region membership probabilities
P̄ jf (x) and P̄ jb (x) computed from its individual set of nj

tclc-histograms. Here, nj denotes the number of vertices per
model. Each such optimization is performed regardless of
the other objects as long as they do not occlude each other.
However, in cases of mutual occlusions, the foreground regions
overlap, which results in contour segments that do not belong
to the actual silhouette of the objects (see again Figure 5).
These cases must be detected and handled appropriately during
pose optimization as explained in detail in Section 4.4.

This shows that for all formulas, extending our approach
to multiple objects is essentially done by adding the object
index j. For the sake of clarity we will drop j in the rest of
this article again, unless absolutely required.
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Ic Is

Ω1
f

Ω2
f

Ωb

H
C1

A
C2

P̄ 1
f (x) − P̄ 1

b (x) P̄ 2
f (x) − P̄ 2

b (x)

Fig. 5. A multi-object tracking scenario. Top left: Image Ic
of a driller behind a Buddha figurine. Top right: Estimated
common silhouette mask Is, where the segments of C1,
that appear due to the occlusion, are marked red. Bottom:
Corresponding per pixel segmentation computed from the
tclc-histograms of each object. This shows that even in
case of these rather dark, mutually occluding objects, the
segmentation strategy produces high quality results.

3 POSE OPTIMIZATION

Traditionally, cost functions of form (10) have been optimized
using gradient descent (see e.g. [26] or [11]). In comparison to
second-order (Newton) methods, this has several drawbacks.
First, one has to determine suitable time step sizes associated
with translation and rotation. Too small step sizes often lead
to very slow convergence, too large step sizes easily induce
oscillations and instabilities. For the gradient descent-based
PWP3D method [26], for example, one needs to manually
specify the number of iterations and three different step sizes
(one each for rotation, translation along the optical axis and
translation within the cameras image plane). These need to be
adapted at least once for each new object. Moreover, as shown
in the exemplary comparison in Figure 8, often no suitable
compromise between numerical stability and convergence to
the desired solution can be achieved. Second, convergence is
typically not as robust and rather slow (especially near the
optimum), making the technique less suitable for accurate and
robust real-time tracking.

Applying a second-order optimization scheme, on the other
hand, is not straightforward because the cost function (10) is
not in the classical form of a nonlinear least-squares problem.
In the following, we will propose a strategy to circumvent
this issue, based on rewriting the original problem in form of
a re-weighted nonlinear least-squares estimation. This allows
us to apply a Gauss-Newton algorithm, being also the method
of choice for state-of-the-art real-time visual SLAM methods,
such as Direct Sparse Odometry [8]. Our approach is different
from an (in our view less straightforward) derivation proposed
by Bibby and Reid [1], which requires a Taylor series approx-

imation of the square root. Finally, strategies involving line
searches (e.g. Levenberg-Marquardt) are not suitable for real-
time tracking, as they would require many evaluations of (10),
which are almost as costly as calculating its derivatives. Both
require computing Is and Φ(x).

3.1 Derivation of a Gauss-Newton Strategy
The cost function in (21) can be written compactly as

E(ξ) =
∑
x∈Ω

F (x, ξ), where

F (x, ξ) =− log
(
He(Φ(x(ξ)))P̄f (x)

+ (1−He(Φ(x(ξ))))P̄b(x)
)
.

(23)

Unfortunately, this is not in the traditional form of a nonlinear
least-squares estimation problem for which the Gauss-Newton
algorithm is applicable. However, we can simply rewrite this
expression as a nonlinear weighted least-squares problem of
the form

E(ξ) =
1

2

∑
x∈Ω

ψ(x)F 2(x, ξ), with ψ(x) =
1

F (x, ξ)
. (24)

To optimize this cost function, one can apply the technique of
iteratively re-weighted least-squares estimation which amounts
to solving the above problem for fixed weights ψ(x) by means
of Gauss-Newton optimization and alternatingly using the
refined pose for updating the weights ψ(x). Over the iterations,
these weights will adaptively re-weight respective terms.

In the fixed-weight assumption, the gradient is given by

∂E(ξ)

∂ξ
=

1

2

∑
x∈Ω

ψ(x)
∂F 2(x, ξ)

∂ξ
=
∑
x∈Ω

ψ(x)F
∂F

∂ξ
, (25)

with ψ(x)F (x, ξ) = 1, and the Hessian is given by

∂2E(ξ)

∂ξ2
=
∑
x∈Ω

ψ(x)

((
∂F

∂ξ

)>
∂F

∂ξ
+ F

∂2F

∂ξ2

)
. (26)

The Gauss-Newton algorithm emerges when applying a New-
ton method and dropping the second-order derivative of the
residual F . This approximation is valid if either the residual
itself is small (i.e. F ≈ 0 near the optimum) or if the residuum
is close to linear (in which case ∂2F/∂ξ2 ≈ 0). If we denote
the Jacobian of the residuum at the current pose ξ by

J =
∂F (x, ξ)

∂ξ
, (27)

under the above assumptions, the second-order Taylor approx-
imation of the cost function E is given by

E(ξ + ∆ξ) ≈ E(ξ) +
∑
x∈Ω

J∆ξ +
1

2

∑
x∈Ω

ψ(x)∆ξ>J>J∆ξ.

(28)
This leads to the optimal Gauss-Newton update step of

∆ξ = −

(∑
x∈Ω

ψ(x)J>J

)−1 ∑
x∈Ω

J>. (29)

We apply this step as composition of the matrix exponential
of the corresponding twist ∆ξ̂ with the previous pose as

T ← exp(∆ξ̂)T, (30)

in order to remain within the group SE(3).
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3.2 Computation of the Derivatives
The per pixel Jacobian term (27) is computed by applying the
chain-rule as

J =
P̄b(x)− P̄f (x)

He(Φ(x))(P̄f (x)− P̄b(x)) + P̄b(x)
δe
∂Φ(x(ξ))

∂ξ
, (31)

where δe = δe (Φ(x)) is the smoothed Dirac delta function
corresponding to He, i.e.

δe (Φ(x)) =
s

πΦ(x)2s2 + π
. (32)

Since x(ξ) = π
(
K(exp(ξ̂)T X̃)3×1

)
, the derivatives of the

signed distance transform are given by

∂Φ(x(ξ))

∂ξ
=
∂Φ

∂x

∂π

∂K(exp(ξ̂)T X̃)3×1

∂K(exp(ξ̂)T X̃)3×1

∂ξ
.

(33)
Assuming small motion, we perform piecewise linearization of
the matrix exponential in each iteration, i.e. exp(ξ̂) ≈ I4×4 + ξ̂
and therefore we get

∂Φ(x, ξ0)

∂ξ
=
[
∂Φ
∂x ,

∂Φ
∂y

] [ fx
Z′ 0 −X′fx

(Z′)2

0
fy
Z′ −

Y ′fy
(Z′)2

]

·

 0 Z ′ −Y ′ 1 0 0
−Z ′ 0 X ′ 0 1 0
Y ′ −X ′ 0 0 0 1

 , (34)

with X′ = [X ′, Y ′, Z ′]> = (T X̃)3×1. For pixels x ∈ Ωb, we
choose X′ to be the 3D surface point in the camera’s frame
of reference that projects to its closest contour pixel c ∈ C.
Finally, we compute the derivatives of Φ(x) with respect to
a pixel x as 2D image gradients, utilizing central differences,
i.e.[

∂Φ(x)
∂x , ∂Φ(x)

∂y

]
=

[
∇xΦ
∇yΦ

]>
=

[
Φ(x+1,y)−Φ(x−1,y)

2
Φ(x,y+1)−Φ(x,y−1)

2

]>
. (35)

In order to increase the convergence speed, iterative pose
optimization is computed in an hierarchical coarse to fine
approach. This also makes the tracking more robust towards
fast movement or motion blur. Details on our concrete multi-
level implementation are given in Section 4.2.

3.3 Initialization
During successful tracking, for every new frame Ic(tl) the
optimization starts at the previously estimated pose T (tl−1).
Note that also the histogram centers xi, i.e. the regions Ωi are
obtained from T (tl−1) and remain unchanged during the entire
iterative optimization process. They provide the information
used to compute P̄f (x) and P̄b(x) from the intensities in
current frame.

To start tracking or recover tracking from tracking loss,
our approach can be combined with a pose detection module
in order to obtain the initial pose. As shown in [36], with
the help of manual initialization, tclc-histograms can act as
an object descriptor for pose detection based on template
matching. Due to the employed temporal consistency strategy
this descriptor is trained online within a couple of seconds

by tracking the object and showing it to the camera from
different perspectives. This approach is particularly efficient to
recover from temporary tracking loss, e.g. caused by massive
occlusion or if the object leaves the camera’s field of view.
Another advantage of this approach is that it can be computed
at frame rates of 4 – 10 Hz for a single object on commodity
laptop CPU. However, the tclc-histogram based descriptors
struggle in previously unseen environments if the foreground
and background color distribution differs too much from the
scene they were originally trained in.

When more computational power is available, recent deep
learning-based approaches (see e.g. [6], [27], [15]) also could
be used for pose detection. These are currently achieving
state-of-the-art results and can be trained only from synthetic
images [15], [14] which make them robust to different en-
vironments and lighting conditions. However, they require a
powerful GPU in order to achieve similar frame rates as our
method based on tclc-histograms running on a CPU.

4 IMPLEMENTATION

In the following we provide an overview of our C++ imple-
mentation with regard to runtime performance aspects. We
perform all major processing steps in parallel on the CPU
and only use the GPU via OpenGL for rendering purposes.

4.1 Rendering Engine
We use the standard rasterization pipeline of OpenGL in order
obtain the silhouette masks Is. Since we want to process the
rendered images on the CPU, we perform offscreen rendering
into a FrameBufferObject, which is afterwards downloaded to
host memory. To generate synthetic views that match the real
images, the intrinsic parameters (2) of the camera need to
be included. For this, we model the transformation from 3D
model coordinates X to homogeneous coordinates within the
canonical view volume of OpenGL as Ṽ = P (K)LT X̃ ∈ R4.
Here, L is the so-called look-at matrix

L =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 ∈ R4×4, (36)

that aligns the principal axes of the real cameras coordinate
frame with those of the virtual OpenGL camera and P (K) is
a homogeneous projection matrix

P (K) =


2fx
w 0 1− 2cx

w 0

0 − 2fy
h 1− 2cy

h 0

0 0 −Zf+Zn

Zf−Zn
− 2ZfZn

Zf−Zn

0 0 −1 0

 ∈ R4×4,

(37)
with respect to the camera matrix K. The scalars w, h are
the width and height of the real image Ic and Zn, Zf are the
near- and far-plane of the view frustum described by P (K).

In case of tracking multiple objects, all 3D models are
rendered in the same scene. Each mesh is rendered with a
constant and unique color that corresponds to its model index
j. This allows to separate the individual foreground regions
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Id Ird

Fig. 6. The two depth map types used within our ap-
proach, where brighter pixels are closer to the camera.
Left: The usual depth map Id corresponding to the closest
surface points. Right: The reverse depth map Ird corre-
sponding to the most distant surface points.

and identify their contours Cj as required for computing
the different level-sets. Here, mutual occlusions are natively
handled by the OpenGL Z-Buffer.

As seen in (34), the derivatives used for pose optimization
involve the coordinates of the 3D surface point X′ in the
camera’s frame of reference, corresponding to each pixel x.
In addition to the silhouette mask, we therefore also download
the Z-buffer into a per pixel depth map Id : Ω→ [0, 1] ⊂ R.
Given Id, the required coordinates are efficiently determined
via backprojection as X′(x, Id) = D(x, Id)K

−1x̃, with

D(x, Id) =
ZnZf

Zf − Id(x)(Zf − Zn)
, ∀x ∈ Ωf , (38)

where x̃ = [x, y, 1]> is the homogeneous representation of an
image point x = [x, y]>.

In [26] it has been shown that it is beneficial not only to
consider the points on the surface closest to the camera but also
the most distant ones (on the backside of the object) for pose
optimization. In order to obtain the respective coordinates for
each pixel, we compute an additional reverse depth map Ird ,
for which we simply invert the OpenGL depth check used to
compute the corresponding Z-buffer (see Figure 6). Given Ird ,
the farthest surface point X′(x, Ird) corresponding to a pixel
x is also recovered as X′(x, Ird) = D(x, Ird)K−1x̃.

4.2 Optimization
We perform pose optimization hierarchically within a three
level image pyramid generated with a down-scale factor of
2. The third level thereby corresponds to the camera matrix
1/4K, the second to 1/2K, and the first to K. In our current
real-time implementation we first perform four iterations on
the third, followed by two iterations on the second and finally
a single iteration on the first level, i.e. the original full image
resolution. In case of multiple objects all poses are updated
sequentially once per iteration.

Each iteration starts by rendering and downloading the com-
mon silhouette mask Is and depth map Id as well as individual
reverse depth maps (Ird)j based on the current pose estimates
T j . To distinguish multiple objects, we render each model
silhouette region Ωjf using a unique intensity corresponding to
the model index j. Here, hierarchical rendering is achieved by
simply adjusting the width and height of the OpenGL viewport

according to the current pyramid level. Next, the individual
signed distance transforms Φj are computed from Is. For this
we have implemented the efficient two-pass algorithm of [9]
in parallel on the CPU. Here, the first pass runs in parallel for
each row and the second pass for each column of pixels. In
addition to the distance value, we also store the 2D coordinates
of the closest contour point cj ∈ Cj to every pixel x ∈ Ωjb.
This is required for obtaining the corresponding 3D surface
point needed to calculate the derivatives of Φj(x) (34) with
respect to a background pixel.

Finally, the Hessian and the gradient of the energy needed
for the parameter step (29) are calculated in parallel for each
row of pixels on the CPU. Here, each thread calculates its
own sums over ψ(x)j(Jj)>Jj and Jj which are finally added
up in the main thread. Following PWP3D, for each pixel we
add both the Jacobian terms with respect to the coordinates of
X′(x, Id)

j as well as X′(x, (Ird)j)j . For a further speed-up, we
exploit that the Hessian is symmetrical, meaning that we only
have to calculate the upper triangular part of it. The update
step ∆ξj is then computed using Cholesky decomposition.

In our current implementation we choose s = 1.2 within
Heaviside function He (11) regardless of the pyramid level. We
therefore always only need to perform pose optimization, i.e.
compute the derivatives of each cost function Ej within a band
of ±8 px around each contour Cj , i.e. ∀x ∈ Ω with Φj(x) ∈
[−8, 8] (see Figure 7). For other distances the corresponding
Dirac delta value δe becomes very small. Since δe scales all
other derivatives per pixel (see (31)), those outside this narrow
band have a neglectable influence on the overall optimization.
This further allows to restrict the processed pixels to a 2D
ROI (region of interest) containing this contour band for an
additional speed-up. We obtain this ROI by computing the 2D
bounding rectangle of the projected bounding box of a model
expanded by 8 pixels in each direction. This is done efficiently
on the CPU without performing a full rendering.

Due to the multi-scale strategy, it can easily happen that
an object region only projects to a small amount of pixels
in higher pyramid level at far distances to the camera. The
derivatives computed from such few pixels can typically be
less trusted and thus often move the optimization in the wrong
direction. To encounter this effect we compute the area of
the 2D bounding and check if it is too small at the current
pyramid level (we use 3000 pixels as lower bound for an image
resolution of 640× 512 px) at the beginning of each iteration.
If this is the case, we directly move to the next higher image
resolution in the pyramid and compute the pose update there.

4.3 TCLC-Histograms

We use the RGB color model with a quantization of 32 bins
per channel to represent the tclc-histograms. The key idea to
efficiently build and update the localized appearance model is
to process each histogram region Ωji in parallel on the CPU
using Bresenham circles to scan the corresponding pixels.
When updating the tclc-histograms we use learning rates of
αf = 0.1 and αb = 0.2, allowing fast adaptation to dynamic
changes. Based on the results presented in [11], we choose the
histogram region radius as r = 40 px for an image resolution
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of 640 × 512 px, regardless of the object’s distance to the
camera.

The reason why we are using a fixed radius is that for
continuous tracking, we can only compute the segmentation
within the histogram regions belonging to the silhouette in the
previous frame. Thus, in cases of fast translational movement
of the object or rotation of the camera it is possible that
the object in the current frame projects entirely outside the
previous histogram regions. This becomes more likely for
smaller histogram radii. Therefore, as the radius shrinks with
distance to the camera, the object is more likely to get lost at
far distances. Non overlapping histogram regions in case of
close distances and sparse surface sampling hardly influence
the reliability of our approach.

The other extreme case is when the object is so far away
that all histograms overlap. Here, the discriminability of the
appearance model is reduced since all pixels then lie within all
histograms. The segmentation model then acts like the global
approach constrained to a local region around the silhouette
extended by the histogram radius. However this is still better
than the global model and in our experience to be preferred
over the increased risk of loosing the object easily with smaller
radii.

After each pose optimization we compute the new 2D
histogram centers by projecting all mesh vertices Xj

i of each
model onto pixels xji . In practice we consider those with
xji ∈ Cj as well as d(xji ,C

j) ≤ λr (we use λ = 0.1), in
order to ensure that the contour is evenly sampled. For runtime
reasons, since this can lead to a large number of histograms
that have to be updated, we randomly pick a maximum of
100 centers per frame. This Monte Carlo approach requires
the mesh vertices Xj

i to be uniformly distributed across the
3D model in order to evenly cover all regions. They should
also be limited in number to ensure that all histograms will
get updated regularly. We therefore use two different 3D mesh
representations for the model. The original mesh is used to
render exact silhouette views regardless of the mesh structure
while a reduced (we use a maximum of 5000 vertices) and
evenly sampled version of the model is used for computing
the 2D centers of the histograms.

4.4 Occlusion handling

As previously shown in Figure 5, when tracking multiple
objects simultaneously, mutual occlusions are very likely to
emerge. These must be handled appropriately on a per pixel
level for pose optimization. In our approach occlusions can be
detected with help of the common silhouette mask Is due to
the Z-buffer of OpenGL. Thus, the respective contours Cj

computed directly from Is, can contain segments resulting
from occlusions that are considered in the respective signed
distance transform. To handle this, for each object all pixels
with a distance value that was influenced by occlusion have
to be discarded for pose optimization (see Figure 7).

A straightforward approach as realized in [26] is to render
each model’s silhouette Ijs separately as well as the common
silhouette mask Is. The signed distance transforms Φj are then
computed from the non-occluded Ijs where Is is only used to

Φ1(x) Φ2(x)

Fig. 7. The two level-sets corresponding to C1 and C2

of Figure 5, visualized in the ±8 px band around the
contours (grey pixels). Here, the distance values of Φ1(x)
that are influenced by the occlusion of C1 are marked red
(bright inside and dark outside of Ω1

f ).

identify whether a pixel belongs to a foreign object region and
thus has to be discarded.

Although this strategy is easy to compute it does not scale
well with the number of objects since Ijs , I

j
d , (Ird)j , j =

1, . . . ,m and Is have to be rendered and transferred to host
memory in each iteration. In order to minimize rendering and
memory transfer we follow the approach of [35]. Thus, we
instead render the entire scene once per iteration and download
the common silhouette mask Is and the respective depth-buffer
Id. The individual level-sets Φj are then directly computed
from Is. In addition to this we only have to render each
model once separately in order to obtain the individual reverse
depth buffers (Ird)j . This is not possible in a common scene
rendering because the reverse depths of the occluded object
would overwrite those of the object in front.

By only using Is and Id the detection of pixels with a
distance value that was influenced by occlusion is split into
two cases. For a pixel x ∈ Ωjb outside of the silhouette region,
i.e. Φj(x) > 0, we start by checking whether Is(x) equals
another object index. If so, x is discarded if also the depth
at Id(x) of the other object is smaller than that of the closest
contour pixel to x, meaning that the other surface is actually in
front of the current object (indicated with dark red in Figure 7).
For x ∈ Ωjf inside of the silhouette region, i.e. Φj(x) ≤ 0 we
perform the same checks for all neighboring pixels outside of
Ωjf to the closest contour pixel to x. If any of these pixels
next to the contour passes the mask and depth checks, x is
discarded (indicated with bright red in Figure 7).

5 EXPERIMENTAL EVALUATION

In the following we present both quantitative and qualitative
results of our approach in several different experiments. We
start with an exemplary comparison between first-order and
second-order optimization. This is followed by a comprehen-
sive evaluation of tracking quality in the OPT and our novel
dataset as well as complex mixed reality application examples.

For all of these experiments we evaluate our implementation
on a laptop with an Intel Core i7 quad core CPU @ 2.8 GHz
and an AMD Radeon R9 M370X GPU. For the image shown
in Figure 4 for example, a single optimization iteration at
full 640×512 px resolution takes ∼3.12 ms (rendering: ∼23%,
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Fig. 8. Left: Visual results of a pose tracking experiment, where a hand-held screwdriver was rotated 360◦ around
its X-axis (top row: examples from the input sequence with the frame numbers depicted, middle row: results of the
original first-order gradient descent implementation of PWP3D [26], bottom row: results of the Gauss-Newton-like
optimization of [35]). Right: A corresponding plot of the estimated rotation around the X-axis for both methods. While
the oscillations around frames 105–150 and 500–600 indicate that the gradient descent time steps are already near
the limit of stability, the algorithm cannot reliably estimate the full 360◦ rotation leading to a failure of PWP3D (see last
frame central row).

level-set transform: ∼47%, computing the Jacobians: ∼30%)
and the update of the tclc-histograms takes ∼3.8 ms. However,
the runtime of our method does not only depend on the number
of objects but also on the size of the object region (i.e. distance
to the camera), polygon count of the model and the number of
histograms to be updated. In order to give an impression of the
performance of our approach nonetheless, in the following we
present the average runtimes for all sequences with different
models and image resolutions.

5.1 Comparison to PWP3D

In [35] the advantages of the Gauss-Newton-like second-
order strategy in comparison to the first-order gradient descent
method of the original PWP3D [26] were demonstrated. Essen-
tially, the here proposed true Gauss-Newton optimization has
similar convergence properties to the previous Gauss-Newton-
like one. We therefore include an exemplary experiment
from [35] in order to illustrate the general difference between
first-order and second-order optimization in this context (see
Figure 8). Note that both approaches use the same appearance
model based on global color histograms.

In the selected experiment a cordless screwdriver was
tracked while being moved in front of a stationary camera.
The results show the dependence of the step-sizes in PWP3D
on the distance to the camera. Here it holds, if the distance
between object and camera becomes too small, the step-sizes
are too large and the pose starts to oscillate. However, if this
distance increases the overall optimization quality degrades,
resulting in the step sizes to be too small to converge.

The sequence contains a challenging full 360◦ turn around
the X-axis of the screwdriver (e.g. frames 180–400). For this
the rotation step-size for PWP3D was set to a large value such
that it was close to oscillating (e.g. frames 105–150) since this
produced the best overall results. While the Gauss-Newton-
like strategy is able to correctly track the entire motion,
PWP3D fails to determine the rotation of the object despite
the large step-size for rotation. Starting at around frame 450,

the screwdriver was moved closer towards the camera, leading
to a tracking loss of PWP3D at frame 586, while the Gauss-
Newton-like method remained stable.

Due to these essential drawbacks we did not include
PWP3D in the quantitative evaluation within our new complex
dataset in Section 5.3. It would require to manually set three
different step-sizes individually for each object and we did not
see a chance of it performing competitively.

5.2 The RBOT Dataset

We call the proposed semi-synthetic monocular 6DOF pose
tracking dataset RBOT (Region-based Object Tracking) in
regard to the proposed method. We have made it publicly
available for download under: http://cvmr.info/research/RBOT.
It comprises a total number of eighteen different objects, all
available as textured 3D triangle meshes. In addition to our
own model of a squirrel clay figurine, we have included a
selection of twelve models from the LINE-MOD dataset [13]
and five from the Rigid Pose dataset [24] as shown in Figure 9.

For each model we have generated four variants of a semi-
synthetic image sequence with increasing complexity (see
Figure 10). The first regular variant contains a single object
rendered with respect to a static point light source located
above the origin of the virtual camera. This simulates a moving
object in front of a static camera. The second variant is the
same as the first but with a dynamic light source in order
to simulate simultaneous motion of both the object and the
camera. The images in the third variant were also rendered
with respect to the moving light source and further distorted
by adding artificial Gaussian noise. Finally, the forth variant
contains an additional second object (the squirrel) which orbits
around the first object and thus frequently occludes it. These
multi-object sequences also include the dynamic light source.

Regardless of the object and the variant, we animated the
model using the same pre-defined trajectory of continuous
6DOF motion in all sequences. We also always use the same
background video for compositing. This video was captured by
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Ape� Baking Soda� Bench Vise� Broccoli Soup� Camera� Can� Cat� Clown� Cube�

Driller� Duck� Egg Box� Glue� Iron� Koala Candy� Lamp� Phone� SquirrelF

Fig. 9. An overview of all eighteen models included in the RBOT dataset. The well-textured models from the Rigid
Pose tracking dataset [24] are marked with�. The weakly-textured models from the LINE-MOD detection dataset [13]
are marked with�. Here, all models are rendered at the same pose for scale comparison.

Regular Dynamic light

Noisy Occlusion

Fig. 10. An example frame from the RBOT dataset with
the duck model in the four different variants. Visually com-
paring the regular with the dynamic light version clarifies
the impact of the lighting aspect on the appearance of the
object region.

moving a hand-held camera arbitrarily in a cluttered desktop
scene. In order to increase realism, we rendered the models
with anti-aliasing and blurred the object regions in the com-
position using a 3×3 Gaussian kernel. The latter in particular
smooths the transition between the object and the background,
blending it more realistically with the rest of the scene. Each
sequence contains 1001 RGB frames of 640 × 512 px reso-
lution, where the first frame is always used for initialization.
This results in a total number of 72000 = 18 · 4 · 1000 color
images. For each frame we provide the ground truth poses for
the two objects as well as the intrinsic camera matrix used for
rendering which we obtained from calibrating the camera that
recorded the background video.

5.3 Experimental Results
In the following we present tracking results for our approach
within the mentioned OPT and the proposed RBOT dataset.

OPT Dataset – We evaluated our method within the OPT
dataset [40] by using all RGB image sequences provided for
each of the six 3D objects (Bike, Chest, House, Ironman, Jet
and Soda) at 1920×1080 px resolution. To compare our results
to those provided in [40], we conducted the experiment in the
same fashion and measure the pose error as

ek =
1

n

n∑
i=1

‖
(
T (tk)X̃i − Tgt(tk)X̃i

)
3×1
‖2, (39)

for each frame, with Tgt(tk) being the corresponding ground
truth pose. Pose tracking is considered successful when ek <
λedm, where dm is the diameter (i.e. the largest distance be-
tween vertices) of the model and λe is a predefined threshold.
The overall tracking quality of our method is then computed
in form of an AUC (area under curve) score, where the
percentage amount of successfully tracked poses across all
frames is integrated for all λe ∈ [0, 0.2] per model. For this
experiment ground truth pose information was only used at
the start of each of the different sequences to initialize the
tracking. Here, tracking losses were ignored, meaning that the
pose was never reset to ground truth during a sequence.

The resulting AUC scores are shown in Table 1 in compari-
son to those available in [40] for PWP3D [26], UDP [2], Elas-
ticFusion [39] and ORB-SLAM2 [23]. However, apart from
PWP3D none of the other three methods are dedicated object
pose tracking solutions. UDP is a monocular RGB object
pose detection method while ElasticFusion and ORB-SLAM2
are visual SLAM approaches for camera pose localization in
indoor and outdoor scenes which can, however, be applied in
this static object scenario. ElasticFusion relies on RGB-D data,
ORB-SLAM2 uses gradient-based corner features and both
were restricted to the object region for the experiment. For
more detailed information on the setup, results and runtimes
of the other methods, please refer to [40].
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PWP3D [26] 5.358 5.551 3.575 3.915 5.813 5.870
UDP [2] 6.097 6.791 5.974 5.250 2.342 8.494

ElasticFusion [39] 1.567 1.534 2.695 1.692 1.858 1.895
ORB-SLAM2 [23] 10.410 15.531 17.283 11.198 9.931 13.444

Proposed 11.903 11.764 10.150 11.986 13.217 8.861
Avg. Runtime 62.4 62.6 62.4 62.4 63.4 65.9

TABLE 1
AUC scores (higher is better) of our approach in the OPT
dataset compared to the results presented in [40]. In the
last row also the average runtime of our approach (in ms)

per object is given. The experiment confirms that the
proposed solution performs significantly better than

PWP3D, UDP and ElasticFusion and even outperforms
ORB-SLAM2 is many cases.

The results show that the proposed method again performs
significantly better than the original PWP3D algorithm as well
as UDP and ElasticFusion. For the three least textured objects
(Bike, Ironman and Jet), our approach even outperforms ORB-
SLAM2, being among the state-of-the-art monocular SLAM
algorithms. For the other three relatively well textured objects
ORB-SLAM2 performs better because it uses features within
the entire object region for pose estimation instead of being
constrained to the silhouette. Here, the large image resolution
generally helps to detect an increased number features even at
larger distances which such approaches benefit from.

RBOT Dataset – For evaluation within the RBOT dataset
we denote the sequence of ground truth poses by T jgt(tk), com-
posed of Rjgt(tk) and tjgt(tk) with k = 0, . . . , 1000. In contrast
to the previous experiment, here we use a different, more
generic criterion to measure the tracking error as suggested
in [10], since (39) highly depends on the object’s geometry.
Starting at T j(t0) = T jgt(t0), for each subsequent frame
we thus compute the tracking error separately for translation
ejk(t) = ‖tj(tk)− tjgt(tk)‖2 and rotation

ejk(R) = cos−1

(
trace(Rj(tk)>Rjgt(tk))− 1

2

)
, (40)

for each object to evaluate the tracking success rate. If ejk(t)
is below 5 cm and ejk(R) below 5◦, we consider the pose to
be successfully tracked. Otherwise, if one of the errors is not
within its boundaries, we consider the tracking to be lost and
reset it to the ground truth pose, i.e. T j(tk) = T jgt(tk). In
our experiments we evaluated the multi-object sequences in
two different ways. We either track only the pose of the first
(varying) object or both of them (the varying object and the
occluding squirrel). When tracking only one of the objects, the
occurring occlusions are unmodelled as we call it here. These
are much harder to handle than modelled occlusions, where
the pose and geometry of the occluding object is known, in
case of tracking both objects.

In Table 2 we present the tracking success rates of the
proposed method and the method presented in [36] for all

Fig. 11. Mixed reality visualizations in two different com-
plex scenes with two tracked objects each. Based on
the pose estimates, the real objects are augmented with
virtual attachments (hats, a carrot and a patch of grass)
in real-time. Here, despite large perspective changes and
both modelled and unmodelled occlusions, the augmen-
tations remain precisely in place. This makes our method
very attractive for complex mixed reality systems.

sequences in all variants. The results show that the novel
re-weighted Gauss-Newton optimization outperforms the pre-
vious Gauss-Newton-like strategy in most cases by a large
margin. Here, the biggest difference occurs in presence of
noise. This can be explained by the proposed weighting
strategy, since the ψ(x) terms generally reduce the influence
of false segmented (outlier) pixels. The experiments also
demonstrate the robustness of the appearance model based
on tclc-histograms towards a moving light source. For both
methods, compared to the regular scenario, the performance
often even improves in the dynamic light variant and hardly
deteriorates otherwise. However, it can also be seen that
both approaches perform significantly worse for objects with
ambiguous silhouettes (e.g. Baking Soda, Glue and Koala
Candy) and struggle more with image noise in case of objects
of a less distinct color (e.g. Camera, Can, Cube, Egg Box etc.).

5.4 Applications to Mixed Reality

Due to its low run-time and high accuracy our approach is very
suitable for mixed reality applications. The ability to track
multiple objects enables immersive visualizations in highly
dynamic scenarios. Here, the virtual augmentations can real-
istically be occluded by the real objects since their geometry
and poses are accurately known (see Figure 11). What makes
it even more attractive for mixed reality systems, is that our
approach can handle fair amounts of unmodelled occlusion
(e.g. by hands). Therefore, object-specific augmentations will
remain in place while a user inspects objects by manipulating
them manually. This further allows to turn arbitrary objects
into 6DOF motion input devices.
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Regular [36] 62.1 30.5 95.8 66.2 61.6 81.7 96.7 89.1 44.1 87.7 74.9 50.9 20.2 68.4 20.0 92.3 64.9 98.5
Proposed 85.0 39.0 98.9 82.4 79.7 87.6 95.9 93.3 78.1 93.0 86.8 74.6 38.9 81.0 46.8 97.5 80.7 99.4

Dynamic Light [36] 61.7 32.0 94.2 66.3 68.0 84.1 96.6 85.8 45.7 88.7 74.1 56.9 29.9 49.1 20.7 91.5 63.0 98.5
Proposed 84.9 42.0 99.0 81.3 84.3 88.9 95.6 92.5 77.5 94.6 86.4 77.3 52.9 77.9 47.9 96.9 81.7 99.3

Noisy + [36] 55.9 35.3 75.4 67.4 27.8 10.2 94.3 33.4 8.6 50.9 76.3 2.3 2.2 18.2 11.4 36.6 31.3 93.5
Dynamic Light Proposed 77.5 44.5 91.5 82.9 51.7 38.4 95.1 69.2 24.4 64.3 88.5 11.2 2.9 46.7 32.7 57.3 44.1 96.6

Unmodelled [36] 55.2 29.9 82.4 56.9 55.7 72.2 87.9 75.7 39.6 78.7 68.1 47.1 26.2 35.6 16.6 78.6 50.3 77.6
Occlusion Proposed 80.0 42.7 91.8 73.5 76.1 81.7 89.8 82.6 68.7 86.7 80.5 67.0 46.6 64.0 43.6 88.8 68.6 86.2
Modelled [36] 60.3 31.0 94.3 64.5 67.0 81.6 92.5 81.4 43.2 89.3 72.7 51.6 28.8 53.5 19.1 89.3 62.2 96.7
Occlusion Proposed 82.0 42.0 95.7 81.1 78.7 83.4 92.8 87.9 74.3 91.7 84.8 71.0 49.1 73.0 46.3 90.9 76.2 96.9

Avg. Runtime Proposed 15.5 15.7 20.3 16.6 17.4 18.9 16.9 15.9 16.8 19.4 15.7 16.8 16.1 19.1 16.5 21.8 17.6 19.1

TABLE 2
Tracking success rates (in %) of the proposed method in comparison to that of [36] in the RBOT dataset. In the last

row we furthermore denote the average runtime of our approach (in ms) measured across the first three image
sequence variants. These experiments confirm that the systematic derivation of a Gauss-Newton optimization

suggested in Section 3.1 leads to a significant performance improvement over [36] for almost all objects.

6 CONCLUSION

With this work we have closed two gaps in literature on
6DOF object pose tracking. Firstly, we have provided a fully
analytic derivation of a Gauss-Newton optimization that was
originally lacking in [35]. It is derived in form of a re-weighted
nonlinear least-squares estimation. A systematic quantitative
evaluation in Table 2 shows that the resulting update scheme
leads to significant improvements over [36]. Secondly, we
have presented and created a novel large dataset for object
tracking that covers practically relevant scenarios beyond prior
comparable work. We believe that the community will benefit
from both of these contributions.

However, regardless of the employed optimization strategy
the presented approach only relies on the objects’ contours to
determine their poses. It is therefore prone to fail for objects
with ambiguous silhouette projections such as bodies of revo-
lution (e.g. Baking Soda and Koala Candy from the dataset).
To cope with this restriction and further improve tracking
accuracy a photometric term could be incorporated in the
cost function with regard to the objects’ texture. Assuming an
object is sufficiently textured this should resolve the silhouette
ambiguity in many cases.

Finally, we want to point out that the proposed dataset
could be used to train or evaluate deep-learning approaches
for 6DOF tracking in the future. This has become even more
relevant recently, since our semi-synthetic images resemble
those of [15], [14].
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