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Abstract. We propose a novel variational formulation for generating
3D models of objects from a single view. Based on a few user scribbles
in an image, the algorithm automatically extracts the object silhouette
and subsequently determines a 3D volume by minimizing the weighted
surface area for a fixed user-specified volume. The respective energy can
be efficiently minimized by means of convex relaxation techniques, lead-
ing to visually pleasing smooth surfaces within a matter of seconds. In
contrast to existing techniques for single-view reconstruction, the pro-
posed method is based on an implicit surface representation and a trans-
parent optimality criterion, assuring high-quality 3D models of arbitrary
topology with a minimum of user input.

1 Introduction

1.1 Single-View Reconstruction

Generating models of the three-dimensional world from sets of images is at the
heart of Computer Vision. An interesting limiting case is the problem of single
view reconstruction – a highly ill-posed problem where stereo and multiview
concepts like point correspondence and photo-consistency cannot be applied.
Nevertheless, it is an important problem: In many applications we may only have
a single image of the scene, and yet we may want to interactively extract solid
3D models of respective objects for virtual and augmented reality applications,
or we may want to simply render the same scene from a novel vantage point or
with different illumination based on estimates of the geometric structure.

Human observers have an excellent ability to generate plausible 3D models
of objects around them – even from a single image. To this end, they partially
rely on prior knowledge about the geometric structures and primitives in their
world. Yet, they also generate plausible models of objects they have never seen
before. It is beyond the scope of this work to contemplate on the multitude of
criteria the human visual system may be employing for solving the single view
reconstruction problem. Instead, we will demonstrate that for a large variety of
real-world images very simple extremality assumptions give rise to convincing
3D models. The key idea is to compute a silhouette-consistent weighted minimal
surface for a user-specified volume. In this sense, the proposed formulation is
closely related to the concept of Cheeger sets – sets which minimize the ratio of
area over volume [1].
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Image with Reconstructed Geometry Textured Geometry
User Input

Fig. 1. The proposed method generates convincing 3D models from a single image
computed by fixed volume weighted minimal surfaces. Colored lines in the input image
mark user input, which locally alters the surface smoothness. Red marks low, yellow
marks high smoothness (see section 4.4 for details).

1.2 Related Work

Existing work on single view reconstruction and on interactive 3D modeling
can be grouped into two classes based on the choice of mathematical surface
representation, namely explicit surface representation and implicit surface rep-
resentations. Some of the pioneering works on single view reconstruction are
those of Criminisi and coworkers [2, 3] on generating three-dimensional models
of architecture from single images by exploiting the perspective structure of par-
allel lines and other aspects of man-made environments. Different aspects of the
reconstruction have been emphasized among related works. Horry et al. [4] aim
for pleasant 3D visual effects that do not result in high quality meshes. Hoiem et
al. [5] are similar in this respect but they try to fully automate the reconstruction
process. Also related to the field are easy-to-use tools like Teddy [6] and Fiber-
Mesh [7] that have pioneered sketch based modeling but are not image-based.
Note that there are also approaches that seek to reconstruct height fields [8] and
are therefore not suited for getting closed 3D surfaces.

All of the above works are using explicit surface representation – while sur-
face manipulation is often straight forward and a variety of cues are easily inte-
grated leading to respective forces or constraints on the surface, there are two
major limitations: Firstly numerical solutions are generally not independent of
the choice of parameterization. And secondly, parametric representations are
not easily extended to objects of varying topology. While Prasad et al. [9] were
able to extend their approach to surfaces with one or two holes, the general-
ization to objects of arbitrary topology is by no means straight forward. Simi-
larly, topology-changing interaction in the FiberMesh system requires a complex
remeshing of the modeled object leading to computationally challenging numer-
ical optimization schemes.

A first effort in single view reconstruction using an implicit representation
was recently proposed by Oswald et al. [10]. There the authors combined a
minimal surface constraint with a data term that favored the object thickness
to be proportional to the distance to the boundary.
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Despite a number of convincing results, the latter work suffers from several
drawbacks: Firstly, imposing a thickness proportional to the distance from the
curve is very strong and not always a correct assumption. Secondly, the modeling
required a large number of not necessarily intuitive parameters controlling the
data term. Our work is different from [10] in that we impose exact volume
consistency and do not require additional tuning parameters.

All cited works on single view reconstruction have in common that they re-
vert to inflation heuristics in order to avoid surface collapsing. These techniques
boil down to fixing absolute depth values, which undesirably restrict the solu-
tion space. A precursor to volume constraints are the volume inflation terms
pioneered for deformable models by Cohen and Cohen [11]. However, no con-
stant volume constraints were considered and no implicit representations were
used.

1.3 Contribution

In this paper, we revisit the problem of single view reconstruction. We will show
that one can compute silhouette-consistent weighted minimal surfaces for a user-
prescribed volume using convex relaxation techniques. To this end, we revert to
an implicit representation of the surface given by the indicator function of its
interior (sometimes referred to as voxel-occupancy). In this representation, the
weighted minimal surface problem is a convex functional and relaxation of the
binary function leads to an overall convex problem. In addition, we will show that
the volume constraint amounts to a convex constraint which is easily integrated
in the reconstruction process. We show that the relaxed indicator function can be
binarized so that we obtain a surface which firstly has exactly the user-specified
volume and secondly is within a computable energetic bound of the optimal
combinatorial solution.

The convex optimization is solved by a recently proposed provably convergent
primal-dual algorithm enabling interactive reconstruction within seconds. We
show on a variety of real-world images that the simple extremality condition of
a fixed-volume minimal surface gives rise to convincing 3D models for a large
variety of real-world images, comparing favorably to alternative approaches.

To the best of our knowledge this is the first work on convex shape optimiza-
tion with guaranteed volume preservation.

2 Variational Formulation

Assume we are given the silhouette of an object in an image as returned by an
interactive segmentation tool 1. The goal is then to obtain a smooth 3D model
of the object which is consistent with the silhouette. How should we select the
correct 3D model among the infinitely many that match the silhouette? Clearly,
1 For brevity and since it is not part of our contribution we will not detail the graph cut

based interactive segmentation algorithm we use. Instead we refer to representative
work in the field [12].
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we need to impose additional information, at the same time we want to keep
this information at a minimum since user interaction is always tedious and slow.
In the following, we will show that merely specifying the object’s volume and
computing a minimal surface of given volume is sufficient to give rise to a family
of plausible 3D models.

We propose a solution that comes in two flavors: one is formulated with a
soft the other with a hard volume constraint. We then go into detail on the fast
optimization of the resulting energy which finally leads to an interactive user
interface for single view reconstruction.

2.1 Implicit Weighted Variational Surfaces

We are given an image plane Ω which contains the input image and lies in R3.
As part of the image we also have an object silhouette Σ ⊂ Ω. Now, we are
seeking to compute reconstructions as minimal weighted surfaces S ⊂ R3 that
have a certain target volume Vt and are compliant with the object silhouette Σ:

min

∫
S

g(s)ds (1)

subject to π(S) = Σ (2)
V ol(S) = Vt (3)

where π : R3 → Ω is the orthographic projection onto the image plane Ω,
g : R3 → R+ is a smoothness weighting function, V ol(S) denotes the volume
enclosed by the surface S and s ∈ S is a surface element. In the following we
will gradually derive an implicit representation for the above problem.

We begin by replacing the surface S with its implicit binary indicator function
u ∈ BV (R3; {0, 1}), where BV denotes the functions of bounded variation [13].
The desired minimal weighted surface area is then given by minimizing the total
variation over a suitable set U of feasible functions u:

min
u∈U

∫
g(x)|∇u(x)|d3x (4)

where ∇u denotes the derivative in the distributional sense. Eq. (4) favors
smooth solutions. However, smoothness is locally affected by the function g(x) :
R3 → R+ which will be used later for modeling.

How does the set U of feasible functions look like? For simplicity, we assume
the silhouette to be enclosed by the surface. Then all surface functions that are
consistent with the silhouette Σ must be in the set

UΣ =

{
u ∈ BV (R3; {0, 1})

∣∣∣ u(x) =

{
0, π(x) /∈ Σ
1, x ∈ Σ

}
(5)

Still, solving (4) with respect to the set UΣ of silhouette consistent functions
will result in the silhouette itself. In the following section we will show a way to
avoid this trivial solution.
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2.2 Volume Constraint

In order to inflate the solution of (4) we propose to use a constraint on the size
of the volume enclosed by the minimal surface. We formulate this both as a soft-
and as a hard constraint and discuss the two approaches in the following.

Hard Constraint. By further constraining the feasible set UΣ one can force
the reconstructed surface to have a specific target volume Vt. We regard the
problem

min
u∈UΣ∩UV

E(u) where E(u) =
∫
g(x)|∇u(x)|d3x (6)

and UV =
{
u ∈ BV (R3; {0, 1})

∣∣∣ ∫ u(x)d3x = Vt

}
(7)

where UV denominates all reconstructions with bounded variation that have the
specific volume Vt.

Soft Constraint. For the sake of completeness we also consider the soft for-
mulation of the volume constraint. One can add a ballooning term to (4):

EV (u) = λ

(∫
u(x)d3x− Vt

)2

(8)

The integral quadratically punishes the deviation of the surface volume from a
certain target volume Vt. In contrast to the constant volume constraint above,
this formulation comes with an extra parameter λ which is why in the following
we will focus on (6) instead.

Different approaches to finding Vt can be considered. In the implementation
the optimization domain is naturally bounded. We choose Vt to be a fraction
of the volume of this domain. In a fast interactive framework the user can then
adapt the target volume with the help of instant visual feedback. Most impor-
tantly, as opposed to a data term driven model volume constraints do not dictate
where inflation takes place.

2.3 Fast Minimization

In order to convexify the problem in (6) we make use of a relaxation technique
[14]. To this end we relax the binary range of functions u in (5) and (7) to the
interval [0, 1]. In other words we replace UV and UΣ with their respective convex
hulls UrV and UrΣ . The corresponding optimization problem is then convex:

Proposition 1. The relaxed set Ur := UrΣ ∩ UrV is convex.

Proof. The constraint in the definition of UV is clearly linear in u and therefore
UrV is convex. The same argument holds for UΣ . Being an intersection of two
convex sets Ur is convex as well.
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One standard way of finding the globally optimal solution to this problem is
gradient descent, which is known to converge very slowly. Since optimization
speed is an integral part of an interactive reconstruction framework, we employ
a recently proposed significantly faster and provably convergent primal-dual al-
gorithm published in [15]. The scheme is based on the weak formulation of the
total variation:

min
u∈Ur

∫
g(x)|∇u|d3x = min

u∈Ur
sup

|ξ(x)|2≤g(x)

{∫
−udivξ d3x

}
(9)

Optimization is done by alternating a gradient descent with respect to the func-
tion u and a gradient ascent for the dual variable ξ ∈ C1c (R3; R3) interlaced with
an over-relaxation step on the primal variable:

ξk+1 = Π|ξ(x)|2≤g(x)(ξ
k + τ · ∇ūk)

uk+1 = ΠUr (uk + σ · divξk+1)
ūk+1 = 2uk+1 − uk

(10)

where ΠA denotes the projection onto the set A. Projection of ξ is done by
simple clipping while that of the primal variable u will be detailed in the next
paragraph. The scheme (10) is numerically attractive since it avoids division by
the potentially zero-valued gradient-norm which appears in the Euler-Lagrange
equation of the TV-norm. Moreover, it is parallelizable and we therefore imple-
mented it on the GPU. On a volume of 63x47x60 voxels the computation takes
only 0.47 seconds.

Projection Scheme. The projection ΠUr in (10) needs to ensure three con-
straints on u: Silhouette consistency, constant volume and u ∈ [0, 1]. In order to
maintain silhouette consistency (5) of the solution we restrict updates to those
voxels which project onto the silhouette interior excluding the silhouette itself.

Still we need to enforce the other two constraints. An iterative algorithm
which computes the Euclidean projection of a point onto the intersection of
arbitrary convex sets is the one of Boyle and Dykstra [16]. It is fast for a low
number of convex constraints and converges provably to the projection point. In
our case step i of this algorithm reduces to two seperate projections for volume
and range {

uiV = ui−1
R − vi−1

V + Vd
N

viV = uiV − (ui−1
R − vi−1

V )
(11){

uiR = Π[0,1](uiV − v
i−1
R )

viR = uiR − (uiV − v
i−1
R )

(12)

where we initialize uR with the current uk in (10) and vR, vV with zero.
Π[0,1](u) simply clips the value of u to the unit interval and Vd is the difference
between the target volume Vt and the current volume of the values ui−1

R − vi−1
V .

N is the number of voxels in the discrete implementation.
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Fig. 2. The two cases considered in the analysis of the material concentration. On the
left hand side we assume a hemi-spherical condensation of the material. On the right
hand side the material is distributed evenly over the volume.

2.4 Optimality Bounds

Having computed a global optimal solution uopt of (9), the question remains how
we obtain a binary solution and how the two solutions relate to one another en-
ergetically. Unfortunately no thresholding theorem holds, which would imply the
binary optimality of the thresholded relaxed optimum for arbitrary thresholds.

Nevertheless we can construct a binary solution ubin as follows:

Proposition 2. The relaxed solution can be projected to the set of binary func-
tions in such a way that the resulting binary function preserves the user-specified
volume Vt.

Proof. It suffices to order the voxels x by decreasing values u(x). Subsequently,
one sets the value of the first Vt voxels to 1 and the value of the remaining voxels
to 0.

Concerning an optimality bound the following holds:

Proposition 3. Let uropt be the global optimal solution of the relaxed energy and
uopt the global optimal solution of the binary problem. Then

E(ubin)− E(uopt) ≤ E(ubin)− E(uropt) . (13)

3 Theoretical Analysis of Material Concentration

As we have seen above, the proposed convex relaxation technique does not guar-
antee global optimality of the binary solution. The thresholding theorem [14]
– applicable in the unconstrained problem – no longer applies to the volume-
constrained problem. While the relaxation naturally gives rise to aposteriori
optimality bounds, one may take a closer look at the given problem and ask why
the relaxed volume labeling u should favor the emergence of solid objects rather
than distribute the prescribed volume equally over all voxels.

In the following, we will prove analytically that the proposed functional has
an energetic preference for material concentration. For simplicity, we will con-
sider the case that the object silhouette in the image is a disk. And we will
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compare the two extreme cases of all volume being concentrated in a ball (a
known solution of the Cheeger problem) compared to the case that the same
volume is distributed equally over the feasible space (namely a cylinder) – see
Figure 2. Note that in the following proof it suffices to consider the volume only
on one side of the silhouette.

Proposition 4. Let usphere denote the binary solution which is 1 inside the
sphere and 0 outside – Fig. 2, left side – and let ucyl denote the solution which
is uniformly distributed (i.e. constant) over the entire cylinder – Fig. 2, right
side. Then we have

E(usphere) < E(ucyl), (14)

independent of the height of the cylinder.

Proof. Let R denote the radius of the disk. Then the energy of usphere is simply
given by the area of the half-sphere:

E(usphere) =
∫
|∇usphere|d2x = 2πR2. (15)

If instead of concentrated to the half-sphere, the same volume, i.e. V = 2π
3 R

3,
is distributed uniformly over the cylinder of height h ∈ (0,∞), we have

ucyl(x) =
V

πR2h
=

2πR3

3πR2h
=

2
3
R

h
. (16)

inside the entire cylinder, and ucyl(x) = 0 outside the cylinder. The respec-
tive surface energy of ucyl is given by the area of the cylinder weighted by the
respective jump size:

E(ucyl) =
∫
|∇ucyl|d2x =

(
1− 2R

3h

)
πR2+

2R
3h

(πR2+2πRh) =
7
3
πR2 > E(usphere).

(17)

4 Experimental Results

Having detailed the idea of variational implicit weighted surfaces and their fast
computation, in this section we will study their properties and applicability
within an interactive reconstruction environment. We will compare our approach
to methods which resort to heuristic inflation techniques and finally show that
appealing and realistic 3D models can be generated with minimal user input.

4.1 Cheeger Sets and Single View Reconstruction

Solutions to (6) are Cheeger sets, i.e. minimal surfaces for a fixed volume. In the
simplest case of a circle-shaped silhouette one therefore expects to get a ball.
Fig. 4 demonstrates that in fact round silhouette boundaries (in the unweighted
case) result in round shapes.
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Input Image Reconstruction +30% volume +40% volume

Fig. 3. By simply increasing the target volume with the help of a slider, the recon-
struction is intuitively inflated. Due to a highly parallelized implementation the result
can be computed almost instantly. In this example the intial rendering of the volume
with 175x135x80 voxels took 3.9 seconds. Starting from there each subsequent volume
adaptation took only about 1 second.

Input Image Reconstructed Geometry Textured Geometry

Fig. 4. The proposed Cheeger set approach favors minimal surfaces for a user-specified
volume. Therefore the reconstruction algorithm is ideally suited to compute smooth,
round reconstructions.

4.2 Fixed Volume vs. Shape Prior

Many approaches to volume reconstruction incorporate a shape prior in order to
avoid surface collapsing. A common heuristic is to use a distance transform of the
silhouette boundary for depth value estimation. We show that the fixed-volume
approach solves several problems of such a heuristic.

Fig. 5 shows that it is hard to obtain ball-like surfaces with a silhouette
distance transform as a shape prior. Another issue is the strong bias a shape
prior inflicts on the reconstruction resulting in cone-like shapes (see Fig. 6) and
inhibiting the flexibility of the model. The uniform fixed-volume approach fills
both gaps while exhibiting the favorable properties of the distance transform (as
seen in Fig. 8). With the results in Fig. 5 and 6 we directly compare our method
to [10] and [9], in which the reconstruction volume is inflated artificially.

4.3 Varying the Volume

Apart from the weighting function of the TV-norm (see next section), the only
parameter we have to determine for our reconstruction is the target volume Vt.
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Input Image Data Term Reconstruction with Our Method
as Shape Prior Data Term

Fig. 5. Using a silhouette distance transform as shape prior the relation between data
term (second from left) and reconstruction (third from left) is not easy to assess for a
user. With only one parameter our method delivers more intuitive and natural results.

Input Image Reconstruction with Our Method
Data Term as Shape Prior

Fig. 6. In contrast to the approach in [10] (center), the proposed method (right) does
not favor a specific shape and generates more pleasing 3D models. Although in the cen-
ter reconstruction the dominating shape prior can be mitigated by a higher smoothness,
this ultimately leads to the vanishing of thin structures like the handle.

The effect on the appearance of the surface can be witnessed in Fig. 3. One
can see that changing the target volume has an intuitive effect on the resulting
shape. This is important for a user driven reconstruction.

4.4 Weighted Minimal Surface Reconstruction

So far all presented reconstructions came along without further user input. The
weight g(x) of the TV-norm in (9) can be used to locally control the smoothness
of the reconstruction: with a low g(x), the smoothness condition on the surface is
locally relaxed, allowing for creases and sharp edges to form. Conversely setting
g(x) to a high value locally enforces surface smoothness. For controlling the
weighting function we employ a user scribble interface. The parameter associated
to each scribble marks the local smoothness within the respective scribble area
and is propagated through the volume along projection direction. What we show
in Fig. 7 is that with this tool not only round, but other very characteristic shapes
can be modeled with minimal user interaction.

The air plane in Fig. 1 represents an example, where a parametric shape prior
would fail to offer the necessary flexibility required for modeling protrusions.
Since our fixed-volume approach does not impose points of inflation, user input
can influence the reconstruction result in well-defined ways: Marking the wings
as highly non-smooth (i.e. low g(x)) effectively allows them to form.
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Image with User Input Reconstructions Geometry

Fig. 7. The proposed approach allows to generate 3D models with sharp edges, marked
by the user as locations of low smoothness (see section 4.4). Along the red user strokes
(second from left) the local smoothness weighting is decreased.

Input Reconstruction Different View Geometry

Fig. 8. Volume inflation dominates where the silhouette area is large (bird) whereas
thin structures (twigs) are inflated less.

Note that apart from Fig. 1, 7 the adaption of the target volume was the
only user input for all experiments.

5 Conclusion

We presented a novel framework for single view reconstruction which allows to
compute 3D models from a single image in form of Cheeger sets, i.e. minimal sur-
faces for a fixed user-specified volume. The framework allows for appealing and
realistic reconstructions of curved surfaces with minimal user input. The com-
binatorial problem of finding a silhouette-consistent surface with minimal area
for a user defined volume is solved by reverting to an implicit surface represen-
tation and convex relaxation. The resulting convex energy is optimized globally
using an efficient provably convergent primal-dual scheme. Parallel GPU imple-
mentation allows for computation times of a few seconds, allowing the user to
interactively increase or decrease the volume. We proved that the computed sur-
faces are within a bound of the optimum and that they exactly fulfill the target
volume. On a variety of challenging real world images, we showed that the pro-
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posed method compares favorably over existing implicit approaches, that volume
variations lead to families of realistic reconstructions and that additional user
scribbles allow to locally reduce smoothness so as to easily create protrusions.
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