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Abstract. Variational problems, which are commonly used to solve low-
level vision tasks, are typically minimized via a local, iterative optimiza-
tion strategy, e.g. gradient descent. Since every iteration is restricted to
a small, local improvement, the overall convergence can be slow and the
algorithm may get stuck in an undesirable local minimum. In this paper,
we propose to approximate the minimization by solving a series of bi-
nary subproblems to facilitate large optimization moves. The proposed
method can be interpreted as an extension of discrete graph-cut based
methods such as α-expansion or LogCut to a spatially continuous set-
ting. In order to demonstrate the viability of the approach, we evaluated
the novel optimization strategy in the context of optical flow estimation,
yielding excellent results on the Middlebury optical flow datasets.

1 Introduction

Several fundamental problems in computer vision can be classified as inverse, ill-
posed problems, where a direct solution is not possible (e.g. deblurring, stereo,
optical flow). In such cases, a prior model of the forward process can help to infer
physically meaningful solutions via a maximum a posteriori (MAP) estimation.
Such MAP formulations naturally lead to energy minimization problems [1],
where an energy term Eprior, representing the prior model, penalizes unlikely
solutions and a data consistency term Edata enforces a close fit to the observed
data:

min
u
{Eprior(u) + λEdata(u)} . (1)

Since we are dealing with spatially (and radiometrically) discrete images, at some
point any optimization approach for (1) has to take the spatial discretization into
account – there are two predominant strategies to do that. One currently very
popular approach is to state the problem as a discrete, combinatorial optimiza-
tion problem on a Markov Random Field (MRF). Since MRFs are a powerful tool
for solving most low level vision tasks, a considerable research effort has been
dedicated to exploring minimization methods for MRF energies (cf. [2] for a com-
parison of state-of-the-art algorithms). Generally, the optimization approaches
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are either based on message passing (e.g. loopy belief propagation by Pearl [3]
and sequential tree-reweighted message passing by Kolmogorov [4]) or on graph
cuts (α-β-swap and α-expansion, introduced by Boykov et al. [5], and the more
recent “range moves” by Veksler [6] and LogCut by Lempitsky et al. [7]). Re-
cently, Komodakis et al. proposed a fast optimization approach, based on the
duality theory of Linear Programming [8]. The second optimization strategy for
(1) uses the tools of the calculus of variations in a continuous context. Once
an optimality condition for the energy is derived, the differential operators are
discretized and a numerical scheme is used to minimize the energy. In contrast
to the aforementioned discrete MRF approach, in the variational approach the
discretization is postponed as long as possible.

This work will focus on limitations of the local optimization approaches used
in the variational context. In order to circumvent these limitations, we will in-
troduce a novel optimization strategy inspired by the discrete α-expansion and
LogCut algorithms. In contrast to local methods, such an optimization strategy
allows large moves and therefore is less likely to get stuck in bad local minima.
Unlike combinatorial optimization approaches, the solution space does not have
to be discretized and the algorithm does not induce systematic metrication er-
rors. The proposed variational technique also facilitates high-performance imple-
mentations on massively parallel GPUs and permits an extension to higher-order
“interactions” at low costs in time and memory.

After proposing the novel optimization strategy in Section 2, we evaluate
this technique for optical flow estimation in Section 3. Experiments in Section 4
illustrate state-of-the-art results.

2 Energy Minimization by Solving Binary Subproblems

In order to simplify the discussion, we will only consider continuous energy
functionals of the form

min
u

{∫
Ω

Ψ
(
Du(x), D2u(x), . . .

)
dx + λ

∫
Ω

ρ(u(x),x) dx

}
, (2)

where Ω ⊂ IRn and u : Ω → IRm. The lefthand term, which corresponds
to Eprior in (1), penalizes non-smooth solutions via a potentially robust error
function Ψ , while the righthand term enforces data consistency, and the free pa-
rameter λ allows balancing the influence of the two terms. Solving such equations
in a continuous setting entails deriving the Euler-Lagrange equations and find-
ing an iterative numerical scheme to calculate the solution. These schemes are
typically based on gradient descent and therefore every iteration will only result
in a local improvement of the current solution. Hence, these methods are prone
to get stuck in bad local minima. Moreover, the speed of convergence might be
quite slow. Combinatorial optimization approaches for MRFs, on the other hand,
are not restricted to small, local moves. For a lot of MRF energies, α-expansion
seems to offer a good trade-off between runtime and optimality properties. The
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central idea of the α-expansion algorithm is to approximately minimize an (NP-
hard) multi-label problem, by repeatedly solving a series of binary subproblems.
For each subproblem, the global optimum can efficiently be computed using a
max-flow/min-cut algorithm [5].

Inspired by [9], where Chambolle shows close links between the Total Varia-
tion (TV) model and binary MRFs in the context of image denoising, and [10],
where Nikolova et al. show how to find globally optimal solutions for certain
nonconvex optimization problems by restating them as convex problems, we will
pose the minimization problem (2) as a sequence of binary subproblems. Each of
these subproblems can conceptually be understood as a continuous version of an
α-expansion move, i.e. the current solution is changed to a proposed alternative
solution, wherever this is energetically favorable. Repeatedly solving this binary
problem for varying proposed solutions, i.e. performing cycles, as it is called in
the α-expansion terminology, yields increasingly accurate results.

In order to formulate (2) as a binary problem, let α,β : Ω → IRm be two
arbitrary but fixed candidate solutions we will subsequently refer to as “proposed
solutions” or just as “proposals.” Moreover, let φ : Ω → {0, 1} be a binary
function to selectively combine α and β to a new solution

u(x) = (1− φ(x))α(x) + φ(x)β(x) . (3)

The function φ is free to vary across Ω, as long as the fused solution u fulfills the
regularity requirements posed by the considered energy. Plugging the combined
solution (3) into the model (2) yields

min
φ∈F

{∫
Ω

Ψ
(
Du(φ(x),x), D2u(φ(x),x), . . .

)
dx + (4)

λ

∫
Ω

(1− φ(x)) ρ(α(x),x) + φ(x)ρ(β(x),x) dx

}
with F = {φ : Ω → {0, 1}}, where we used the observation that

ρ [(1− φ(x))α(x) + φ(x)β(x),x] = (1− φ(x)) ρ[α(x),x] + φ(x)ρ [β(x),x] .
(5)

Therefore, instead of directly estimating the solution u, the goal is now to find
the best possible fusion of the two fixed proposals α and β, by optimizing with
respect to φ. This construction is strongly related to the generalized α-expansion
presented in [7], which comprises the core of the LogCut algorithm.

Unfortunately, the binary problem is not convex and hence hard to solve in
a continuous context. Therefore, similar to [10], we first expand the range of φ
to the interval [0, 1] and then solve this relaxed problem in a continuous set-
ting. Despite the fact that such a relaxation clearly invalidates (5), the observed
continuous solutions are close to binary (see Fig. 3). This indicates that in the
vast majority of the domain there is a clear preference for either α or β, so we
argue that thresholding the continuous solution φ leads to a reasonable binary
fusion of α and β. To avoid a solution procedure that merely oscillates between
different proposals, we only accept a fused result, if the energy (4) decreases,
compared to using either α or β alone.
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3 Application to Optical Flow Estimation

Estimating the optical flow between two consecutive images of a scene requires
finding corresponding points in the images. As mentioned above, this is an ill-
posed, inverse problem, so solely relying on the optical flow constraint, i.e. to
assume that the intensities remained constant, does not provide sufficient infor-
mation to infer meaningful flow fields. Horn and Schunck were the first to apply
the tools of the calculus of variations to impose a quadratic regularization on
the displacement field [11]. Black and Anandan [12] introduced methods from
robust statistics to avoid the quadratic penalization of changes in the flow field
and of violations of the optical flow constraint, thereby allowing for flow dis-
continuities and outliers in the data term, respectively. For a systematic survey
on variational formulations of the optical flow problem, we refer to Aubert et
al. [13].

While robust error functions have the desirable property to limit the influence
of outliers, most of them are not convex and therefore hard to optimize. Due to
the fact that gross outliers are rare in optical flow estimation, several authors
proposed a Total Variation (TV) regularization of the flow field and an L1 data
fidelity term [14–16]:

min
u

{
2∑

d=1

∫
Ω

|∇ud| dx + λ

∫
Ω

ρ(u(x),x) dx

}
(6)

with u(x) = (u1(x), u2(x))T and ρ (u(x),x) = |I1(x + u(x))− I0(x)|, where
I0 and I1 are the two input images. Since the data fidelity term ρ is nonlinear
in u, a local linearization is required at some point in the solution procedure,
which limits the approach to recovering small displacements. To circumvent this
restriction, the estimation procedure is typically performed on a scale pyramid
of the input images, cf. [14] for an in-depth discussion. Yet, such a scale pyramid
strategy often fails to recover the flow for small holes in foreground objects
(which allow to observe a distant background), or for fine structures in front of a
background which is moving due to ego motion. This effect can be seen around
the moving leafs in the “Schefflera” sequence of the Middlebury optical flow
evaluation dataset [17]. Figure 1(a) shows the input image 0 of the “Schefflera”
sequence; the corresponding ground truth flow can be seen as color-coded image3

in Fig. 1(b). Figure 1(c) shows a color-coded flow field, estimated using a scale
pyramid-based implementation of the TV-L1 optical flow model (6).

Before applying the new solution strategy, in a short technical detour, we
follow the approach of Aujol et al. [18] and introduce an auxiliary displacement
field v, yielding a strictly convex approximation of (6):

min
u,v

{
2∑

d=1

∫
Ω

|∇ud| dx +
1
2θ

2∑
d=1

∫
Ω

(ud − vd)
2

dx + λ

∫
Ω

ρ(v,x) dx

}
, (7)

3 The hue encodes the direction of the flow vector, while the saturation encodes its
magnitude. Regions of unknown flow (e.g. due to occlusions) are colored black
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(a) (b) (c) (d)

Fig. 1. (a) input image 0 of the Middlebury “Schefflera” sequence; (b) color-coded
ground truth flow (hue = direction, intensity = magnitude, black = unknown); color-
coded flows, estimated using: (c) a continuous TV-L1 flow model; (d) the proposed
optimization strategy (AAE = 2.91◦)

where the small, positive constant θ ensures a tight coupling of u and v. In
contrast to the original energy (6), this convex approximation can be solved
using a dual approach. Our proposed optimization strategy can now easily be
applied by replacing v with a binary fusion of two flow proposals α and β:

min
u,φ

{
2∑

d=1

∫
Ω

|∇ud| dx +
1
2θ

2∑
d=1

∫
Ω

(ud − [(1− φ) αd + φβd])
2

dx

+ λ

∫
Ω

(1− φ) ρ(α,x) + φρ(β,x) dx

}
. (8)

The relaxed version of (8) is a minimization problem in two variables, u and φ.
We therefore have to perform an alternating minimization procedure:

1. For φ fixed, solve for every ud:

min
ud

{∫
Ω

|∇ud| dx +
1
2θ

∫
Ω

(ud − [(1− φ) αd + φβd])
2

dx

}
(9)

2. For u fixed, solve for φ:

min
φ

{
1
2θ

2∑
d=1

∫
Ω

(ud − [(1− φ) αd + φβd])
2

dx

+λ

∫
Ω

(1− φ) ρ(α,x) + φρ(β,x) dx

}
(10)

The subproblem (9) is the well understood image denoising model of Rudin,
Osher, and Fatemi [19]. For this model, Chambolle proposed an efficient and
globally convergent numerical scheme, based on a dual formulation [20]. In prac-
tice, a gradient descent/reprojection variant of this scheme performs better [9],
although there is no proof for convergence. In order to make this paper self-
contained, we reproduce the relevant results from [20, 9]:

Proposition 1. The solution of (9) is given by

ud = [(1− φ) αd + φβd]− θ∇ · pd . (11)
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The dual variable pd is obtained as the steady state of

p̃d
k+1 = pk

d +
τ

θ
∇

(
θ∇ · pk

d − [(1− φ) αd + φβd]
)

,

pk+1
d =

p̃d
k+1

max
{

1, |p̃d
k+1|

} , (12)

where k is the iteration number, p 0
d = 0, and τ ≤ 1/4.

The subproblem (10) permits a direct solution.

Proposition 2. The solution of (10) is given by clamping

φ̃ =


(u−α)T (β −α) + λθ (ρ(β,x)− ρ(α,x))

(β −α)T (α− β)
where α 6= β

0 elsewhere
(13)

to the range [0, 1]:
φ = max

{
0,min

{
1, φ̃

}}
. (14)

Proof: Starting with the Euler-Lagrange equation of (10)

1
θ

(u− [(1− φ) α + φβ])T (α− β) + λ [ρ(β,x)− ρ(α,x)] , (15)

we try to solve for φ, yielding

φ (β −α)T (α− β) = (u−α)T (β −α) + λθ (ρ(β,x)− ρ(α,x)) . (16)

Wherever α = β, ρ(α,x) = ρ(β,x), hence φ can arbitrarily be chosen in [0, 1].
Everywhere else, we can divide by (β −α)T (α− β), yielding (13). �

Please note that the data residuals ρ(α,x) and ρ(β,x) are just constants.
They have to be calculated only once per fusion step, and the sole requirement is
that their range is IR+

0 , i.e. almost any cost function can be used. Once the relaxed
version of problem (8) is solved, a final thresholding of φ is required to obtain the
binary fusion of the two flow proposals α and β. Since the continuous solution of
φ is already close to binary, the threshold µ is not critical. Our heuristic solution
is to evaluate the energy of the original TV-L1 energy (8) for α, β, and a few
different thresholds µ ∈ (0, 1). Finally, we select the threshold yielding the flow
field with the lowest energy.

3.1 Extension to a Second-order Prior

The presented approach is by no means limited to Total Variation regularization.
As an example, we will apply the proposed technique to an optical flow model
with a prior based on decorrelated second-order derivatives [21]. This second-
order prior has the intrinsic property to penalize only deviations from piecewise
affinity. Since spatial second-order derivatives are not orthogonal and the local
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information of orientation and shape are entangled, a decorrelation is necessary.
In [22], Danielsson et al. used circular harmonic functions to map the the second-
order derivative operators into an orthogonal space. In two spatial dimensions,
the decorrelated operator is given by

♦ =

√
1
3

(
∂2

∂2
x

+
∂2

∂2
y

,
√

2
(

∂2

∂2
x

− ∂2

∂2
y

)
,
√

8
∂2

∂x∂y

)T

. (17)

The magnitude of this operator, defined as the Euclidean vector norm

‖♦u‖ =

√
1
3

√(
∂2u

∂2
x

+
∂2u

∂2
y

)2

+ 2
(

∂2u

∂2
x

− ∂2u

∂2
y

)2

+ 8
(

∂2u

∂x∂y

)2

, (18)

measures the local deviation of a function u from being affine. Adapting the TV-
L1 flow model (6) to the new prior is a matter of replacing the TV regularization
in (6–8) with the Euclidean norm of the new operator (18). Instead of minimizing
the ROF energy (9), step 1 of the alternate optimization of u and φ now amounts
to solving

min
ud

{∫
Ω

‖♦ud‖ dx +
1
2θ

∫
Ω

(ud − [(1− φ) αd + φβd])
2

dx

}
(19)

for every ud, while keeping φ fixed.

Proposition 3. The solution of (19) is given by

ud = [(1− φ) αd + φβd]− θ♦ · pd . (20)

The dual variable pd is obtained as the steady state of

p̃d
k+1 = pk

d +
τ

θ

[
♦

(
[(1− φ) αd + φβd]− θ♦ · pk

d

)]
,

pk+1
d =

p̃d
k+1

max
{

1, |p̃d
k+1|

} , (21)

where k is the iteration number, p 0
d = 0, and τ ≤ 3/112. For a proof and further

details please refer to [21].

Moreover, we employ the following standard finite differences approximation of
the ♦ operator:

(♦u)i,j =


√

1
3 (ui,j−1 + ui,j+1 + ui−1,j + ui+1,j − 4ui,j)√

2
3 (ui−1,j + ui+1,j − ui,j−1 − ui,j+1)√
8
3 (ui,j + ui+1,j+1 − ui,j+1 − ui+1,j)

 , (22)

where (i, j) denote the indices of the discrete image domain, enforcing Dirichlet
boundary conditions on ∂Ω. For details on the discretization of ♦ · p, please
consult [21].
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In the continuous setting, such an extension requires minor adaptions of
the solution procedure and incurs only a small increase of time and memory
requirements. Most combinatorial optimization approaches, however, are limited
to unary and pairwise clique potentials, hence such a second-order prior can
not be used. Extending combinatorial optimization algorithms to higher-order
cliques (e.g. as proposed in [5, 23]) is either expensive in time and space or
imposes restrictions on the potentials, e.g. [23] restricts the potentials to the
Potts model.

4 Experiments

In this section, we first restrict the optical flow model to a single dimension
(rectified stereo) in order to analyze its behavior in a simplified setting. In Section
4.2 we will use image sets from the Middlebury optical flow database [17] to
illustrate that the proposed algorithm yields state-of-the-art flow estimates.

Most of the algorithm has been implemented in C++, with the exception of the
numerical schemes of the solvers, which have been implemented using CUDA 1.0.
All subsequent experiments have been performed on an Intel Core 2 Quad CPU
at 2.66 GHz (the host code is single-threaded, so only one core was used) with
an NVidia GeForce 8800 GTX graphics card, running a 32 bit Linux operating
system and recent NVidia display drivers. Unless noted otherwise, in all our
experiments the parameters were set to λ = 50 and θ = 0.1.

4.1 Illustrative Stereo Experiment

A restriction of the optical flow model (8) to a single displacement u permits
a direct comparison of the estimated solutions to the global optimum (cf. [24]
for details on calculating the global optimum of this multi-label problem). Since
the approach presented in [24] is based on a discrete solution space, we further
restrict our method by using only constant disparity proposals in 0.5 pixel incre-
ments. Moreover, this (rectified) stereo setting simplifies discussing the effects
caused by the relaxation and the seemingly asymmetric formulation.

All experiments in this section use the grayscale version of the “Teddy” stereo
pair [25] and a set of constant disparity proposals in the range 0 to 59 pixels
in 0.5 pixel increments. Figure 2(a) shows im2 of the stereo pair, Fig. 2(b) the
corresponding ground truth disparity, and Fig. 2(c) is the mask of non-occluded
regions.

Relaxation and Thresholding For every fusion step (4), the binary function φ :
Ω → {0, 1} has to be optimized. Since this is a non-convex problem, we proposed
to relax φ to the range [0, 1], solve the continuous problem, and finally threshold
φ. Obviously, this only leads to reasonable fusions of α and β, if the optimal φ is
close to binary. Figure 3 shows, how a 64-bin histogram of the relaxed function
φ evolves during a typical optimization procedure. Since φ is initialized with 0,
in the beginning proposal α is chosen over β in the whole image. However, the
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“traces” in Fig. 3 illustrate that in several image regions the value of φ flips to
1, i.e. in these regions proposal β is energetically favored. Once the algorithm
converged, the histogram of φ is close to binary, just as expected.

Symmetry Since we initialize φ(x) = 0, the formulation appears to be asym-
metric with respect to the flow proposals α and β, but in practice the effects of
swapping the proposals is negligible. Figure 4(a) shows some intermediate solu-
tion of the “Teddy” disparity map, which is used as proposal α in the following
experiment. The energy of α is 325963 and there clearly is room for improvement.
The disparity map resulting from a fusion with the constant proposal β(x) = 20
has an energy of 284748 and can be seen in Fig. 4(b). To highlight the image
regions that were switched to proposal β during this fusion step, Fig. 4(c) shows
the continuous optimum of φ (before thresholding). Please note that φ is mostly
binary, except for regions where neither α nor β are close to the true disparity.
Repeating the experiment with α and β switched leads to visually indistinguish-
able results and an energy of 284727, i.e. the order of the proposals does not
matter in the binary fusion step.

Disparity Estimation via Randomized Sweeping In the discrete α-expansion al-
gorithm [5], the minimization of a multi-label problem is performed by “agglom-
erating” an increasingly accurate solution by repeatedly allowing the current
labeling to switch to an alternative label. One sweep through the label space is
called a cycle. In the following experiment on the “Teddy” stereo pair, we emu-
late this behavior by sweeping through a set of constant disparity proposals in
the range 0 to 59 in 0.5 pixel increments. Figure 5 depicts, how the energy of the
flow field decreases with every successful fusion step. Sweeping the “label space”
in consecutive order of the displacements results in the thick, black line labeled
“sequential”. The results for 25 distinct runs with a randomized order of the pro-
posals are illustrated using thin, colored lines. The dashed vertical lines delimit
fusion cycles, i.e. between two of those vertical lines every possible disparity is
tested exactly once. The thick horizontal line represents the energy of the global
optimum (E = 199891) for this model at λ = 50, see Fig. 6(c) for a disparity map
of this solution. It is clearly apparent that after three or more cycles the partic-
ular sweeping order does not have a significant influence. After eight cycles, the
mean energy of all runs is 205114, with the best run being roughly 2% better
than the worst. Two exemplary disparity maps are shown in Figs. 6(a) and 6(b)
– they differ from the global optimum (shown in Fig. 6(c)) mainly in occluded
areas, i.e. areas, where Fig. 2(c) is black. The mean energy of the disparity maps,
estimated using this approximated minimization technique, is 2.6% higher than
the global optimum, which is consistent with empirical results reported for the
discrete α-expansion algorithm.

Depending on the quality of the model, reducing the energy of a solution
might not result in a lower error on the true problem. Hence, in order to compare
the true errors of the global optimum and the approximated disparity fields, the
results have been evaluated on the Middlebury stereo vision benchmark [25]. At
an error threshold of 0.5, the global optimum mislabels 16.9 % of the pixels in
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(a) (b) (c)

Fig. 2. (a) im2 of the Middlebury “Teddy” stereo pair; (b) the corresponding ground
truth disparity map; (c) a mask for the pixels, which are also visible in im6

Fig. 3. The evolution of a 64-bin histogram of φ during the solution procedure. Starting
at φ(x) = 0, i.e. with proposal α, several image regions flip to the alternative proposal
β. It is clearly apparent that the converged histogram is close to binary. Please note
that a logarithmic scale is used for the “iteration” axis.

(a) (b) (c)

Fig. 4. Two intermediate disparity maps, before (a) and after (b) a binary fusion with
the proposal β(x) = 20. (c) shows the corresponding continuous optimum of φ
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Fig. 5. Decrease of the energy of the flow field with every successful fusion. Results
of randomized runs are shown as thin, colored lines; the thick, black line shows the
progress for a sequential run. The dashed vertical lines delimit fusion cycles, the thick
horizontal line marks the global optimum for the TV-L1 flow model (6).

non-occluded regions; the estimated solution shown in Fig. 6(b) has a slightly
larger error of 17.2 %, which is consistent with the energy differences.

4.2 Optical Flow Estimation

For optical flow estimation, merely fusing a set of constant proposals, just like
we did in the stereo case, is not feasible. One of the main reasons is that the
expected range of motion is not known beforehand. Simply assuming very large
ranges to be on the safe side either results in a coarse sampling of the solu-
tion space or in a huge number of constant flow proposals. Such a brute force
method could be made tractable by using a scale pyramid, but this would
still be inelegant and slow. However, the presented optimization strategy is
not limited to fusing constant proposals – any flow field can be used as pro-
posed solution. Thus, one obvious solution to the problem is to estimate a set
of flow fields using a standard optical flow algorithm and fuse them. There-
fore, before starting any fusion experiments, a set of 27 TV-regularized flows
(λ ∈ {10, 25, 40, 65, 100, 150, 200, 500, 1000}, θ ∈ {0.05, 0.1, 0.15}) and a set of
24 second-order prior regularized flows (λ ∈ {10, 25, 40, 55, 90, 200, 500, 1000},
θ ∈ {0.05, 0.1, 0.15}) have been estimated using the algorithms described in [16,
21]. Since the proposed optimization strategy is not limited to convex data terms,
we used a truncated data term ρ = min{1, 1−r}, where r is the normalized cross-
correlation, calculated on 3× 3 patches across all color channels.

A TV-regularized fusion of all 27 TV flows has been submitted to the Mid-
dlebury optical flow evaluation site, where at the time of submission this method
(labeled “CBF”) was ranked second or better for 14 out of 16 error measures.
Figure 6(d) shows the average end-point error of the six top-ranked algorithms,
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and Figs. 6(e)–6(g) show some color-coded results. Please visit the evaluation
page at http://vision.middlebury.edu/flow/eval/ for other error measures and
further images. Due to the challenging diversity of the data sets, this was the
only experiment where we used λ = 90 to improve the results on “Schefflera”
and “Grove” at the cost of a rather noisy “Yosemite” result. On the “Urban”
sequence (640 × 480 pixels), the outlined flow estimation procedure took 218 s
(138 s for precalculating 27 TV-regularized flows and 80 s for 6 fusion cycles).

Comparing the Figs. 6(e) and 1(c) indicates a slight improvement of the es-
timated flow, but since we only fuse TV-L1 proposals, the correct solution is
never “offered.” For further improvements, we have to resort to the brute force
strategy of fusing a number of constant flow proposals, but since we already have
a good estimate of the flow, the solution space is small and it quickly converges.
The final result has an average angular error (AAE) of 2.91◦ (see Fig. 1(d)).

Furthermore, the second-order prior regularized optical flow algorithm (see
Section 3.1) was used to fuse the 24 precalculated second-order flows. Figure
6(h) shows a color-coded result for the “RubberWhale” sequence of the Mid-
dlebury training dataset (AAE = 3.14◦). Using all precalculated flows and a
TV-regularized fusion algorithm yields even better results: Figs. 6(i) and 6(j)
show the color-coded flow fields for the “RubberWhale” (AAE = 2.87◦) and
“Dimetrodon” (AAE = 3.24◦) sequences, respectively.

5 Conclusion

The presented optimization strategy permits large optimization moves in a vari-
ational context, by restating the minimization problem as a sequence of binary
subproblems. After verifying that the introduced approximations are reasonable,
we showed that typical solutions for a stereo problem are within a few percent of
the global optimum (in energy as well as in the true error measure). Finally, we
showed that applying this optimization strategy to optical flow estimation yields
state-of-the-art results on the challenging Middlebury optical flow dataset.
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