
Furniture Classification using WWW CAD Models

Vladyslav Usenko, Florian Seidel,
Zoltan-Csaba Marton

Intelligent Autonomous System
TU Muenchen, Germany

vsu1991@gmail.com,
seidel.florian@googlemail.com,

marton@cs.tum.edu

Dejan Pangercic
Robert Bosch LLC

Palo Alto, CA
dejan.pangercic@gmail.com

Michael Beetz
Intelligent Autonomous Systems/Artificial

Intelligence
Department of Computer Science and

Centre for Computing Technologies (TZI)
University of Bremen, Germany
beetz@informatik.uni-bremen.de

Abstract— In this paper, we revisit the approach by Mozos
et al. [1] to address the problem of exploiting the structure
in today’s workplace interiors in order for service robots to
add semantics to their sensor readings and to build semi-static
models of their environment by learning generic descriptors
from online object databases. These world models include
information about the location, the shape and the pose of
furniture elements like chairs, armchairs, tables and sideboards,
which allow robots to perform their tasks more flexibly and
efficiently.

To recognize the different objects in real environments,
where high clutter and occlusions are common, the method
automatically learns a vocabulary of object parts from CAD
models downloaded from the Web. After a segmentation and a
probabilistic Hough voting step, likely object locations and a list
of its assumed parts can be obtained without full visibility and
without any prior about their locations. These detections are
then verified by finding the best fitting object model, filtering
out false positives and enabling interaction with the objects.

In this paper we alter the original method in that we
use a low-cost and low-accuracy Kinect sensor, propose an
alternative clustering algorithm based on the Regularized
Information Maximization (RIM) [2] and reduce the pose fitting
computation time by introducing part subset classification
using Viewpoint Feature Histograms (VFH) [3] before it. The
implementation of the system is available as open-source in
ROS 1.

I. INTRODUCTION

We expect the future World Wide Web to include a
shared web for robots, in which they can retrieve data and
information needed for accomplishing their tasks. Among
many other information, this web will contain models of
robots’ environments and the objects therein. Today’s web
already contains such 3D object models on websites such as
Google 3D Warehouse or catalogs of online furniture stores.

The key idea advocated here is that autonomous mapping
of human living environments should utilize the CAD (Com-
puter Aided Design) models from furniture Web catalogs. In
the approach presented by Mozos et al. [1] these models are
first converted using a realistic simulation of a laser range
finder scan. These point clouds are then over-segmented and
the resulting parts from the different training objects are
clustered to create a vocabulary of parts. In the classification

1www.ros.org/wiki/furniture_classification

step, similar parts are matched and probabilistic Hough
voting [4] is applied to get initial estimates about the location
and categories of objects found in the scene. Finally, CAD
models are fitted to the results of the classification in order to
a) obtain pose hypotheses and to b) reject the false positive
detections.

In this paper, one hand we provide an open-source imple-
mentation of the algorithm by Mozos et al. [1] and on the
other hand adapt their implementation to work with a low-
cost low-accuracy RGBD sensor, integrate a substaintally
better clustering algorithm and propose a speed up for the
pose fitting step by introducing an additional part subset
classification step.

The final goal of this work is to recognize so-called semi-
static objects such as chairs and integrate them into the
Semantic Object Maps, which are the information resource
structures derived in our earlier work [5]. We represent
Semantic Object Maps as symbolic knowledge bases that
contain facts about objects in the environment (obtained from
WWW sources such as common sense databases) and that
link objects to data structures such as point clouds which
then allows e.g. for the recognition of the objects. This
combination enables the robot to apply this knowledge to
reason about objects in the map, for example to infer that the
chair might be in the way when setting the table for breakfast.
While currently our implementation of the Semantic Object
Maps captures static objects, the inclusion of semi-static
objects such as the ones dealt with in this paper requires
their detection and pose estimation.

In the rest of the paper we report about the related
approaches (Sec. II), briefly recapitulate the algorithm of
Mozos et al. (Sec. III, Sec. IV), describe the novelties
introduced in this paper (Sec. III-C.2, Sec. IV-E), present the
results (Sec. V) and finally conclude and give the pointers
to the future work (Sec. VI).

II. RELATED WORK

Part-based object classification in 3D point clouds has
also been addressed by Huber et al. [6], using point clouds
partitioned by hand. In contrast, we partition the objects in
an unsupervised manner. Ruiz-Correa et al. [7] introduce an

www.ros.org/wiki/furniture_classification

abstract representation of shape classes that encode the spa-
tial relationships between object parts. The method applies
point signatures, whereas we use descriptors for complete
segments. Tombari et al. [8] use Hough Voting for the
recognition and pose estimation of free-form objects. Their
method differs from ours in that they use the 3D features
(keypoint detector plus descriptor) as opposed to the patches
we use and therefore introduce the notion of the additional
local reference frame since their features are not translation
and rotation invariant. Further, they use exactly the same
models in the training and testing phase.

Many of the techniques in our approach come from the
vision community. The creation of a vocabulary is based on
the work by Agarwal and Roth [9], and its extension with a
probabilistic Hough voting approach is taken from Leibe et
al. [4]. Voting is also used by Sun et al. [10] to detect objects
by relating image patches to depth information. Basing our
approach on geometrical information allows us to have a
single 3D CAD model of an example object in the WWW
database, since the different views can be generated by the
robot. Combinations of 3D and 2D features for part-based
detection would definitely improve the results [11].

For matching problems, RANSAC and its variations are
widely used due to the flexibility and robustness of the
algorithm [12], [13]. To register different views of an object,
local tensors are applied by Mian et al. [14]. Moreover,
Rusu et al. [15] limit the point correspondences by using
local features.

Finally, using synthetic data for training data is an idea that
appears in several works [16], [17]. Lai and Fox [18] com-
bine scans from real objects with models from Google 3D
Warehouse to create an initial training set. In our approach,
we solely base our classifier on synthetic models, and use
those for getting object poses and to verify detection.

III. TRAINING

The training part of the system consists of the following
steps: i) virtual scanning of the CAD models and over-
segmentation of the generated point clouds into segments
S, ii) computation of the Simple Geometric Features (SGF),
iii) clustering using k-means and RIM, and learning of the
shape model.

A. Virtual Scanning and Segmentation

We download CAD models from the Google 3D Ware-
house [19], Vitra’s Furnish.net database for office furni-
ture [20], and EasternGraphics’ web catalogs [21]. To obtain
realistic point cloud representations for these objects, we
simulate the Kinect sensor behaviour and perform ray-casting
to interesect each simulated beam with the CAD model
of the object. Further we also add realistic noise to the
depth measurements. The example CAD model and the
corresponding point cloud are depicted in the Fig. 1.

In the next step clustering of the synthetically generated
point clouds is performed. Our segmentation method follows
a criterion based on a maximum angle difference between the
surface normals. For each point, we thus calculate its normal

Fig. 1: Complete mesh model of a chair and a partial view
point cloud generated from it.

by robustly identifying a tangent plane at the selected point
and approximating the point’s neighborhood (inside a radius
of 3cm) using a height function relative to this plane, in
the form of a 2nd order bi-variate polynomial defined in a
local coordinate system [22]. Using the obtained normals for
each point in the cloud, we apply a region growing algorithm
where we mark a point p as belonging to a part Si if the
distance between the point p and some point in Si is closer
than δ = 5 cm, and if the angle formed by the normal of p
and the seed normal of Si is less than α = 40◦. Seed points
are iteratively selected as points with the lowest curvature
that do not belong to any part yet. The result of this step is
depicted in Fig. 2.

Fig. 2: Segments S1 . . . Sn of a point cloud of a chair.

B. Simple Geometric Features

We use exactly the same features as in the original pa-
per [1] which we list here for the sake of self-containedness
of the paper. The features are size variant but translation and
rotation invariant.

1) Proportion of boundary points in Si computed as
in [23].

2) Average curvature of Si computed as the smallest
eigenvalue’s proportion to the sum of eigenvalues in the
local neighborhoods of all points.

3) Volume occupied by the voxelized points in Si.
4) We calculate three eigenvalues, e1, e2, e3, of Si and

calculate six proportions: e1/e2, e2/e3, e1/e3, e1/sum,
e2/sum, e3/sum, where sum = e1 + e2 + e3.

5) We obatin three eigenvectors, ~e1, ~e1, ~e1, of Si, project
the points onto each of them, and calculate three
metric variances v1, v2, v3 (which we used instead of
e1, e2, e3).

6) Orientation of the eigenvector corresponding to the
smallest eigenvalue, indicating the orientation of Si.

7) We project the points onto each eigenvector and get the
distance to the farthest point from the medium in both
directions l1~e1 , l2~e1 , l1~e2 , l2~e2 , l1~e3 , l2~e3 . We then calculate
the following values: (l1~e1 + l

2
~e1
), (l1~e2 + l

2
~e2
), (l1~e3 + l

2
~e3
),

(l1~e1/l
2
~e1
), (l1~e2/l

2
~e2
), (l1~e3/l

2
~e3
), (l1~e1 + l2~e1)/(l

1
~e2
+ l2~e2).

8) Three proportions between features 5 and 7: v1/(l1~e1 +
l2~e1), v2/(l

1
~e2
+ l2~e2), v3/(l

1
~e3
+ l2~e3).

9) Proportion between the occupied volume (feature 3) and
the volume of the oriented bounding box of the part.

Each part Si is finally represented by a vector fi containing
24 features normalized to the range [0,1].

C. Vocabulary Learning

1) K-means Clustering: The approach to vocabulary
learning in [1] is based on clustering of the Simple Geometric
Feature (SGF) descriptors of the parts fi ∈ F into several
clusters using k-means. The cluster centers are then used
as the vocabulary A. Probabilistic Hough voting requires
the probability of a feature vector matching a word in the
vocabulary p(Ai|fi). This probability is obtained via

p(Ai|fi) =
w(Ai, fi)∑
w(Aj , fi)

(1)

where w(Ai, fi) =
1

||Ai−fi||2 .
In a fully automated vocabulary learning scenario like this

it is crucial that the vocabulary learned from the training
data is of consistently high quality for a wide range of
parameter settings and datasets. The standard approach of
using k-means cluster centers as vocabulary does not fit
these requirements. It is known to produce highly varying
results, depending on the number of clusters chosen and the
initialization. As a consequence the precision and recall rates
will vary greatly as well.

2) Regularized Information Maximization-based Cluster-
ing: Instead of representing the vocabulary in terms of
exemplars A and deriving the cluster assignment probability
p(A|fi) based on the distance of an SGF part descriptor fi to
these exemplars as done in [1], we in this paper introduce a
novel softmax regression model to represent p(A|fi) and use
the recently proposed Regularized Information Maximization

Fig. 3: Two example groups of parts in RIM-based clustering.

(RIM) [2] to learn the model parameters from data in a fully
unsupervised manner.

In the RIM framework a functional F(p(A|f,W), F, λ)
is defined in such a way that it evaluates the quality of a
conditional probability distribution p over labels A given
the input fi ∈ F and parameters W . The parameter λ is
a tuning parameter that is fixed during optimization and
can be interpreted as a Langrage multiplier for connecting a
regularization term with the objective. In the original RIM
formulation the goal is to find a discriminative probabilistic
model which clusters the data. Therefore, the three character-
istics of the solution which determine the quality are class
balance to avoid degenerate solutions, decision boundaries
of sensible complexity to promote parsimony and desision
boundaries that are not located in densely populated regions
of the input space.

The authors of [2] were able to show that maximizing an
empirical estimate of the mutual information between labels
and data

IW [A;F] = H[
1

N

N∑
i

p(Ai|fi;W)]

− 1

N

N∑
i

H[p(Ai|fi;W)]

(2)

subject to a regularizing penalty term R(W ;λ) is suitable
for expressing these requirements. The complete functional
is:

F(p(A|f,W), F, λ) = IW [A;F]− λR(W ;λ) (3)

In [2] an L2 penalty is used for regularization. This penalty
is only applied to the weights and not to the bias, which leads
to the property that during optimization the biases for some
of the classes are driven to large negative values, which in
turn means that no data points are assigned to these classes.
This mechanism can be interpreted as model selection by
selecting the number of classes from the data.

This functional is applied to the softmax model of p(A|f)
and optimized using L-BFGS [24]. Since the resulting cost
function is highly non-linear a good initialization is required.
We follow the original work and use k-means for initializa-
tion. Examples of the learned clusters are depicted in Fig. 3.

RIM initialized with k-means does improve results over
the simple k-means approach considerably. However, higher

consistency in the results while maintaining clustering qual-
ity can be achieved by initializing RIM with a deterministic
Principal Component Analysis (PCA) based initialization
procedure [25]. This initialization method iteratively splits
the cluster with the largest Sum of Squared Error to the
cluster center along the mean of the first principle component
coordinates of the datapoints in the cluster.

After the clustering and following [4], we learn a shape
model for each training object view. This model specifies the
distance relations among the different parts that compose the
object. We extract the center of mass s ∈ <3 of each part S,
and the center of mass p ∈ <3 of the complete point cloud.
We then calculate each relation as the 3D vector ~d = p− s.

IV. CLASSIFICATION

The classification part of the system consists of the fol-
lowing main steps: i) pre-processing, ii) generation of a set
of hypotheses which indicate possible locations for objects
in the point cloud, iii) a selection of the best hypotheses via
a set of criteria and iv) model fitting and verification.

A. Pre-processing and Segmentation

After obtaining the point cloud of a real scene (Fig. 4,
left) we first filter out the discretization error by applying
a moving least squares algorithm [22]. Next we allign the
floor with the XY plane and remove it. Finally we discard
all the measurements beyond 3m from the camera origin due
to inacceptable large depth error. To over-segment the scene
we apply the same algorithm as described in Sec. III-A which
results in a segmented scene as depicted in the right part of
the Fig. 4.

Fig. 4: Segmented real scene.

B. Probabilistic Hough Voting

Following the segmentation we obtain the corresponding
feature vector fi for each segmented part Si. Each feature
vector is then matched to a subset of words A ⊂ C from
the learned vocabulary (activation), which constitute possible
interpretations of the part Si. Each element of an activated
word casts a vote for a possible object location. This scheme
is known as probabilistic Hough voting [4], and an example
is shown in Fig. 5. In this case, a part in the scene activates
a word representing a tabletop. Each element in A casts a
vote for the center of the tabletop inside the point cloud. As a

result of this voting step we obtain the following probability
of finding an object of class o at position x:

p(o, x | Ai, l) =

{ 1
#(Ai,o)

if x = xv;

0.0 otherwise,
(4)

where #(Ai, o) indicates the number of elements a in word
Ai that pertain to object o. xv = l+ ~d, where l is the position
of the part Si found in the point cloud, and ~d is the relation
vector of the element’s shape model. For the sake of the
brevity we refer the reader to the original paper [1] for the
exact probability derivation.

Fig. 5: Votes casted by tabletop for table center.

C. Hypotheses Selection

The different object hypotheses are found as local maxima
in the voting space using a search window whose size
corresponds to the half of the width of the particular object
class we are looking for. We project the votes onto the
(x,y)-plane in order to simplify this search. After obtaining
the local maxima, we apply a threshold to select the best
hypotheses (see Fig. 6).

D. Pose Estimation through Verification

Having detected positions where a certain object type is
likely to be found, we verify the detection and select the best
model for the object, along with its pose. To be able to do

Fig. 6: Votes casted for chairs and local maxima projected
to the floor.

Fig. 7: Objects fitted into the scene using RANSAC.

this, we first need to retrieve the most important parts that
voted for the location. Some of these parts are incorrect but
their weights are low.

Our task is now to select the model and its pose from all
virtually scanned models that explains most of the detected
object parts. To achive this we fit the scanned models to
the scene point clouds using use a 3DOF RANSAC-based
algorithm in an exhaustive manner. We seek for the x and
y position and orientation around the z axis (this approach
assumes that objects are positioned up-right). In RANSAC
algorithm We sample two points which have the same height
in the model and in the scene cloud and select the ones that
would result in a transformation that covers most of the scene
points.

To filter out the outlier poses we apply a series of
additional checks. One of them is the visibility score which
is based on the 3D occupancy grid of the scene and the object
inserted at the estimated pose in the scene. In the occupancy
grid each voxel is labeled as free, occupied or unknown [26]
and we reject models that have large parts in free space. The
visibility score is defined as follows

vs =
occupied ∗ w + occluded

occupied ∗ w + occluded+ free
. (5)

Further, when the scene point has a normal vector which is
close to being parallel to the upright axis, the rotation of the
model can not be accurately estimated. In these cases, we
use a random rotation and since we check a high percentage
of points, the models are correctly identified. An example of
the 2 correctly fitted object models is shown in Fig. 7.

E. Speed-up through Part Subset Classification

Since the geometric model fitting presented above that
is used to reject false positive detections and to obtain the
object’s pose needs to iterate over the possible CAD models
and fit them to the detected parts, increasing the number of
used models would linearly increase the necessary runtime.
Therefore we propose an additional classification step, that

can be used to select the right CAD model, or at least score
them in order to reduce the number of models to be tested.

The detection process described above identifies some
of the object parts in the point cloud, based on which a
descriptor can be computed for scoring the possible CAD
models, and exclude from fitting those that have a score
below a threshold. As a first experiment, presented here as
a proof of concept, we computed a VFH descriptor for the
detected object parts, and scored the possible CAD models
using K Nearest Neighbors with an L2 distance metric. The
number of identified parts is typically around 3, so in order
to obtain the training data for classification, we generated
all subsets of 1 to 3 parts from the simulated scans of the
CAD models, resulting in around 25000 point clouds for the
8 CAD models we have currently. In each experiment, we
used 80% of the data as training and 20% as testing data,
and repeated the experiments 10 times. Here we report the
mean classification success rates and their standard deviation
(STD).

In identifying the correct CAD models, the average true
positive rate was 75.36% with a STD of 3.92, while identi-
fying the correct furniture category the average was 85.31%
with a STD of 5.62. The full confusion matrix holding the
results for the approximately 45000 tests can be seen in
Table I. These results encourage us to pursue this approach
further, as the correct CAD model is most likely obtaining
a high score, even if not the best one, therefore not all of
them need to be fit using the RANSAC procedure. However,
further tests on labeled examples (and negative examples)
obtained from complete scans would be required, something
that we are actively working on.

Armc. 88.9% 6.0% 1.3% 0.2% 2.6% 0.3% 0.2% 0.4%
Chr1 3.0% 86.1% 7.7% 1.0% 0.3% 0.2% 0.5% 1.3%
Chr2 3.5% 25.6% 67.5% 1.5% 0.4% 0.4% 0.2% 1.0%
Chr3 1.8% 21.2% 5.9% 68.5% 0.2% 1.1% 0.6% 0.7%
Side. 23.5% 5.2% 4.3% 0.7% 60.8% 2.2% 2.1% 1.4%
Tbl1 0.2% 1.6% 0.4% 0.0% 0.0% 81.7% 15.0% 1.2%
Tbl2 0.2% 5.1% 1.4% 0.1% 0.5% 29.4% 62.3% 1.1%
Tbl3 5.2% 17.4% 4.9% 0.7% 0.3% 1.7% 1.5% 68.4%

TABLE I: Confusion matrix for the different CAD models
(armchair, chairs, sideboard and tables). Successful category
identification marked in bold.

V. QUANTITATIVE RESULTS AND DEMONSTRATION

Although we ran the algorithm on real data as demon-
strated in Fig. 4, for this precision and recall based evaluation
we used a dataset of generated point clouds from the 8 CAD
models. The point clouds in the dataset were generated using
the same aproach that was used for generating training data.
We used around 200 scans for testing. As we know the
ground truth centroid of the object position in every scan
we can easily evaluate the algorithm’s performance. If we
have a local maxima in the 5cm window around the real
object’s centroid position we count it as a TruePositive.
If we have a local maxima outside of the window or in a
scene where no object of this class is present we count it
as a FalsePositive. If there is no local maxima in the 5cm

window around the object we count it as a FalseNegative.
Following these definitions, we compute the precision as:

TruePositive

TruePositive+ FalsePositive
(6)

and the recall as:
TruePositive

TruePositive+ FalseNegative
. (7)

By varying the threshold we build the precision-recall curve.
We use a relative threshold which can vary from 0 to 1.
The real threshold is computed for every scene using the
following formula

(8)(MaxCellWeight−MinCellWeight)

∗RelativeThreshold+MinCellWeight.

The results depicted in Fig. 8 show clearly, that the k-
means initialized RIM model consistently gives better results
than k-means and allows for completely automatic high-
quality vocabulary learning in this scenario. The prelim-
inary experiments with PCA initialization show a slight
improvement in repeatability over k-means initialization, but
clearly more experiments are required to conclusively show
a statistically significant improvement.

We provide the open-source software and the documen-
tation2. The system will be demostrated live during the
workshop.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have revisited and implemented an
approach by Mozos et al. [1] that allows a robot to learn
models of office objects downloaded from the Web and to use
them to detect and localize instances of these types of objects
in new scenes represented by 3D point clouds. The original
system was upgraded in that it now works with the Kinect
sensor, it provides a better unsupervised clustering algorithm
based on Regularized Information Maximization, and finally,
we made a first step in making the system scalable for the
large number of models by introducing an additional fast
part-object classification step before the pose fitting step. In
the future we will rigorously evaluate this latter step and in
parallel also consider an implementation of this algorithm
on the GPU or in the cloud. Finally we plan to extend the
formalism behind the Semantic Objects Maps [5] to support
semi-static and dynamic objects and subsequently integrate
the detection and localization of herein investigated furniture
articles.

REFERENCES

[1] O. M. Mozos, Z. C. Marton, and M. Beetz, “Furniture Models Learned
from the WWW – Using Web Catalogs to Locate and Categorize
Unknown Furniture Pieces in 3D Laser Scans,” Robotics & Automation
Magazine, vol. 18, no. 2, pp. 22–32, June 2011.

[2] R. Gomes, A. Krause, and P. Perona, “Discriminative clustering
by regularized information maximization,” in Advances in Neural
Information Processing Systems 23, J. Lafferty, C. K. I. Williams,
J. Shawe-Taylor, R. Zemel, and A. Culotta, Eds., 2010, pp. 775–783.

2http://ros.org/wiki/furniture_classification

(a) RIM, PCA initialization

(b) RIM, k-means initialization c0 =
#clusters after initialzation cend = #clus-
ters after optimization

(c) k-means

Fig. 8: Precision-recall curves for the clustering variants.

[3] R. B. Rusu, G. Bradski, R. Thibaux, and J. Hsu, “Fast 3d recognition
and pose using the viewpoint feature histogram,” in Proceedings of
the 23rd IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Taipei, Taiwan, October 2010.

[4] B. Leibe, A. Leonardis, and B. Schiele, “Robust object detection with
interleaved categorization and segmentation,” International journal of

http://ros.org/wiki/furniture_classification

computer vision, vol. 77, no. 1-3, pp. 259–289, 2008.
[5] D. Pangercic, M. Tenorth, B. Pitzer, and M. Beetz, “Semantic object

maps for robotic housework - representation, acquisition and use,” in
2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Vilamoura, Portugal, October, 7–12 2012, accepted
for publication.

[6] D. Huber, A. Kapuria, R. R. Donamukkala, and M. Hebert, “Parts-
based 3D object classication,” in Conf. on Computer Vision and Pattern
Recognition, 2004.

[7] S. Ruiz-Correa, L. G. Shapiro, and M. Meila, “A new paradigm for
recognizing 3-D object shapes from range data,” in Int. Conf. on
Computer Vision, 2003.

[8] F. Tombari and L. Di Stefano, “Object recognition in 3d scenes with
occlusions and clutter by hough voting,” in Proceedings of the 2010
Fourth Pacific-Rim Symposium on Image and Video Technology, ser.
PSIVT ’10, Washington, DC, USA, 2010, pp. 349–355.

[9] S. Agarwal and D. Roth, “Learning a sparse representation for object
detection,” in Europ. Conference on Computer Vision, 2002.

[10] M. Sun, B. Xu, G. Bradski, and S. Savarese, “Depth-encoded hough
voting for joint object detection and shape recovery,” in Europ.
Conference on Computer Vision, 2010.

[11] Z. C. Marton, R. B. Rusu, D. Jain, U. Klank, and M. Beetz,
“Probabilistic Categorization of Kitchen Objects in Table Settings with
a Composite Sensor,” in Proceedings of the IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, USA, October 11-15 2009.

[12] R. Schnabel, R. Wahl, and R. Klein, “Efficient RANSAC for Point-
Cloud Shape Detection,” Computer Graphics Forum, vol. 26, no. 2,
pp. 214–226, June 2007.

[13] Z.-C. Marton, D. Pangercic, N. Blodow, J. Kleinehellefort, and
M. Beetz, “General 3D Modelling of Novel Objects from a Single
View,” in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,
Taiwan, 2010.

[14] A. S. Mian, M. Bennamoun, and R. A. Owens, “Matching tensors
for automatic correspondence and registration,” in Europ. Conf. on
Computer Vision, 2004.

[15] R. B. Rusu, N. Blodow, and M. Beetz, “Fast point feature histograms
(fpfh) for 3d registration,” in IEEE Int. Conf. on Robotics and
Automation, Japan, 2009.

[16] H.-P. Chiu, L. Kaelbling, and T. Lozano-Perez, “Virtual training for
multi-view object class regnition,” in IEEE Comp. Soc. Conf. on
Computer Vision and Pattern Recognition, 2007.

[17] A. Toshev, A. Makadia, and K. Daniilidis, “Shape-based object recog-
nition in videos using 3d synthetic object models,” in IEEE Comp. Soc.
Conf. on Computer Vision and Pattern Recognition, 2009.

[18] K. Lai and D. Fox, “3D laser scan classification using web data and
domain adaptation,” in Robotics: Science and Systems, USA, 2009.

[19] Google 3D Warehouse. [Online]. Available: http://sketchup.google.
com/3dwarehouse/

[20] Vitra Furnishnet. [Online]. Available: http://www.vitra.com
[21] EasternGraphics. [Online]. Available: http://portal.pcon-catalog.com
[22] Z. C. Marton, R. B. Rusu, and M. Beetz, “On Fast Surface Recon-

struction Methods for Large and Noisy Datasets,” in IEEE Int. Conf.
on Robotics and Automation, 2009.

[23] R. B. Rusu, Z. C. Marton, N. Blodow, M. Dolha, and M. Beetz,
“Towards 3D Point Cloud Based Object Maps for Household Envi-
ronments,” Robotics and Autonomous Systems, vol. 56, no. 11, pp.
927–941, 2008.

[24] J. Nocedal, “Updating Quasi-Newton Matrices with Limited Storage,”
Mathematics of Computation, vol. 35, no. 151, pp. 773–782, 1980.

[25] T. Su and J. Dy, “In search of deterministic methods for initializing
K-means and Gaussian mixture clustering,” Intelligent Data Analysis,
pp. 1–42, 2007. [Online]. Available: http://iospress.metapress.com/
index/TN4334540U6L766T.pdf

[26] N. Blodow, R. B. Rusu, Z. C. Marton, and M. Beetz, “Partial View
Modeling and Validation in 3D Laser Scans for Grasping,” in IEEE-
RAS Int. Conf. on Humanoid Robots, France, 2009.

http://sketchup.google.com/3dwarehouse/
http://sketchup.google.com/3dwarehouse/
http://www.vitra.com
http://portal.pcon-catalog.com
http://iospress.metapress.com/index/TN4334540U6L766T.pdf
http://iospress.metapress.com/index/TN4334540U6L766T.pdf

	Introduction
	Related Work
	Training
	Virtual Scanning and Segmentation
	Simple Geometric Features
	Vocabulary Learning
	K-means Clustering
	Regularized Information Maximization-based Clustering

	Classification
	Pre-processing and Segmentation
	Probabilistic Hough Voting
	Hypotheses Selection
	Pose Estimation through Verification
	Speed-up through Part Subset Classification

	Quantitative Results and Demonstration
	Conclusions and Future Work
	References

