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Abstract— We propose a novel direct visual-inertial odometry
method for stereo cameras. Camera pose, velocity and IMU
biases are simultaneously estimated by minimizing a combined
photometric and inertial energy functional. This allows us to
exploit the complementary nature of vision and inertial data.
At the same time, and in contrast to all existing visual-inertial
methods, our approach is fully direct: geometry is estimated
in the form of semi-dense depth maps instead of manually
designed sparse keypoints. Depth information is obtained both
from static stereo – relating the fixed-baseline images of the
stereo camera – and temporal stereo – relating images from the
same camera, taken at different points in time. We show that
our method outperforms not only vision-only or loosely coupled
approaches, but also can achieve more accurate results than
state-of-the-art keypoint-based methods on different datasets,
including rapid motion and significant illumination changes. In
addition, our method provides high-fidelity semi-dense, metric
reconstructions of the environment, and runs in real-time on a
CPU.

I. INTRODUCTION

Camera motion estimation and 3D reconstruction are
amongst the most prominent topics in computer vision and
robotics. They have major practical applications, well-known
examples are robot navigation [30] [23] [28], autonomous or
semi-autonomous driving [12], large-scale indoor reconstruc-
tion, virtual or augmented reality [24], and many more. In all
of these scenarios, in the end one requires both the camera
motion as well as information about the 3D structure of the
environment – for example to recognize and navigate around
obstacles, or to display environment-related information to a
user.

In this paper, we propose a tightly coupled, direct visual-
inertial stereo odometry. Combining a stereo camera with
an inertial measurement unit (IMU), the method estimates
accurate camera motion as well as semi-dense 3D reconstruc-
tions in real-time. Our approach combines two recent trends:
Direct image alignment based on probabilistic, semi-dense
depth estimation provides rich information about the envi-
ronment, and allows for exploiting all information present
in the images. This is in contrast to traditional feature-based
approaches, which rely on hand-crafted keypoint detectors
and descriptors, only utilizing information contained at,
e.g., image corners – neglecting large parts of the image.
Simultaneously, tight integration of inertial data into tracking
provides accurate short-term motion constraints. This is
of particular benefit for direct approaches: Direct image
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Fig. 1: Tight fusion of the IMU measurements with direct
image alignment results in more accurate position tracking
(bottom) compared to the odometry system that only relies on
image alignment (top). The reconstructed pointclouds come
from pure odometry, no loop closures were enforced.

alignment is well-known to be heavily non-convex, and
convergence can only be expected if a sufficiently accurate
initial estimate is available. While in practice techniques
like coarse-to-fine tracking increase the convergence radius,
tight inertial integration solves this issue even more effec-
tively, as the additional error term and resulting prior ensure
convergence even for rapid motion. We show that it even
allows for tracking through short intervals without visual
information, e.g. caused by pointing the camera at a white
wall. In addition, inertial measurements render global roll-
and pitch observable, reducing global drift to translational
3D motion and yaw rotation.

In experiments we demonstrate the benefits of tight IMU
integration with our Stereo LSD-SLAM approach [5] towards
loose integration or vision-only approaches. Our method
performs very well on challenging sequences with strong
illumination changes and rapid motion. We also compare
our method with state-of-the-art keypoint-based methods and
demonstrate that our method can achieve better accuracy on
challenging sequences.



II. RELATED WORK

There exists a vast amount of research towards monocular
and stereo visual odometry, 3D reconstruction and visual-
inertial integration. In this section we will give an overview
over the most relevant related publications, in particular
focussing on direct vs. keypoint-based approaches, as well
as tight vs. loosely coupled IMU integration.

While direct methods have a long history – first works in-
cluding the work of Irani et al. [15] for monocular structure-
and-motion – the first complete, real-time capable direct
stereo visual-odometry was the work of Comport et al. [3].
Since then, direct methods have been omni-present in the
domain of RGB-D cameras [18] [27], as they directly provide
the required pixel-wise depth as sensor measurement. More
recently, direct methods have become popular also in a
monocular environment, prominent examples include DTAM
[26], SVO [10] and LSD-SLAM [4].

At the same time, much progress has been made in the
domain of IMU integration: due to their complementary
nature and abundant presence in all modern hardware set-ups,
IMUs are well-suited to complement vision-based systems
– providing valuable information about short-term motion
and rendering global roll, pitch, and scale observable. In
early works, visual-inertial fusion has been approached as a
pure sensor-fusion problem: Vision is treated as an indepen-
dent, black-box 6-DoF sensor which is fused with inertial
measurements in a filtering framework [30] [23] [6]. This
so-called loosely coupled approach allows to use existing
vision-only methods – such as PTAM [19], or LSD-SLAM
[4] – without modifications; and the chosen method can
easily be substituted for another one. On the other hand,
in this approach, the vision part does not benefit from the
availability of IMU data. More recent works therefore follow
a tightly coupled approach, treating visual-inertial odometry
as one integrated estimation problem, optimally exploiting
both sensor modalities.

Two main categories can be identified: Filtering-based
approaches [21] [2] [29] operate on a probabilistic state
representation – mean and covariance – in a Kalman-filtering
framework. One of the filtering approaches [13] claims to
combine IMU measurements with direct image tracking, but
does not provide a systematic evaluation and comparison to
the state-of-the-art methods. Optimization-based approaches
on the other hand operate on an energy-function based
representation in a non-linear optimization framework. While
the complementary nature of these two approaches has long
been known [8], the energy-based approach [20] [16] [17],
– which we employ in this paper – allows for easily and
adaptively re-linearizing energy terms if required, thereby
avoiding systematic error integration from linearization. An-
other example of energy-based approaches is presented in
[9] which combines IMU measurements with direct tracking
of a sparse subset of points in the image. In contrary to our
method, old states are not marginalized out which on one
hand allows for loop closures, but on the other hand does
not guarantee bounded update time in the worst case.

III. CONTRIBUTION.

The main novelty of this paper is the formulation of
tight IMU integration into direct image alignment within
a non-linear energy-minimization framework. We show that
including this sensor modality which in most practical cases
is abundantly available helps to overcome the non-convexity
of the photometric error, thereby eliminating one of the
main weaknesses of direct approaches over keypoint-based
methods. We evaluate our approach on different datasets
and compare it to alternative stereo visual-inertial odome-
try systems, out-performing state-of-the-art keypoint-based
methods in terms of accuracy in many cases. In addition, our
method estimates accurate, metrically scaled, semi-dense 3D
reconstructions of the environment, while running in real-
time on a modern CPU.

IV. NOTATION

Throughout the paper, we will write matrices as bold
capital letters (R) and vectors as bold lower case letters (ξ).
We will represent rigid-body poses directly as elements of
se(3), which – with a slight abuse of notation – we write
directly as vectors, i.e., ξ ∈ R6. We then define the pose
concatenation operator ◦ : se(3)× se(3)→ se(3) directly on
this notation as ξ ◦ ξ′ := log

(
exp(ξ) exp(ξ′)

)
.

For each time-step i, our method estimates the camera’s
rigid-body pose ξi ∈ se(3), its linear velocity vi ∈ R3

expressed in the world coordinate system, and the IMU bias
terms bi ∈ R6 for the 3D acceleration and 3D rotational
velocity measurements of the IMU. A full state is hence

given by si :=
[
ξTi v

T
i b

T
i

]T
∈ R15. For ease of notation, we

further define pose concatenation and subtraction directly on
this state-space as

si ⊕ s′i :=

 ξi ◦ ξ′ivi + v′i
b+ b′i

 (1)

and

si 	 s′i :=

ξi ◦ ξ′i−1

vi − v′i
b− b′i

 . (2)

The full state vector s :=
[
sT1 . . . s

T
N

]T
includes the states

of all frames.

V. DIRECT VISUAL-INERTIAL STEREO ODOMETRY

We tightly couple direct image alignment – minimization
of the photometric error – with non-linear error terms arising
from inertial integration. In contrast to a loosely coupled
approach, where the vision system runs independently of
the IMU and is only fused afterwards, such tight integration
maintains correlations between all state variables and thereby
arbitrates directly between visual and IMU measurements.

Our photometric error formulation is directly based on the
formulation proposed in LSD-SLAM [4], including robust
Huber weights and normalization by the propagated depth
variances. Recently, we extended this approach to stereo
cameras [5] and augmented it with affine lighting correction.
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Fig. 2: Factor graph representing the visual-inertial odometry
optimization problem. Poses of the keyframes are shown in
red, poses of other frames in blue, velocities in green and
biases in yellow. Poses and velocities are connected to the
pose, velocity and biases of the previous frame by an IMU
factor. The pose of each frame is connected to the pose of
the keyframe by a VO factor, and factors between biases
constrain their random walk.

We then formulate a joint optimization problem to recover
the full state containing camera pose, translational velocity
and IMU biases of all frames i. The overall energy that we
want to minimize is given by

E(s) :=
1

2

N∑
i=1

EIi→ref(i)(ξi, ξref(i)) +
1

2

N∑
i=2

EIMU(si−1, si),

(3)
where EIi→ref(i) and EIMU

i are image and IMU error function
terms, respectively. This optimization problem can be inter-
preted as maximum-a-posterior estimation in a probabilistic
graphical model (s. Fig. 2).

To achieve real-time performance, we do not optimize over
an unboundedly growing number of state variables. Instead,
we marginalize out all state variables other than the current
image, its predecessor, and its reference keyframe. Through
marginalization, all prior estimates and measurements are
included with their uncertainty in the optimization.

Note that both modalities complement each other very
well in a joint optimization framework – beyond the level
of simple averaging of their motion estimates: Images can
provide rich information for robust visual tracking. Depend-
ing on the observed scene, full 6-DoF relative motions can be
observable. Degenerate cases, however, can occur in which
the observed scene does not provide sufficient information
for fully constrained tracking (e.g. pointing the camera at
a texture-less wall). In this case, IMU measurements pro-
vide complementary measurements that bridge the gaps in
observability.

IMUs typically operate at a much higher frequency than
the frame-rate of the camera and make measuring gravity di-
rection and eliminating drift in roll and pitch angles possible.

The downside of IMUs is, however, that they measure rel-
ative poses only indirectly through rotational velocities and
linear accelerations. They are noisy and need to be integrated
and compensated for gravity which strongly depends on the
accuracy of the pose estimate. The measurements come with
unknown, drifting biases that need to be estimated using an
external reference such as vision. While IMU information is
incremental, any images can be aligned towards each other
that have sufficient overlap. This allows for incorporating
relative pose measurements between images that are not in
direct temporal sequence–enabling more consistent trajectory
estimates.

A. Direct Semi-Dense Stereo Odometry
We base visual tracking on Stereo LSD-SLAM [5]:
• We track the motion of the camera towards a reference

keyframe in the map. We create new keyframes, if the
camera moved too far from existing keyframes.

• We estimate a semi-dense depth map in the current
reference keyframe from static and temporal stereo cues.
For static stereo we exploit the fixed baseline between
the pair of cameras in the stereo configuration. Temporal
stereo is estimated from pixel correspondences in the
reference keyframe towards subsequent images based
on the tracked motion.

There are several benefits of complementing static with
temporal stereo in a tracking and mapping framework. Static
stereo makes reconstruction scale observable. It is also
independent of camera movement, but is constrained to a
constant baseline, which limits static stereo to an effective
operating range. Temporal stereo requires non-degenerate
camera movement, but is not bound to a specific range
as demonstrated in [4]. The method can reconstruct very
small and very large environments at the same time. Finally,
through the combination of static with temporal stereo,
multiple baseline directions are available: while static stereo
typically has a horizontal baseline – which does not allow
for estimating depth along horizontal edges, temporal stereo
allows for completing the depth map by providing other
motion directions.

1) Direct Image Alignment: The pose between two im-
ages I1 and I2 is estimated by minimizing the photometric
residuals

rIu(ξ) := aI1(u) + b− I2(u′). (4)

where u′ := π
(
Tξπ

−1 (u, D1(u))
)

and ξ transforms from
image frame I2 to I1. The mappings π and π−1 project
points from the image to the 3D domain and vice versa
using a pinhole camera model. The parameters a and b
correct for affine lighting changes between the images and
are optimized alongside the pose ξ in an alternating fashion,
as described in [5]. We also determine the uncertainty σIr,u
of this residual [4]. The optimization objective for tracking
a current frame towards a keyframe is thus given by

EIcur→ref(ξcur, ξref) :=
∑

u∈ΩD1

ρ

([
rIu(ξ−1

ref ◦ ξcur)

σIr,u

]2
)
, (5)
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Fig. 3: Evolution of the factor graph during tracking. After adding a new frame and optimizing the estimates of the variables
in the graph, all variables except the keyframe pose and the current frame pose, velocity and biases are marginalized out.
This process is repeated with each new frame.

where ρ is the Huber norm. This objective is minimized using
the iteratively re-weighted Levenberg-Marquardt algorithm.

2) Depth Estimation: Scene geometry is estimated for
pixels of the key frame with high image gradient, since they
provide stable disparity estimates. Fig. 1 shows an example
of such a semi-dense depth reconstruction. We estimate depth
both from static stereo (i.e., using images from different
physical cameras, but taken at the same point in time) as
well as from temporal stereo (i.e., using images from the
same physical camera, taken at different points in time).

We initialize the depth map with the propagated depth
from the previous keyframe. The depth map is subsequently
updated with new observations in a pixel-wise depth-filtering
framework. We also regularize the depth maps spatially and
remove outliers [4].

a) Static Stereo: We determine the static stereo dispar-
ity at a pixel by a correspondence search along its epipolar
line in the other stereo image. In our case of stereo-rectified
images, this search can be performed very efficiently along
horizontal lines. We use the SSD photometric error over five
pixels along the scanline as a correspondence measure. If a
depth estimate with uncertainty is available, the search range
along the epipolar line can be significantly reduced. Due to
the fixed baseline, we limit disparity estimation to pixels with
significant gradient along the epipolar line, making the depth
reconstruction semi-dense.

Static stereo is integrated in two ways. If a new stereo
keyframe is created, the static stereo in this keyframe stereo
pair is used to initialize the depth map. During tracking, static
stereo in the current frame is propagated to the reference
frame and fused with its depth map.

b) Temporal Stereo: For temporal stereo we estimate
disparity between the current frame and the reference
keyframe using the pose estimate obtained through tracking.
These estimates are fused in the keyframe. Only pixels
are updated with temporal stereo, whose expected inverse
depth error is sufficiently small. This also constrains depth
estimates to pixels with high image gradient along the
epipolar line, producing a semi-dense depth map.

B. IMU Integration

Underlying our IMU error function terms is the following
nonlinear dynamical model. Let the pose ξ consist of the
position p and rotation R of the IMU expressed in the world
frame. Note that the velocity estimate v also is in the world

frame. According to the IMU measurements of rotational
velocities ωz and linear accelerations az the pose of the
IMU evolves as

ṗ = v (6)
v̇ = R (az + εa − ba) + g (7)

Ṙ = R [ωz + εω − bω]× (8)

where [·]× is the skew-symmetric matrix such that for vectors
a, b, [a]× b = a× b. The process noise εa, εω , εb,a, and εb,ω
affect the measurements and their biases ba and bω with
Gaussian white noise. Hence, for the biases ḃa = εb,a and
ḃω = εb,ω . Note that we neglect the effect of Coriolis force
in this model.

IMU measurements typically arrive at a much higher
frequency than camera frames. We do not add independent
residuals for each individual IMU measurement, but integrate
the measurements into a condensed IMU measurement be-
tween the image frames. In order to avoid frequent reintegra-
tion if the pose or bias estimates change during optimization,
we follow the pre-integration approach proposed in [22]
and [14]. We integrate the IMU measurements between
timestamps i and j in the IMU coordinate frame and obtain
pseudo-measurements ∆pi→j , ∆vi→j , and Ri→j .

We initialize pseudo-measurements with ∆pi→i = 0,
∆vi→i = 0, Ri→i = I, and assuming the time between IMU
measurements is ∆t we integrate the raw measurements:

∆pi→k+1 = ∆pi→k + ∆vi→k∆t (9)
∆vi→k+1 = ∆vi→k + Ri→k (az − ba) ∆t (10)
Ri→k+1 = Ri→k exp([ωz − bω]×∆t). (11)

Given the initial state and integrated measurements the state
at the next time-step can be predicted:

pj = pi + (tj − ti)vi +
1

2
(tj − ti)2g + Ri∆pi→j (12)

vj = vi + (tj − ti)g + Ri∆vi→j (13)
Rj = RiRi→j . (14)

For the previous state si−1 and IMU measurements ai−1,
ωi−1 between frames i and i − 1, the method yields a
prediction

ŝi := h
(
ξi−1,vi−1, bi−1,ai−1,ωi−1

)
(15)
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Fig. 4: Orientation error evaluated over different segment
lengths for the three EuRoC dataset sequences. While both
loosely-coupled and tightly-coupled IMU integration signif-
icantly decrease the error as global roll and pitch become
observable, the tightly coupled approach is clearly superior.
In particular in the last sequence – which includes strong mo-
tion blur and illumination changes – direct tracking directly
benefits from tight IMU integration. See also Fig. 5.

of the pose, velocity, and biases in frame i with associated
covariance estimate Σ̂s,i. Hence, the IMU error function
terms are

EIMU(si−1, si) := (si 	 ŝi)T Σ̂−1
s,i (si 	 ŝi) . (16)

C. Optimization

The error function in eq. (3) can be written as

E(s) =
1

2
rTWr (17)

=
1

2

[
rTI rTIMU

] [WI 0
0 WIMU

] [
rI
rIMU

]
. (18)

The weights either implement the Huber norm on the pho-
tometric residuals rI using iteratively re-weighted least-
squares, or correspond to the inverse covariances of the IMU
residuals rIMU (eq.(16)). We optimize this objective using
the Levenberg-Marquardt method. Linearizing the residual
around the current state

r(s⊕ δs) = r(s) + Jsδs (19)

where

Js =
dr(s⊕ δs)

dδs

∣∣∣∣
δs=0

, (20)
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Fig. 5: Translational drift evaluated over different segment
lengths for the three EuRoC sequences. As for rotation
(Fig. 4), the tightly coupled approach clearly performs best.

the error function E(s) can be approximated around the
current state s with a quadratic function

E(s⊕ δs) = Es + δsT bs +
1

2
δsTHsδs (21)

bs = JTsWr(s) (22)

Hs = JTsWJs (23)

where bs is the Jacobian and Hs is the Hessian approxima-
tion of E(s) and δs is a right-multiplied increment to the
current state.

This function is minimized through δs = −H−1
s bs,

yielding the state update s ← s ⊕ δs. This update and
relinearization process is repeated until convergence.

D. Partial Marginalization
To constrain the size of the optimization problem, we

perform partial marginalization and keep the set of optimized
states at a small constant size. Specifically, we only optimize
for the current frame state si, the state of the previous frame
si−1, and the state sref of the reference frame used for
tracking. If we split our state space s into sλ and sµ, where
sλ are the state variables we want to keep in the optimization,
and sµ are the parts of the state that we want to marginalize
out, we can rewrite the update step as follows[

Hµµ Hµλ

Hλµ Hλλ

] [
δsµ
δsλ

]
=

[
bµ
bλ

]
. (24)

Applying the Schur complement to the upper part of the
system we find

δsλ = − (H∗λλ)
−1
b∗λ, (25)

H∗λλ = Hλλ −HλµH−1
µµHµλ, (26)

b∗λ = bλ −HλµH−1
µµbµ. (27)



which represents a system for E∗(sλ) with states sµ
marginalized out. Figure 3 shows the evolution of the graph
with the marginalization procedure applied after adding every
new frame to the graph.

E. Changing the Linearization Point

Partial marginalization fixes the linearization point of sλ
for the quantities involving both sµ and sλ in eq. (25).
Further optimization, however, changes the linearization
point such that a relinearization would be required. We
avoid the tedious explicit relinearization using a first-order
approximation. If we represent the new linearization point
s′λ by the old linearization point sλ and an increment ∆sλ,

s′λ = sλ ⊕ s−1
λ ⊕ s

′
λ︸ ︷︷ ︸

=:∆sλ

, (28)

we can change the linearization point of the current quadratic
approximation of E∗ through

E∗(s′λ ⊕ δsλ) = E∗(sλ ⊕∆sλ ⊕ δsλ) (29)
≈ E∗(sλ ⊕ (∆sλ + δsλ)). (30)

The approximation made holds only if both ∆sλ and δsλ
are small – as both represent updates to the state, this is a
valid assumption. We can then approximate the error function
linearized around s′λ:

E∗(s′λ ⊕ δsλ) = E∗λ′ + δsTλb
∗
λ′ +

1

2
δsTλH∗λ′λ′δsλ, (31)

E∗λ′ = E∗λ +
1

2
∆sλ

TH∗λλ∆sλ + ∆sTλb
∗
λ, (32)

b∗λ′ = b∗λ + H∗λλ∆sλ, (33)
H∗λ′λ′ = H∗λλ. (34)

F. Statistical Consistency

Our framework accumulates information from many
sources, in particular it uses (1) IMU observations, (2)
static stereo, (3) temporal stereo / direct tracking and (4) a
smoothness-prior on the depth. While old camera poses are
correctly marginalized, we discard all pose-depth and depth-
depth correlations: For each image alignment factor, depth
values are treated as independent (noisy) input (eq. (5)). In
turn, the effect of noisy poses is approximated during depth
estimation [7]. While from a statistical perspective this is
clearly incorrect, it allows our system to use hundreds of
thousands of residuals per direct image alignment factor in
real-time. Furthermore, it becomes unnecessary to drop past
observations in order to preserve depth-depth independence,
as done in [19]. Also note that – in contrast to monocular
LSD-SLAM – much of the depth information originates from
static stereo, which in fact is independent of the tracked
camera poses.

VI. RESULTS

We evaluate our approach both qualitatively and quantita-
tively on three different datasets, including a direct compar-
ison to state-of-the-art feature-based VI odometry methods.
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Fig. 6: Long-run comparison with state-of-the-art keypoint-
based VI odometry methods, both filtering-based (msckf)
and optimization-based (aslam). Dataset and results reported
in [20]. Top: horizontal trajectory plot. Middle: height es-
timate. Bottom: Translational/rotational drift evaluated over
different segment lengths.

We have selected the datasets as they are especially
challenging for direct visual odometry methods. They contain
contrast changes, pure rotations, aggressive motions and
relatively few frames per second, and for all of them the
pure monocular algorithm [4] fails to track the sequence until
the end. For Malaga dataset we used the default calibration
parameters for evaluation. For all other datasets an offline
calibration was performed using the Kalibr framework [11].

We compare loosely- with tightly-coupled IMU integration
with Stereo LSD-SLAM. The loosely coupled version runs
the direct image alignment process separately, and only the
final pose estimation result of the alignment is included
into the optimization as a relative pose constraint between
reference and current frame. With regards to the reconstruc-
tion accuracy, ground truth is not available on the datasets,
such that it can only be judged qualitatively. Nevertheless,
as tracking is based on the reconstruction, its accuracy
implicitly depends on the trajectory estimate.



Fig. 7: Qualitative results on a subset of Malaga Urban Dataset. Semi-dense reconstructions of selected parts of the map are
shown on the left, and the overall trajectory with semi-dense reconstruction is shown in the middle. On the right a map of
the city with overlayed trajectory measured with GPS is presented.

Fig. 8: Images from the EuRoC (upper row: motion blur,
middle row: textureless) and Malaga datasets (bottom row)
with semi-dense depth estimates. Semi-dense depth maps,
with color-coded depth estimates are shown on the left.

A. EuRoC Dataset

This dataset is obtained from the European Robotics
Challenge (EuRoC), and contains three calibrated stereo
video sequences with corresponding IMU measurements,
recorded with a Skybotix VI sensor. They were obtained
from a quadrocopter flying indoors, and are in increasing
difficulty: The third and most challenging sequence includes
fast and aggressive motion, strong illumination changes as
well as motion-blur and poorly textured views; some example
images are shown in Fig. 8, as well as in the attached video.

The images are provided with all required calibration pa-
rameters and motion-capture based ground truth, at WVGA
resolution.

On this dataset, we evaluate the difference between tight
IMU integration, loose IMU integration and purely vision-
based LSD-SLAM. With the two upper plots in Fig. 6,
we give a qualitative impression of the absolute trajectory
estimate as in [20]. Since visual odometry does not correct
for drift like a SLAM or full bundle adjustment method,
the quantitative performance of the algorithm can be judged
from the relative pose error (RPE) measure in the two bottom
plots. The results in Fig. 5 and Fig. 4 demonstrate that
our tightly-integrated, direct visual-inertial odometry method
outperforms loose IMU integration both in translation and
orientation drift. Both IMU methods in turn are better than
the purely vision-based approach. The differences become
particularly obvious for the last sequence, as here the tight
IMU integration greatly helps to overcome non-convexities
in the photometric error, allowing to seamlessly track through
parts with strong motion blur.

Qualitatively, the reconstruction in Fig. 1 demonstrates a
significant reduction in drift through tight IMU integration.
The improved performance becomes apparent through the
well-aligned, highlighted reconstructions which are viewed
at the beginning and the end of the trajectory.

B. Long-Term Drift Evaluation

The second dataset contains a 14 minutes long sequence
designed to evaluate long-term drift, captured with the same
hardware setup as the EuRoC dataset. It is described and
evaluated in [20] facilitating direct numeric comparison.

On this dataset, we compare our method with stereo
depth estimation to the keypoint-based nonlinear optimiza-
tion methods presented in [20] (aslam, aslam-mono) and the
filtering-based approach in [25] (msckf). The aslam methods



come in a stereo (aslam) and a monocular (aslam-mono)
version. From Fig. 5 we can observe that the proposed
method outperforms the filtering-based approach and the
state-of-the-art keypoint-based optimization methods. Note,
that our method at the same time provides a semi-dense 3D
reconstruction of the environment.

C. Malaga Dataset: Autonomous Driving

Third, we provide qualitative results on the Malaga
dataset [1], obtained from a car-mounted stereo camera. For
this dataset only raw GPS position without orientation is
available as ground-truth such that we cannot provide a
quantitative evaluation. Figure 8 shows a resulting trajectory,
a semi-dense reconstruction of the environment, and a city
map overlaid with GPS signal obtained on the Malaga
dataset. These qualitative results demonstrate our algorithm
in a challenging outdoor application scenario. Repetitive
texture, moving cars and pedestrians, and direct sunlight pose
gross challenges to vision-based approaches.

VII. CONCLUSION

We have presented a novel approach to direct, tightly
integrated visual-inertial odometry. It combines a fully di-
rect structure and motion approach – operating on per-
pixel depth instead of individual keypoint observations –
with tight, minimization-based IMU integration. We show
that the two sensor sources ideally complement each other:
stereo vision allows the system to compensate for long-
term IMU bias drift, while short-term IMU constraints help
to overcome non-convexities in the photometric tracking
formulation, allowing to track through large inter-frame
motion or intervals without visual information. Our method
can outperform existing feature-based approaches in terms
of tracking accuracy, and simultaneously provides accurate
semi-dense 3D reconstructions of the environment, while
running in real-time on a standard laptop CPU.

In future work, we will investigate tight IMU integration
with monocular LSD-SLAM. We also plan to employ this
technology for localization and mapping with flying and
mobile robots as well as handheld devices.
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urban dataset: High-rate stereo and lidars in a realistic urban scenario.
Int. Journal of Robotics Research (IJRR), 2014.

[2] M. Bloesch, S. Omari, M. Hutter, and R. Siegwart. Robust visual
inertial odometry using a direct EKF-based approach. In Proc. of the
IEEE/RSJ Int. Conf. on Intelligent Robot Systems (IROS), 2015.

[3] A. Comport, E. Malis, and P. Rives. Accurate quadri-focal tracking
for robust 3D visual odometry. In Proc. of the IEEE Int. Conf. on
Robotics and Automation (ICRA), 2007.
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