
Real-Time Trajectory Replanning for MAVs using
Uniform B-splines and 3D Circular Buffer

Vladyslav Usenko, Lukas von Stumberg, Andrej Pangercic and Daniel Cremers
Technical University of Munich

Abstract—In this work we present a real-time approach for
local trajectory replanning for MAVs. Current trajectory gen-
eration methods for multicopters achieve high success rates in
cluttered environments, but assume the environment is static and
require prior knowledge of the map. In our work we utilize the
results of such planners and extend them with local replanning
algorithm that can handle unmodeled (possibly dynamic) obsta-
cles while keeping MAV close to the global trajectory. To make
our approach real-time capable we maintain information about
the environment around MAV in an occupancy grid stored in 3D
circular buffer that moves together with a drone, and represent
the trajectories using uniform B-splines. This representation
ensures that trajectory is sufficiently smooth and at the same
time allows efficient optimization.

I. INTRODUCTION

In recent years, micro aerial vehicles (MAVs) have gained
popularity in many practical applications, such as aerial pho-
tography, inspection, surveillance and even delivery of goods.
Most of the commercially available drones assume the path
planned by the user is collision free, or provide only limited
obstacles avoidance capabilities. In order to ensure safe nav-
igation in the presence of unpredicted obstacles a replanning
method that generates a collision free trajectory is required.

The formulation of trajectory generation problem largely
depends on the application and assumptions about the envi-
ronment. For the case where MAV has to navigate in cluttered,
possibly indoor, environment we would suggest to subdivide
the problem into two layers. At first, we assume that a map of
the environment is available and a trajectory from a specified
start point to the goal point should be planned in advance.

This task has been a popular research topic for the recent
years, with several solutions proposed by Achtelik et al. [1]
and Richter et al. [21]. They use occupancy representation of
the environment to check for collisions and search for the valid
path in visibility graph that is constructed by sampling based
planners. After that, they follow the approach by Mellinger and
Kumar [14] to fit polynomial splines through the points of the
planned path to generate a smooth feasible trajectory. The best
algorithms of this kind can compute a trajectory through tens
of waypoints in several seconds.

To cope with the fact that there might be unmodeled,
possibly dynamic, obstacles a lower planning level is required.
It should be able to generate a trajectory that keeps the
MAV close to the global path and simultaneously avoids the
unpredicted obstacles based on environment representation
constructed from the most recent sensor measurements. This

Fig. 1: Example of local trajectory replanning algorithm run-
ning in simulator. Global trajectory is visualized in purple
and local obstacle map is visualized in red. Local trajectory,
represented as a uniform quintic B-spline, and it’s control
points are visualized in yellow for the fixed parts and green
for the parts that can still change due to optimization.

replanning level should run in several milliseconds in order to
ensure safety of the MAV operating at high velocities.

The proposed approach solves a similar problem as the
approach by Oleynikova et al. [17], but instead of using
polynomial splines for representing the trajectory we propose
to use B-splines, and discuss their advantages over polynomial
splines for this particular task. Further, we propose to use
a robocentric, fixed-size 3D circular buffer to maintain the
local information about the environment. Even though, it
cannot model arbitrarily large occupancy maps, as some octree
implementations, faster look-up and measurement insertion
operations make it better suited for the real-time replanning
tasks.

ar
X

iv
:1

70
3.

01
41

6v
1

 [
cs

.R
O

]
 4

 M
ar

 2
01

7

We demonstrate the performance of the system on several
simulated and real-world experiments, and provide open-
source implementation of the software to community.

The contributions of the work are as follows:

• Formulation of local trajectory replanning as B-spline
optimization problem and thorough comparison with al-
ternative representations (polynomial, discrete).

• High-performance 3D circular buffer implementation for
local obstacle mapping and collision checking and com-
parison with alternative methods.

• System design and evaluation on realistic simulator and
real hardware with performance comparison to existing
methods.

Besides analyzing the results presented in the paper, we
encourage the reader to watch the demonstration video and
inspect the available code, which can be found at:

https://vision.in.tum.de/research/
robotvision/replanning

II. RELATED WORK

In this section we describe the relevant works for different
aspects of collision free trajectory generation. First, we discuss
existing trajectory generation strategies and their applications
for MAV motion planning. After that, we discuss the state-of-
the-art approaches for environment mapping in 3D.

A. Trajectory generation

Trajectory generation strategies can be subdivided into
three main approaches: search-based path planning followed
by the smoothing step, optimization-based approaches and
approaches based on motion primitives.

In search based approaches, first, a non-smooth path is
constructed on the graph that represents the environment. This
graph can be a fully connected grid as in [6] and [11], or
computed by a sampling-based planner (RRT, PRM) as in
[21] and [3]. After that, a smooth trajectory represented as
polynomial, B-spline or discrete set of points is computed to
closely follow this path. This class of approaches is currently
the most popular choice for the large-scale path planning
problems in cluttered environments where a map is a-priory
available.

Optimization based approaches rely on minimizing a cost
function that consist of smoothness and collision terms. The
trajectory itself, can be represented as a set of discrete points
[25] or polynomial segments [17]. The approach presented in
this work also falls in this category, but represents a trajectory
using uniform B-splines.

Another group of approaches is based on path sampling
and motion primitives. Sampling based approaches were suc-
cessfully used for challenging tasks of ball juggling [15] and
motion primitives were successfully applied for flying through
the forest [19], but ability of both approaches to find a feasible
trajectory largely depends on the chosen discretization.

B. Environment representation

To be able to plan a collision-free trajectory a representation
of the environment that stores an information about occupancy
is required. The simplest solution that can be used in 3D case is
a voxel grid. In this representation, a volume is subdivided into
regular grid of smaller sub-volumes (voxels), where each voxel
stores information about it’s occupancy. The main drawback
of this approach is a large memory-footprint, which allows to
map only small fixed size volumes. The advantage, however,
is a very fast constant time access to any element.

To deal with the memory limitation, octree based repre-
sentations of the environment are used in [9] [22]. They store
information in an efficient way by pruning the leafs of the trees
that contain the same information, but access times for each
element become logarithmic in the number of nodes, instead
of constant time for the voxel based approaches.

Another popular approach to map the environment is Voxel
Hashing proposed by Nießner et al. [16] and used in [18]. It is
mainly used for storing Truncated Signed Distance Function
(TSDF) representation of the environment. In that case, only a
narrow band of measurements around the surface is inserted,
and only the memory required for that sub-volume is allocated.
However, when full measurements have to be inserted, or the
dense information has to be stored the advantages of this
approach compared to others are not significant.

III. TRAJECTORY REPRESENTATION USING UNIFORM
B-SPLINES

We use uniform B-spline representation for the trajectory
function p(t). Since, as shown in the works by Mellinger and
Kumar [14] and Achtelik et al. [1], the trajectory has to be
continuous up to forth derivative of position (snap), we use
quintic B-splines to ensure the required smoothness of the
trajectory.

A. Uniform B-splines

The value of B-spline of degree k−1 can be evaluated using
the following equation:

p(t) =

n∑
i=0

piBi,k(t), (1)

where pi ∈ Rn are control points at times ti, i ∈ [0, .., n] and
Bi,k(t) are basis functions that can be computed with the De
Boor - Cox recursive formula [5] [4]. Uniform B-splines have
a fixed time interval ∆t between their control points, which
simplifies the computation of basis functions.

In the particular case of quintic uniform B-splines, for a time
t ∈ [ti, ti+1) the value of p(t) depends only on 6 control points
at [ti−2, ti−1, ti, ti+1, ti+2, ti+3]. To simplify calculations we
transform time to uniform representation s(t) = (t− t0)/∆t,
such that control points transform into si ∈ [0, .., n]. We define
function u(t) = s(t) − si to be a time since the start of the
segment. Following the matrix representation of De Boor -
Cox formula [20], the value of the function can be evaluated
as follows:

https://vision.in.tum.de/research/robotvision/replanning
https://vision.in.tum.de/research/robotvision/replanning

0 2 4 6 8 10
Insertion time [ms]

0

100

200

300

400

500 Ring buffer

(a)

0 20 40 60 80 100
Insertion time [ms]

0

20

40

60

80

100

120 Octomap

(b) (c) (d)

Fig. 2: Comparison between octomap and circular buffer for occupancy mapping on the fr2/pioneer slam2 sequence of [23].
Being able to map only a local environment around the robot (3m at voxel resolution of 0.1m) circular buffer is more than
an order of magnitude faster when inserting pointcloud measurements from depth map subsampled to 160 × 120 resolution.
Subplots (a) and (b) show the histograms of insertion time, and (c) and (d) show qualitative results of circular buffer (red -
occupied, green - free) and octomap respectively.

p(u(t)) =

1
u
u2

u3

u4

u5

T

M6

pi−2
pi−1
pi
pi+1

pi+2

pi+3

 , (2)

M6 =
1

5!

1 26 66 26 1 0
−5 −50 0 50 5 0
10 20 −60 20 10 0
−10 20 0 −20 10 0

5 −20 30 −20 5 0
−1 5 −10 10 −5 1

 . (3)

Given this formula, we can evaluate derivatives with respect
to time (velocity, acceleration) in the following way:

p′(u(t)) =
1

∆t

0
1

2u
3u2

4u3

5u4

T

M6

pi−2
pi−1
pi
pi+1

pi+2

pi+3

 , (4)

p′′(u(t)) =
1

∆t2

0
0
2

6u
12u2

20u3

T

M6

pi−2
pi−1
pi
pi+1

pi+2

pi+3

 . (5)

The computation of other time derivatives and derivatives
with respect to control points is also straightforward.

The integral over squared time derivatives can be computed
in closed form. For example, integral over squared acceleration

can be computed as follows:

Eq =

∫ ti+1

ti

p′′(u(t))2dt (6)

=

pi−2
pi−1
pi
pi+1

pi+2

pi+3

T

MT
6 QM6

pi−2
pi−1
pi
pi+1

pi+2

pi+3

 , (7)

(8)

where

Q =
1

∆t3

∫ 1

0

0
0
2

6u
12u2

20u3

0
0
2

6u
12u2

20u3

T

du (9)

=
1

∆t3

0 0 0 0 0 0
0 0 0 0 0 0
0 0 8 12 16 20
0 0 12 24 36 48
0 0 16 36 57.6 80
0 0 20 48 80 114.286

 . (10)

Please note that matrix Q for uniform B-spline is constant,
so it can be pre-computed in advance for integral over any
squared derivative (see [21] for details).

B. Comparison with polynomial trajectory representation
In this subsection we discuss the advantages and disadvan-

tages of the B-spline trajectory representation compared to the
representation based on polynomial splines [21] [17].

To have a trajectory that is continuous up to forth derivative
of position we need to use B-splines of degree 5 or greater
and polynomial splines of at least degree 9 (we need to set 5
boundary constraints on each endpoint of the segment). Fur-
thermore, for polynomial splines we have to explicitly include

Fig. 3: Example of online trajectory replanning using the
proposed optimization objective. Plot shows global trajectory
computed by fitting a polynomial spline through the fixed
waypoints (red), voxels with distance smaller than 0.5m to
the obstacle (blue), computed B-spline trajectory with fixed
(cyan) and still optimized (green) segments and control points.
In the areas with no obstacles computed trajectory closely
follows the global one, while close to obstacle it generates a
smooth trajectory that avoids it, and returns back to the global
trajectory.

boundary constraints into optimization, while B-splines guar-
antee to generate smooth trajectory for arbitrary set of control
points. Another useful property of B-splines is the locality
of trajectory changes due to the changes in control points,
which means that changes in one control point affect only
few segments from the whole trajectory. All these properties
result in faster optimization, since we have less variables to
optimize and less constraints.

Evaluation of position at particular time, derivatives with
respect to time (velocity, acceleration, jerk, snap), and integrals
over squared time derivatives are similar for both cases, since
closed form solutions for them exist.

The drawback of B-splines, however, is the fact that the
trajectory does not pass through the control points. This makes
it hard to enforce boundary constraints. In particular, the only
constraint we can enforce is a static one (all time derivatives
are zero), which can be achieved by inserting the same control
point k+1 times, where k is a degree of B-spline. If we need to
set an endpoint of trajectory to have non-zero time derivative
an iterative optimization algorithm has to be applied.

These properties make polynomial splines more suitable for
the cases where control points come from planning algorithms
(RRT, PRM), so the trajectory has to pass through them,
otherwise collision free property of the path is not guaranteed.
For local replanning, which has to account for unmodeled
obstacles, this property is not so important, which makes the
use of B-spline trajectory representation a better option.

IV. LOCAL ENVIRONMENT MAP USING 3D CIRCULAR
BUFFER

In order to avoid obstacles during the flight we need to
maintain an occupancy model of the environment. On one
hand, it should rely on the most recent sensor measurements,
and on the other hand it should maintain some information
over time, since the field of view of the sensors mounted on
the MAV is usually limited.

We argue that for local trajectory replanning a simple
solution with robocentric 3D circular buffer is beneficial. In
the following we discuss implementation details and benefits
for the application.

A. Addressing

To enable addressing we discretise the volume into voxels
of size r. This gives us a mapping from point p in 3D space
to an integer valued index x that identifies a particular voxel,
and inverse operation, that given an index of the voxel outputs
it’s center point.

Circular buffer consists of continuous array of size N , and
offset index o that defines the location of the coordinate system
of the volume. With that, we can define the functions to check
if a voxel is in the volume and find it’s address in the stored
array:

insideV olume(x) = 0 ≤ x− o < N, (11)
address(x) = (x− o) mod N. (12)

If we restrict the size of the array to N = 2p we can
rewrite these function to use cheap bitwise operations instead
of divisions:

insideV olume(x) = ! ((x− o) & (∼ (2p − 1))), (13)
address(x) = (x− o) & (2p − 1). (14)

where & is a ”bitwise and”, ∼ is a ”bitwise negation” and !
is a ”boolean not” operations.

To keep the volume centered around the camera, we simply
have to change the offset o and clear the updated part of the
volume. This eliminates the need to copy large amounts of
data when the robot moves.

B. Measurement Insertion

We assume that the measurements come from the range
sensors, like Lidars, RGB-D cameras or stereo cameras, and
can be inserted into occupancy buffer using raycast operations.

We use an additional flag buffer to store a set of voxels
affected by insertion. First, we iterate over all points in our
measurements and for the points that lie inside the volume we
mark corresponding voxels as occupied. For the points that lie
outside the volume we compute the closest point inside the
volume and mark corresponding voxels as a free ray. Second,
we iterate over all marked voxels, and perform raycasting
towards the sensor origin. We use a 3D variant of Bresenham’s
line algorithm [2] to make the raycasting operation efficient.

(a) (b) (c)

Fig. 4: Real world experiment performed in the outdoor environment. The drone (AscTec Neo) equipped with RGB-D camera
(Intel Realsense R200) is shown in (a). In the experiment, the global path is set to a straight line with goal position 30 meters
ahead of the drone and trees act as unmapped obstacles that the drone has to avoid. Side view of the scene is shown in (b)
and visualization with planned trajectory is shown in (c).

After that, we again iterate over the volume and update the
volume elements using the hit and miss probabilities similar
to the approach described in [9].

C. Distance Map Computation

In order to allow fast collision checking for the trajectory
we compute an Euclidean Distance Transform (EDT) for the
occupancy volume. This way, a drone approximated by the
bounding sphere can be checked for collision in a single
look-up querry. We utilize an efficient O(n) algorithm by
Felzenszwalb and Huttenlocher [7] to compute Euclidean
Distance Transform for the volume. For querying distance and
gradient computation a trilinear interpolation is used.

V. TRAJECTORY OPTIMIZATION

The local replanning problem is represented as an optimiza-
tion of the following cost function:

Etotal = Eep + Ec + Eq + El, (15)

where Eep is an endpoint cost function that penalizes deviation
of position and velocity at the end of optimized trajectory
segment from the desired values that usually come from the
global trajectory; Ec is a collision cost function; Eq is a cost of
integral over the squared derivatives (acceleration, jerk, snap);
El is a soft limit on the norm of time derivatives (velocity,
acceleration, jerk and snap) over the trajectory.

A. Endpoint Cost Function
The purpose of Endpoint Cost Function is to keep the

local trajectory close to the global one. This is achieved by
penalizing the deviation of position and velocity at the end of
the optimized trajectory segment from the desired values that
come from global trajectory. Since the property is formulated
as a soft constraint, the targeted values might not be achieved,
for example, because of the obstacles blocking the path. The
function is defined as:

Eep = λp(p(tep)− pep)2 + λv(p
′(tep)− p′ep)2, (16)

where tep is an end time of the segment, p(t) is the trajectory
that we optimize, pep and p′ep are the desired position and
velocity and λp and λv are the weighting parameters.

B. Collision Cost Function

Collision cost penalizes the trajectory points that come
closer than threshold τ to the obstacles. The cost function
is computed as the following line integral:

Ec = λc

∫ tmax

tmin

c(p(t))||p′(t)||dt, (17)

where the cost function for every point c(x) is defined as
follows:

c(x) =

{
1
2τ (d(x)− τ)2 if d(x) ≤ τ
0 if d(x) > τ,

(18)

where τ is a distance threshold, d(x) is a distance to the
nearest obstacle and λc is a weighting parameter.

C. Quadratic Derivative Cost Function

Quadratic derivative cost is penalizing an integral over
square derivatives of the trajectory (acceleration, jerk and
snap). It is defined as follows:

Eep =

4∑
i=2

∫ tmax

tmin

λqi(p
(i)(t))2dt, (19)

and has a closed form solution for trajectory segments repre-
sented as B-splines.

D. Derivative Limit Cost Function

In order to make sure that computed trajectory is feasible we
have to ensure that velocity, acceleration and higher derivatives
of position stay bounded. It can be included into optimization
as a constraint ∀t : p(k)(t) < pkmax, but in our approach we
formulate it as a soft constraint using the following function:

Eep =

4∑
i=2

∫ tmax

tmin

l(p(i)(t))dt, (20)

0 2 4 6 8 10
0

200

400

600

800

1000 Soft Limit Cost Function

Fig. 5: Soft limit cost function l(x) proposed in Section V-D
for pmax equals 3 (red), 6 (green) and 9 (blue). This function
acts as a soft limit on the time derivatives of the trajectory
(velocity, acceleration, jerk, snap) to ensure they are bounded
and feasible for the MAV to execute.

where l(x) is defined as follows:

l(x) =

{
exp((p(k)(x))2 − (pkmax)2) if p(k)(x) > pkmax
0 if p(k)(x) ≤ pkmax

(21)

This allows us to use any algorithm designed for uncon-
strained optimization for minimizing this cost function.

E. Implementation Details

To run the local replanning algorithm on the drone, we first
compute a global trajectory using the approach described in
[21]. This gives us a polynomial spline trajectory that avoids
all mapped obstacles. After that, we initialize our replanning
algorithm with 6 control points at the beginning of the global
trajectory and C control points that need to be optimized.

At every iteration of the algorithm we set the endpoint
constraints (Sec. V-A) to be the position and velocity at tep
of the global trajectory. Collision cost (Sec. V-B) for the
trajectory is evaluated using a circular buffer that contains the
measurements from the RGB-D camera mounted on the drone.
Weights for quadratic derivatives cost (Sec. V-C) are set to the
same values as used for global trajectory generation and limits
(Sec. V-D) are set 20% higher to be able to follow the global
trajectory at the right velocity while laterally deviating from
it.

After optimization, the first control point, from the points
that were optimized, is fixed and sent to the MAV position
controller. Another control point is added to the end of the
spline, which increases the tep and moves the endpoint further
along the global trajectory.

For optimization we use [10], which provides an interface
to several optimization algorithms. We have tested MMA [24]
and BFGS [13] algorithms for optimization, with both of them
showing similar performance.

VI. RESULTS

In this section we present experimental results of the pro-
posed approach. First, we evaluate mapping and trajectory

Algorithm Success
Fraction

Mean
Norm.
Path

Length

Mean
Compute
time [s]

Inf. RRT* + Poly 0.9778 1.1946 2.2965
RRT Connect + Poly 0.9444 1.6043 0.5444
CHOMP N = 10 0.3222 1.0162 0.0032
CHOMP N = 100 0.5000 1.0312 0.0312
CHOMP N = 500 0.3333 1.0721 0.5153
[17] S = 2 jerk 0.4889 1.1079 0.0310
[17] S = 3 vel 0.4778 1.1067 0.0793
[17] S = 3 jerk 0.5000 1.0996 0.0367
[17] S = 3 jerk + Restart 0.6333 1.1398 0.1724
[17] S = 3 snap + Restart 0.6222 1.1230 0.1573
[17] S = 3 snap 0.5000 1.0733 0.0379
[17] S = 4 jerk 0.5000 1.0917 0.0400
[17] S = 5 jerk 0.5000 1.0774 0.0745
Ours C = 2 0.4777 1.0668 0.0008
Ours C = 3 0.4777 1.0860 0.0011
Ours C = 4 0.4888 1.1104 0.0015
Ours C = 5 0.5111 1.1502 0.0021
Ours C = 6 0.5555 1.1866 0.0028
Ours C = 7 0.5222 1.2368 0.0038
Ours C = 8 0.4777 1.2589 0.0054
Ours C = 9 0.5777 1.3008 0.0072

TABLE I: A table showing a comparison of different path
planning approaches. All results except of ours are taken from
[17]. Our approach performs similar to polynomial splines
without restarts, which indicates that B-splines can represent
similar trajectories as polynomial splines. Lower computation
times of our approach can be explained by the fact that
unconstrained optimization happens directly on the control
points, unlike other approaches where the problem first has
to be transformed to unconstrained form.

optimization components of the system separately to compare
with other approaches and justify their selection. Second,
we evaluate the whole system in the realistic simulator with
several different environments, and at last, we present an
evaluation of the system running on the real hardware.

A. 3D circular buffer performance

We compare our implementation of the 3D circular buffer
to the popular octree based solution of [9]. Both approaches
use the same resolution of 0.1m. We insert the depth maps
sub-sampled to the resolution 160× 120, which come from a
real-world dataset [23]. The results (Fig. 2) show that insertion
of the data is more than a magnitude faster for the circular
buffer, but only a limited space can be mapped with this
approach. Since for local replanning we need the map of a
bounded neighborhood around the drone, this drawback is not
significant for the target application.

B. Optimization performance

To evaluate the trajectory optimization we use a forest
dataset from [17]. Each spline configuration is tested on 9
environments with 10 random start and end positions at least
4m away from each other. Each environment is 10×10×10m
in size and populated with trees with increasing density.
The optimization is initialized with straight line and after

Fig. 6: Result of local trajectory replanning algorithm run-
ning in simulator on the forest dataset. Global trajectory is
visualized in purple, local trajectory, represented as a uniform
quintic B-spline, and it’s control points are visualized in cyan.
Ground truth octomap forest model is shown for visualization
purpose.

optimization is checked for collisions. For all the approaches
success fraction, mean normalized length of the path and
computation time is reported (Table I).

The results of the proposed approach is similar in success
fraction to the polynomial splines from [17] without restarts,
but have much faster computation times. This is due to
unconstrained optimization involved that directly optimizes
the control points, while in [17] a complicated procedure to
transform problem to the unconstrained optimization form [21]
has to be applied.

Another example of the proposed approach for trajectory
optimization is shown in Figure 3. In this example a global
trajectory is generated through pre-defined set of points with
an obstacle placed in the middle of it. The optimization
is performed as described in Section V-E, with collision
threshold τ set to 0.5m. As can be seen in the plot, the local
trajectory in collision free regions aligns with a global one,
but when an obstacle occurs, it generates a smooth trajectory
to avoid it and returns to the global trajectory.

C. System Simulation

To further evaluate our approach we perform a realistic
simulation experiments using Rotors simulator [8]. The main
source of observations about the obstacles is a simulated RGB-
D camera that produces VGA depth maps at 20 FPS. To
control the MAV we use a controller of Lee et al. [12], which
is provided with the simulator, modified to receive trajectory
messages as control points for the uniform B-spline. When
there are no new commands with control points, the last
available control point is duplicated and inserted into B-spline.
This has a useful property for the failure case, since when
MAV is not receiving new control points, it will just slowly
stop at the last received control point.

Operation
Computing

3D
points

Moving
volume

Inserting
measure-
ments

SDF
computa-
tion

Trajectory
optimiza-
tion

Time
[ms] 0.265 0.025 0.518 9.913 3.424

TABLE II: Mean computation time for operations involved in
trajectory replanning in the simulation experiment with depth
map measurements sub-sampled to 160 × 120 and 7 control
points optimized.

We present qualitative results of the simulation in Figure 1
and 6. The drone is initialized in the free space and a global
path through the world populated with obstacles is computed.
In this case, the global path is intentionally computed to
intersect the obstacles. The environment around the drone is
mapped by inserting RGB-D measurements into the circular
buffer, which is then used in the optimization procedure
described above.

In all presented simulation experiments the drone was able
to compute local trajectory that avoids collisions and keeps it
close to the global path. The timing for different operations
involved in trajectory replanning is presented in Table II.

D. Real World Experiments

We also evaluate our system on a multicopter in several
outdoor experiments (Fig. 4). In the experiment, the drone is
initialized without prior knowledge of the map and with a
global path set as a straight line with the end point in front of
the drone 1m above the ground. The drone has to use onboard
sensors to map the environment and follow the global path
avoiding trees that act as obstacles.

Our platform is AscTec Neo equipped with stereo camera
for estimating the motion of the drone and RGB-D camera
(Intel Realsense R200) for mapping the obstacles. All compu-
tations are performed on the drone on 2.1 GHz Intel i7 CPU.

In all presented experiments the drone was able to success-
fully avoid the obstacles and reach the goal position, however
we have to point out that robustness of the system is at
the moment limited due to the accuracy of available RGB-
D cameras that are able to capture outdoor scenes.

VII. CONCLUSION

In this work we have presented an approach for real-time
local trajectory replanning for MAVs. We assume that a global
trajectory computed by the off-line algorithm is provided
and formulate an optimization problem that replans a local
trajectory to follow the global one and simultaneously avoid
unmodelled obstacles.

We improve the optimization performance by representing
local trajectory using uniform B-splines, which allow us to
perform an unconstrained optimization and reduce the number
of optimized parameters.

For collision checking we utilize a well known concept of
circular buffer to map a fixed area around the MAV with a
magnitude faster measurement insertion times than an octree
based solution.

We also present an evaluation of the complete system and
particular sub-systems in realistic simulations and on real
hardware.

ACKNOWLEDGMENTS

This work has been partially supported by grant CR 250/9-
2 (Mapping on Demand) of German Research Foundation
(DFG) and grant 608849 (EuRoC) of European Commission
FP7 Program.

We also thank the authors of [17] for providing their dataset
for evaluation of the presented method.

REFERENCES

[1] Markus W Achtelik, Simon Lynen, Stephan Weiss,
Margarita Chli, and Roland Siegwart. Motion-and
uncertainty-aware path planning for micro aerial vehicles.
Journal of Field Robotics, 31(4):676–698, 2014.

[2] John Amanatides and Andrew Woo. A fast voxel traver-
sal algorithm for ray tracing. In In Eurographics 87,
pages 3–10, 1987.

[3] Michael Burri, Helen Oleynikova, , Markus W. Achtelik,
and Roland Siegwart. Real-time visual-inertial mapping,
re-localization and planning onboard mavs in unknown
environments. In Intelligent Robots and Systems (IROS
2015).

[4] Maurice G Cox. The numerical evaluation of b-splines.
IMA Journal of Applied Mathematics, 10(2):134–149,
1972.

[5] Carl De Boor. On calculating with b-splines. Journal of
Approximation theory, 6(1):50–62, 1972.

[6] Dmitri Dolgov, Sebastian Thrun, Michael Montemerlo,
and James Diebel. Practical search techniques in path
planning for autonomous driving. Ann Arbor, 2008.

[7] Pedro F Felzenszwalb and Daniel P Huttenlocher. Dis-
tance transforms of sampled functions. Theory OF
Computing, 8:415–428, 2012.

[8] Fadri Furrer, Michael Burri, Markus Achtelik, and
Roland Siegwart. Robot operating system (ros). Studies
Comp.Intelligence Volume Number:625, The Complete
Reference (Volume 1)(978-3-319-26052-5):Chapter 23,
2016. ISBN:978-3-319-26052-5.

[9] Armin Hornung, Kai M. Wurm, Maren Bennewitz, Cyrill
Stachniss, and Wolfram Burgard. OctoMap: An efficient
probabilistic 3D mapping framework based on octrees.
Autonomous Robots, 2013.

[10] Steven G. Johnson. The nlopt nonlinear-optimization
package. URL http://ab-initio.mit.edu/nlopt.

[11] Dongwon Jung and Panagiotis Tsiotras. On-line path
generation for small unmanned aerial vehicles using b-
spline path templates. In AIAA Guidance, Navigation
and Control Conference and Exhibit, page 7135.

[12] Taeyoung Lee, Melvin Leoky, and N Harris McClam-
roch. Geometric tracking control of a quadrotor uav on
se (3). In Decision and Control (CDC), 2010 49th IEEE
Conference on, pages 5420–5425. IEEE, 2010.

[13] Dong C Liu and Jorge Nocedal. On the limited memory
bfgs method for large scale optimization. Mathematical
programming, 45(1):503–528, 1989.

[14] D. Mellinger and V. Kumar. Minimum snap trajectory
generation and control for quadrotors. In 2011 IEEE
International Conference on Robotics and Automation,
pages 2520–2525, May 2011. doi: 10.1109/ICRA.2011.
5980409.

[15] Mark W Mueller, Markus Hehn, and Raffaello D’Andrea.
A computationally efficient algorithm for state-to-state
quadrocopter trajectory generation and feasibility verifi-
cation. In Intelligent Robots and Systems (IROS).

[16] Matthias Nießner, Michael Zollhöfer, Shahram Izadi, and
Marc Stamminger. Real-time 3d reconstruction at scale
using voxel hashing. ACM Transactions on Graphics
(TOG), 32(6):169, 2013.

[17] Helen Oleynikova, Michael Burri, Zachary Taylor, Juan
Nieto, Roland Siegwart, and Enric Galceran. Continuous-
time trajectory optimization for online uav replanning. In
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2016.

[18] Helen Oleynikova, Zachary Taylor, Marius Fehr, Juan
Nieto, and Roland Siegwart. Voxblox: Building 3d
signed distance fields for planning. arXiv preprint
arXiv:1611.03631, 2016.

[19] Aditya A Paranjape, Kevin C Meier, Xichen Shi, Soon-
Jo Chung, and Seth Hutchinson. Motion primitives and
3d path planning for fast flight through a forest. The
International Journal of Robotics Research, 34(3):357–
377, 2015.

[20] Kaihuai Qin. General matrix representations for b-
splines. In Sixth Pacific Conference on Computer Graph-
ics and Applications, 1998., Oct 1998.

[21] Charles Richter, Adam Bry, and Nicholas Roy. Polyno-
mial trajectory planning for aggressive quadrotor flight in
dense indoor environments. In Robotics Research. 2016.

[22] Frank Steinbrücker, Jürgen Sturm, and Daniel Cremers.
Volumetric 3d mapping in real-time on a cpu. In Robotics
and Automation (ICRA), 2014 IEEE International Con-
ference on, pages 2021–2028. IEEE, 2014.

[23] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and
D. Cremers. A benchmark for the evaluation of rgb-d
slam systems. In Proc. of the International Conference
on Intelligent Robot Systems (IROS), Oct. 2012.

[24] Krister Svanberg. A class of globally convergent opti-
mization methods based on conservative convex separa-
ble approximations. SIAM journal on optimization, 12
(2):555–573, 2002.

[25] Matt Zucker, Nathan Ratliff, Anca D Dragan, Mihail Piv-
toraiko, Matthew Klingensmith, Christopher M Dellin,
J Andrew Bagnell, and Siddhartha S Srinivasa. Chomp:
Covariant hamiltonian optimization for motion planning.
The International Journal of Robotics Research, 2013.

http://ab-initio.mit.edu/nlopt

	I Introduction
	II Related Work
	II-A Trajectory generation
	II-B Environment representation

	III Trajectory Representation using uniform B-splines
	III-A Uniform B-splines
	III-B Comparison with polynomial trajectory representation

	IV Local Environment Map using 3D Circular Buffer
	IV-A Addressing
	IV-B Measurement Insertion
	IV-C Distance Map Computation

	V Trajectory Optimization
	V-A Endpoint Cost Function
	V-B Collision Cost Function
	V-C Quadratic Derivative Cost Function
	V-D Derivative Limit Cost Function
	V-E Implementation Details

	VI Results
	VI-A 3D circular buffer performance
	VI-B Optimization performance
	VI-C System Simulation
	VI-D Real World Experiments

	VII Conclusion

