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Visual-Inertial Mapping With Non-Linear
Factor Recovery

Vladyslav Usenko *“, Nikolaus Demmel

Abstract—Cameras and inertial measurement units are com-
plementary sensors for ego-motion estimation and environment
mapping. Their combination makes visual-inertial odometry (VIO)
systems more accurate and robust. For globally consistent map-
ping, however, combining visual and inertial information is not
straightforward. To estimate the motion and geometry with a set of
images large baselines are required. Because of that, most systems
operate on keyframes that have large time intervals between each
other. Inertial data on the other hand quickly degrades with the
duration of the intervals and after several seconds of integration,
it typically contains only little useful information. In this letter, we
propose to extract relevant information for visual-inertial mapping
from visual-inertial odometry using non-linear factor recovery.
We reconstruct a set of non-linear factors that make an optimal
approximation of the information on the trajectory accumulated by
VIO. To obtain a globally consistent map we combine these factors
with loop-closing constraints using bundle adjustment. The VIO
factors make the roll and pitch angles of the global map observable,
and improve the robustness and the accuracy of the mapping.
In experiments on a public benchmark, we demonstrate superior
performance of our method over the state-of-the-art approaches.

Index Terms—Simultaneous localization and mapping, sensor
fusion.

I. INTRODUCTION

ISUAL-INERTIAL odometry (VIO) is a popular approach
V for tracking the motion of a camera in application domains
such as robotics or augmented reality. By combining visual
and IMU measurements, one can exploit the complementary
strengths of both sensors and thereby increase accuracy and
robustness. Commonly, the optimization of camera trajectory
and map is performed locally on a small window of recent cam-
era frames and IMU measurements. This approach, however, is
inevitably prone to drift in the estimates.
Globally consistent optimization for visual-inertial mapping
is less explored in the computer vision community. While
in principle the optimization could be formulated as bundle
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Fig. 1. Orthographic top-down projection of the map (MH_05 sequence of
the EuRoC dataset [5]) rendered using the estimated gravity direction. To
obtain a gravity-aligned globally consistent map, non-linear factors are recovered
from the marginalization prior of the VIO and combined with keypoint-based
bundle adjustment. Green lines visualize keyframe connections resulting from
bundle adjustment factors and red lines connections from the recovered relative
pose factors. Additionally each keyframe has a recovered factor that penalizes
deviation from the gravity direction observed in VIO.

adjustment with additional IMU measurements, this approach
would quickly become computationally infeasible due to the
high number of frames which would lead to a large number
of optimization parameters in a naive formulation. To keep the
computational burden in bounds, bundle adjustment subsamples
the high-frame rate images of the camera to a smaller set
of keyframes. The common choice in VIO is to preintegrate
IMU measurements between consecutive frames. If we select
keyframes temporally far apart to make the optimization effi-
cient, the preintegrated IMU measurements provide only little
information to constrain the trajectory due to the accumulated
sensor noise. The small frame rate also affects the quality of
the estimated velocities and biases from visual and inertial cues
which are required for pose prediction using preintegrated IMU
measurements.

We propose a novel approach that formulates visual-inertial
mapping as bundle adjustment on a high-frame-rate set of vi-
sual and inertial measurements. Instead of directly optimizing
the camera trajectory for all frames, we propose a hierarchi-
cal approach which first recovers a local VIO estimate at the
frame rate of the camera. Once keyframes are removed and
marginalized from the current local VIO optimization window,
we extract non-linear factors [15] that approximate the accu-
mulated visual-inertial information about the camera motion
between keyframes. The keyframes and non-linear factors are
subsequently used on the global bundle-adjustment layer.

For the VIO layer, our method uses image features designed
for fast and accurate tracking, while for the mapping layer we
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employ distinctive but lighting and viewpoint invariant key-
points that are suitable for loop closing. With this, our approach
can leverage information from the IMU and short-term visual
tracking at high frame rates together with keypoint matching and
loop-closing at low frame rates for globally consistent mapping
(Fig. 1). The factors also help to keep the map gravity-aligned,
bridge between frames that do not have enough visual informa-
tion. Our approach also makes the optimization problem smaller,
since we do not have to estimate velocities and biases.

In summary, our contributions are:

e We propose a novel two-layered visual-inertial map-
ping approach that integrates keypoint-based bundle-
adjustment with inertial and short-term visual tracking
through non-linear factor recovery.

e As the first layer of our mapping approach we propose a
VIO system which outperforms the state-of-the-art meth-
ods in terms of trajectory accuracy on the majority of
the evaluated sequences. This is achieved by carefully
combining appropriate components (patch tracking, land-
mark representation, first-estimate Jacobians, marginaliza-
tion scheme) as detailed in Section I'V.

e Unlike other state-of-the-art systems that use preintegrated
IMU measurements also for mapping, we subsume high-
frame rate visual-inertial information in non-linear factors
extracted from the marginalization prior of the VIO layer.
This results not only in a smaller optimization problem but
also in better pose estimates in the resulting gravity aligned
map.

We encourage the reader to watch the demonstration video and
inspect the open-source implementation of the system, which is
available at:

https://vision.in.tum.de/research/vslam/basalt

II. RELATED WORK

Visual-inertial odometry: Early methods for visual-inertial
odometry are primarily filter-based [11], [18]. In tightly inte-
grated filters, the prediction step typically propagates the current
camera state estimate using the IMU measurements. The state
is recursively corrected based on the camera images. A signif-
icant drawback of filters is that the linearization point for the
non-linear measurement and state transition models cannot be
changed, once a measurement is integrated. Fixed-lag smoothers
(a.k.a. optimization-based approaches) such as [13], [27] relin-
earize at the current states in a local optimization window of
recent frames. The visual-inertial state estimation is formulated
as a full bundle adjustment (BA) over keyframes and IMU mea-
surements. The problem is reduced to a computationally man-
ageable size by marginalization of old frames up to the recent
set in the optimization window. The continuous relinearization,
windowed optimization and maintenance of the marginalization
prior increase the accuracy of the methods. The above methods
need to discard keypoints and observations that are observed in
marginalized keyframes in order to maintain the sparse structure
of the marginalization prior. Hsiung et al. [9] apply non-linear
factor recovery to achieve a sparse marginalization prior without
discarding information about observed keypoints. This way, the

approach can further refine the keypoints and achieve higher
accuracy, but in contrast to our work it is limited to local BA.
Visual-inertial mapping: Only few works have tackled glob-
ally consistent mapping from visual and inertial measurements.
Kasyanov et al. [12] add a pose-graph optimization layer with
loop-closing on top of a keyframe-based visual-inertial odome-
try method [13]. The pose graph is built from the keyframes of
the VIO and their relative pose estimates. In [19], the authors
add inertial measurements to a keyframe-based SLAM system
through IMU preintegration. The IMU measurements are prein-
tegrated into a set of pseudo-measurements between keyframes.
They notice that the accuracy of preintegrated measurements
degrades over time and restrict the time between keyframes
to 0.5 seconds in local BA and 3 seconds in global BA. A
further shortcoming of the method is its requirement of esti-
mating the camera velocity and IMU biases at each keyframe
which is less well constrained through visual measurements than
in our approach due to the strong temporal subsampling into
keyframes. Schneider er al. [24] follow a similar approach
in which preintegrated IMU measurements are inserted into
the optimization. The approach in [20] proposes a combina-
tion of VIO and 4 degree-of-freedom (DoF) pose optimization
for visual-inertial mapping. They fix 2 DoF (roll and pitch)
and optimize only for the others. We also constrain roll and
pitch from visual-inertial measurements. However, we extract
non-linear factors in a probabilistic formulation which account
for uncertainties in those values and are traded off with other
information in the global probabilistic optimization.

III. PRELIMINARIES

In this letter, we write matrices as bold capital letters (e.g. R)
and vectors as bold lowercase letters (e.g. £). Rigid-body poses
are represented as (R, p) € SO(3) x R? or as transformation
matrices T € SE(3) when needed. Incrementing a rotation R
by an increment £ € R3 is defined as R @ &€ = Exp(¢)R. The
difference between two rotations R; and Ry is calculated as
R; © R, = Log(R R, ") such that (R @ €) © R = &. Here
we use Exp : R?* — SO(3), which is a composition of the hat
operator (R® — s0(3)) and the matrix exponential (so(3) —
SO(3)) and maps rotation vectors to their corresponding rota-
tion matrices, and its inverse Log : SO(3) — R®. For all other
variables, such as translation, velocity and biases, we define &
and © as regular addition and subtraction.

In the following we will use a state s that is defined as a tuple
of several rotation and vector variables, and a function r(s) that
depends on it and can also produce rotations and vectors as
the result. An increment £ € R™ is a stacked vector with all
the increments of the variables in s. Then, the Jacobian of the
function with respect to the increment is defined as

1o = tim T OX(E)

Jim ; (1)

Here, s @ £ denotes that each component in s is incremented
with the corresponding segment in £ using the appropriate
definition of the & operator, and similarly for &. The limit is
done component-wise, such that the Jacobian is a matrix. For
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Euclidean quantities, this definition is just a normal derivative,
with an extension for rotations, both as function value and as
function argument. For more details and possible alternative
formulations we refer the reader to [2], [4], [7].

In non-linear least squares problems, we minimize functions
of the form

B(s) = gr(s) Wils) o

which is a squared norm of the sum of residuals with block-
diagonal weight matrix W. In this case, r(s) is purely vector-
valued. Near the current state s we can use a linear approximation
of the residual, which leads to

1
E(s®&) = E(s) + € 3, Wr(s) + 5€ Iy W)€
3)
The optimum of this approximated energy can be attained using
the Gauss-Newton increment
E* = _(JT )WJr(s))_lJrT(s)Wr<s) . (4‘)

r(s

With this, we can iteratively update the state s, 11 = s; @ £* until
convergence.

IV. VISUAL-INERTIAL ODOMETRY

We formulate the incremental motion tracking of the camera-
IMU setup over time as fixed-lag smoothing. First, we use
patch-based optical flow to track a sparse set of points in the
2D image plane between consecutive frames. This information
is then used in a bundle-adjustment framework which for every
frame minimizes an error that consists of point reprojection and
IMU propagation terms. To maintain a fixed parameter size
of the optimization problem we marginalize out old states. In
the remainder of this section we will discuss these stages in
more detail.

A. KLT Tracking

As a first step of our algorithm we detect a sparse set of
keypoints in the frame using the FAST [22] corner detector.
To track the motion of these points over a series of consec-
utive frames we use sparse optical flow based on KLT [14].
To achieve fast, accurate and robust tracking we combine the
inverse-compositional approach as described in [1] with a patch
dissimilarity norm that is invariant to intensity scaling. Several
authors suggested zero-normalized cross-correlation (ZNCC)
for illumination-invariant optical flow [17], [25], but we use
locally-scaled sum of squared differences (LSSD) defined in [21]
which is computationally less expensive than alternatives.

We formulate the patch tracking problem as estimating the
transform T € SE(2) between two corresponding patches in
two consecutive frames that minimizes the differences between
the patches according to the selected norm. Essentially, we
minimize a sum of squared residuals, where every residual is
defined as

ri(®) k)

_ (M) LO4) g (5)
Iy I
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Fig. 2. Example of KLT tracks estimated by our system. Despite changes in
exposure time the proposed method is able to estimate the warp in SE(2) between
the patches in the images.

Here, I;(x) is the intensity of image ¢ at pixel location x. The
set of image coordinates that defines the patch is denoted €2 and
the mean intensity of the patch in image ¢ is I;. A visualization
of the patch and tracking results is shown in Fig. 2.

To achieve robustness to large displacements in the image
we use a pyramidal approach, where the patch is first tracked
on the coarsest level and then on increasingly finer levels. For
outlier filtering, instead of an absolute threshold on the error, we
track the patches from the current frame to the target frame and
back to check consistency. Points that do not return to the initial
location with the second tracking are considered as outliers and
discarded.

B. Visual-Inertial Bundle Adjustment

To estimate the motion of the camera we combine error terms
based on tracked feature locations from KLT tracking with IMU
error terms based on preintegrated IMU measurements [8].

We use the following coordinate frames throughout the letter:
W is the world frame, I is the IMU frame and C; is the frame of
camera 7, where ¢ is the index of the camera in a stereo setup.
We estimate transformations Tw; € SE(3) from IMU to world
coordinate frame. The transformations T'c, from camera frame
1 to IMU frame and the projection functions 7; are assumed to
be static and known from calibration. For the formulation of re-
projection errors we denote the transformations from camera ¢ to
world by Ty, . Those do not constitute additional optimization
variables and are calculated using Ty and T, in practice.

At different points in time, we optimize a state

5= {Sk,Sf, Sl}a (6)

where sy contains IMU poses for n older keyframes, s contains
IMU poses, velocities and biases of the m most recent frames,
which possibly are also keyframes if they host landmarks, and s;
contains landmarks. A graphical representation of the problem is
shown in Fig. 5(a). Landmarks are stored relative to the keyframe
where they were observed for the first time [16] and defined by a
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Fig. 3. Geometric interpretation of stereographic projection used to represent
unit vectors. The two parameters define a point in the XY -plane of the coordinate
system shown in blue. To obtain the corresponding 3D unit vector we cast a
ray from (0 0—1)T and find an intersection with the unit sphere shown in
black. Three example points are visualized in red, green and yellow, with dashed
lines representing the rays intersecting with the sphere and arrows showing the
resulting unit vectors.

unit-length direction vector in the coordinate frame of the camera
and an inverse distance to the landmark [6]. In the proposed
system only keyframes host landmarks, which distinguishes
them from regular frames.

1) Representation of Unit Vectors in 3D: In order to avoid
the necessity of additional constraints for the optimization
and to keep the number of optimiziation variables small, we
parametrize the bearing vector in 3D space using a minimal
representation, which is two-dimensional. In [3] the authors
provide an extensive review of possible parametrizations and
suggest a new parametrization based on SO(3) rotations that
yields simple derivatives with respect to 2D increments.

In this work we use a parametrization based on stereographic
projection that given 2D coordinates (u,v)" generates a unit-
length bearing vector

2

= 7
1 +u? +0? @

= nv y N
z n—1

This parametrization is efficient as it only uses simple operations
such as multiplication and division (compared to trigonometric
operations needed in [6]) and is defined for all u and v. A
geometric interpretation is shown in Fig. 3. The only direction
vector that cannot be represented with finite u, v is the negative
Z-direction (0 0 — 1)". However, this is not a drawback in
practice, as cameras usually have a limited field of view and
cannot see points behind them.

2) Reprojection Error: The first cue we can use for motion
estimation is the reprojection error. When point ¢ that is hosted
in frame h (%) is detected in target frame ¢ at image coordinates
z;:, the residual is defined as

Tyt = Z4jt — 7Tc(t) (Tt—lTh(Z)ql(ua v, d)) B (8)

ai(wv.d) = (s(w0) ylwo) =wv) d) O

where ¢(t) is the index of the camera used to take frame ¢. The
pose T; denotes TWCcu) at the time when frame ¢ has been
taken, and similarly for T'},;). The first three entries of the
homogeneous point coordinates q; (u, v, d) are computed from

the minimal representation (u, v) as described in Section IV-B1,
with an additional fourth entry d, the inverse distance. Since the
projection function is independent of scale we do not have to
normalize q;, which makes this formulation numerically stable
even when d is close or equal to zero.

3) IMU Error: The second cue for motion estimation is the
IMU data. To deal with high frequency of the IMU measure-
ments we preintegrate several consecutive IMU measurements
into a pseudo-measurement. When adding an IMU factor be-
tween frame ¢ and frame j, we compute pseudo-measurement
As = (AR, Av, Ap) similar to [8], which we can use to for-
mulate the residuals as

rag = Log (ARR]TRZ-) , (10)

ray = R/ (v; —v; — gAt) — AV, (11)
1 5

rap =R/ (p; —pi — 58A¢) —AD, (1)

where g is the gravity vector and R and p denote the rotation and
translation components of Ty, respectively. These residuals
have to be weighted with appropriate covariance matrix X;;,
which can be calculated recursively. For more detailed infor-
mation about the underlying physical model of the IMU and
preintegration theory we refer the reader to the supplementary
material.

4) Optimization and Partial Marginalization: For each new
frame we minimize a non-linear energy that consists of repro-
jection terms, IMU terms and a marginalization prior Ey,

E= Y oSlru+ Y r[Siry+ B (13)
icP (i,5)€C
teobs (1)

The reprojection errors are summed over the set of points P and
for each point i over the set obs(4) of frames where the point is
observed, including its host frame. The set C contains pairs of
frames which are connected by IMU factors.

The energy E is optimized using the Gauss-Newton algo-
rithm. To constrain the problem size we fix the number of
keyframe poses and consecutive states that we optimize at every
iteration. When a new frame is added, there are n pose-only
keyframes in s and the m newest frames including the newly
added one in s¢. After optimizing, we perform a partial marginal-
ization of the state to prevent the problem size from growing.

Two possible scenarios for marginalization are shown in
Fig. 5. In the first one we marginalize out the oldest non-
keyframe. In this case we drop the landmark factors that have
this frame as a target to maintain the sparsity of the problem.
In the second case we have a new keyframe, so we marginalize
out velocity and biases for this frame and one old keyframe with
corresponding landmarks.

In both cases the marginalization is done on the linearized
Markov blanket of the variables we want to remove, where
the Markov blanket is a collection of incident states to those
variables. The linearization H and b represent a distribution of
the estimated state in the vector space of the increment £. If we
split the increment £ = [£/ | ég]T into variables £,, to stay in the
system and variables £ g to be marginalized, we can compute the



426

Fig. 4.
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Visual-inertial odometry subsystem proposed in Section IV. Projections of the landmarks with color-coded inverse distance used for estimating the

position of the current frame are shown on the left. The results of local visual-inertial bundle adjustment are shown on the right. Keyframe poses with the associated
landmarks are visualized in blue, current states and the estimated trajectory are visualized in red. Information about the keyframe poses in the local window is
approximated using a set of non-linear factors as described in Section V and reused for global mapping.

parameters of the new distribution using the Schur complement,

HY, = Hoo — HopH Hp, (14)
bl = b, —HasHibs (15)
where we have split the original H and b into
Haa Ha ba
H = Al b= . (16)
Hpo  Hpp bs

HY , and b}} now define an energy term that only depends on
&, and can be added to the total energy at the next iteration.

We use first-estimate Jacobians [10] to maintain the nullspace
properties of the linearized marginalization prior. As soon as
a variable becomes a part of the marginalization prior, its lin-
earization point is fixed, and the Jacobian used to calculate H
and b is evaluated at this linearization point, while the residuals
are calculated at the current state estimate. Residuals already
in the marginalization term have to be linearly approximated,
thus not b}, but b} + HY d, is added to the Gauss-Newton
optimization once £, deviates by d, from the state used to
calculate the residuals in b}

V. VISUAL-INERTIAL MAPPING

The fixed-lag smoothing method for visual-inertial odometry
(Fig. 4) presented in the previous section accumulates drift in
the estimate due to the fixed linearization points outside the
optimization window. A typical approach to eliminate such
drift is to detect loop closures and incorporate loop-closing
constraints into the optimization. We propose a two-layered
approach which runs our visual-inertial odometry on the lower
layer and bundle-adjustment on the visual-inertial mapping
layer, where we additionally use non-linear factors that sum-
marize the keyframe pose information from the odometry layer.
BA optimizes the camera poses of keyframes and positions of
keypoints. We implicitly detect loop closures using keypoint
matching and achieve globally consistent mapping.

A. Global Map Optimization

To get statistically independent observations we detect and
match ORB [23] features (distinct from VIO points) between the
keyframes in the global map optimization. This allows us to use
the reprojection error function as defined in Eq. (8). Combining

this reprojection error with the error terms from the recovered
non-linear factors yields the objective function:

Z rlzi_tlrit + Enfr(s)v

i€P
teobs (i)

ES(s) = (17)

where Ey;(s) collects the error terms by the recovered non-
linear factors. These factors and their recovery are detailed
in the following. The state s that we optimize on this global
optimization layer includes the keyframe poses and the positions
of the new landmarks (parametrized as in Section IV-B1).

We interface the global map optimization with the VIO layer
at the keyframe poses. When a keyframe is marginalized out
from the VIO we save the linearization of the Markov blanket
(Fig. 5(c)) and marginalize all other variables except of keyframe
poses. From this marginalization prior, we recover a set of
non-linear factors on the keyframe poses that approximate the
distribution stored in it.

B. Non-Linear Factor Recovery

Non-linear factor recovery (NFR [15]) approximates a dense
distribution stored in the linearized Markov blanket of the orig-
inal factor graph with a different set of non-linear factors that
yield a sparse factor graph topology. While the initial aim of NFR
is to keep the computational complexity of SLAM optimization
bounded, we use it to transfer information accumulated during
VIO to our globally consistent visual-inertial map optimization.

By linearization of the residual function of a non-linear least
squares problem Eq. (2), we obtain a multivariate Gaussian
distribution p(s) ~ N (g, Hy!) in which the mean p, equals
the state estimate. We want to construct another distribution
pa(s) ~ N(p, H; 1) that well approximates the original dis-
tribution with a sparser factor graph topology.

We follow NFR [15] and minimize the Kullback-Leibler
divergence (KLD) between the recovered distribution and the
original distribution. More formally, we minimize

Dx(p(s)|lpa(s))

1 1
= 5 ((H0 o) — log det(H, ) + [ (pa — o)l — d)

2
(18)

where 3, = H, ! and d is constant.
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Factors:
@ Reprojection

© IMU

© Bias random walk
© Marginalization Prior

K, K, -+ K, F F K, K, - K
(2) (b)

T Marginalized variable
O- Markov blanket
Dropped factors

Fig. 5.

T Marginalized variable
O- Markov blanket
Dropped factors

Fy B, F K K

Factor graphs. (a) After marginalizing a frame, the system consists of n older keyframes K ... K, and the m — 1 most recent frames F7 and F» (which

could potentially also host landmarks and hence be keyframes). After a new frame has been added, the oldest velocity v and the oldest bias b are marginalized.
If they do not belong to a keyframe (b), the whole frame including its pose T is marginalized. If they belong to a keyframe (c), another keyframe is selected for
marginalization, including the landmarks hosted in it and its pose. In both cases, reprojection factors where the target frame is the marginalized frame are dropped.
In the latter case, reprojection factors from the marginalized frame to F» are dropped to allow relinearization. Note that not all possible combinations of host and

target frames for reprojection factors are shown.

For the 7th non-linear factor that we want to recover, we need
to define a residual function such that r;(s,z;) = € with € ~
N(O, H;l). NFR estimates the pseudo measurements z; and
information matrices H; for the factors. Choosing z; such that
r; (Mo, z;) = 0 induces p, = p, which makes the third term of
(18) vanish. To estimate H; we define

Jr = J’L Hr - H’L 9 (19)

where J, stacks the Jacobians of the defined residual functions
with respect to the state, and H; is a block diagonal matrix
that consists of the H; for the corresponding residual functions.
This allows us towrite H, = J rT H.,J,, and consequently, we can
recover the information matrices H; by minimizing

Dy (H,) = (J/H.J,, %,) — log det(J H.J,). (20)

For full-rank and invertible J,, [9], [15] showed that the follow-
ing closed-form solution exists,

H; = ({J:2J, }) 7, 21

where {}; denotes the corresponding diagonal block.

C. Non-Linear Factors for Distribution Approximation

When we need to marginalize out a keyframe as shown in
Fig. 5(c), we save the current linearization and marginalize out
everything except the keyframe poses. This gives us a factor that
densely connects all keyframe poses in the optimization window.
We use it to recover non-linear factors between the marginalized
keyframe and all other keyframes as shown in Fig. 6. We define
the following residual functions:

Trel (S, Zrel) = Log(zrelTJflTi), (22)
rp(s, zip) = [2pR; (0,0, —1) " |y, (23)
Tpos (S, Zpos) = Zpos — Pis (24)
Tyaw (S, Zyaw) = |RiZyaw ]y (25)

Factors:
© Marginalization Prior

© Roll-Pitch
@ Relative Pose

© Absolute Position
® Yaw

Fig. 6. Visualization of non-linear factor recovery. Left: Densely connected
factor from marginalization saved from the VIO before removing a keyframe
pose. Right: Extracted non-linear factors that approximate the distribution stored
in the original factor.

where with ||;, we denote z and y components of the
vector and with z we denote the recovered measurements
from the estimated state at the time of linearization. In our
case ze = T;'T; € SE(3), z, = R; € SO(3), Zpos = Pi €
R? and zy,y = R;'(1 0 0)7 € R3.

We recover pairwise relative-pose factors between the
keyframe that we will remove and all other current VIO
keyframes. For that keyframe we also recover roll-pitch, absolute
position and yaw factors (Fig. 6). This gives us a full-rank
invertible Jacobian J, which means that we can use Eq. (21)
for recovering information matrices for the factors.

Since yaw and absolute position are 4 unobservable states
of the VIO, the only information we have there comes from the
initial prior on the start pose. As we do not need this information
for the global map we drop yaw and absolute position factors,
and only take relative pose and roll-pitch factors for the map
optimization. With these factors, the energy terms ES, become

EG(s)= > r Hiry;+> r/Hr,
(i,5)ER i€P

(26)

where R is a set of all relative pose factors and P is the set of
all roll-pitch factors.

VI. EVALUATION

To evaluate the presented approach we conduct evaluation on
the EuRoC dataset [5] and compare it to other state-of-the-art
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TABLE I
RMS ATE OF THE ESTIMATED TRAJECTORY IN METERS ON THE EUROC DATASET FOR SEVERAL DIFFERENT METHODS. IN THE UPPER PART WE SUMMARIZE THE
RESULTS FOR THE VIO METHODS THAT RUN OPTIMIZATION IN A LOCAL WINDOW AND ESTIMATE THE POSE OF EVERY CAMERA FRAME. IN THE LOWER PART WE
EVALUATE MAPPING METHODS THAT OPERATE ON ALL KEYFRAMES AND PERFORM GLOBAL MAP OPTIMIZATION. IN BOTH EVALUATIONS THE PROPOSED
SYSTEM SHOWS THE LOWEST ERROR ON THE MAJORITY OF THE SEQUENCES AND OUTPERFORMS THE COMPETITORS. NOTE: THE V2_03 SEQUENCE IS EXCLUDED
FROM THE COMPARISON BECAUSE IT HAS MORE THAN 400 MISSING FRAMES FOR ONE OF THE CAMERAS

Sequence | MH_01 MH_02 MH_03 MH_04 MH05 VI 0l VI 02 VI 03 V20l V202
VI DSO [26], mono 0.06 0.04 0.12 0.13 0.12 0.06 0.07 0.10 0.04 0.06
OKVIS [13] mono 0.34 0.36 0.30 0.48 0.47 0.12 0.16 0.24 0.12 0.22
OKVIS [13] stereo 0.23 0.15 0.23 0.32 0.36 0.04 0.08 0.13 0.10 0.17
VINS FUSION [20] mono 0.18 0.09 0.17 0.21 0.25 0.06 0.09 0.18 0.06 0.11
VINS FUSION [20] stereo 0.24 0.18 0.23 0.39 0.19 0.10 0.10 0.11 0.12 0.10
IS VIO [9] stereo 0.06 0.06 0.10 0.24 0.19 0.06 0.10 0.26 0.08 0.21
Proposed VIO, stereo 0.07 0.06 0.07 0.13 0.11 0.04 0.05 0.10 0.04 0.05
VI SLAM [12] mono, KF 0.25 0.18 0.21 0.30 0.35 0.11 0.13 0.20 0.12 0.20
VI SLAM [12] stereo, KF 0.11 0.09 0.19 0.27 0.23 0.04 0.05 0.11 0.10 0.18
VI ORB-SLAM [19], mono, KF 0.07 0.08 0.09 0.22 0.08 0.03 0.03 X 0.03 0.04
Pure BA, stereo, KF 0.09 0.08 0.05 0.27 0.16 0.04 0.03 X 0.04 0.04
BA + Identity Factors, stereo, KF 0.08 0.07 X 0.34 0.15 0.04 0.03 0.56 0.05 0.04
Proposed VI Mapping, stereo, KF 0.08 0.06 0.05 0.10 0.08 0.04 0.02 0.03 0.03 0.02

systems. We present the evaluation for both our VIO subsystem
and our full visual-inertial mapping approach. Our VIO runs the
optimization in a local window of frames and provides a pose for
every tracked frame, while the mapping system performs global
map optimization for keyframes that were selected by the VIO.
To measure the accuracy of the evaluated systems, we use the
root mean square (RMS) of the absolute trajectory error (ATE)
after aligning the estimates with ground truth.

A. System Parameters

At the KLT tracking stage the image is divided into a regular
grid with the cell size of 50 pixels. For each cell that has no point
tracked from the previous frame, one feature point with the best
FAST response is extracted (if it exceeds the threshold). With
the resolution of the EuRoC dataset it results in 80—120 features
tracked by the system at every point in time. At the VIO level we
use a window of 7 old keyframes (poses) and 3 latest temporal
states (poses, velocities and biases). The newest temporal state
is selected as a keyframe if less than 70% of the KLT features
are connected to the currently tracked points in the local map.

B. Accuracy

The results of the evaluation are summarized in Table I. When
considering visual-inertial odometry methods our system shows
the best performance on eight out of ten sequences while the
closest competitor (VI DSO [26]) shows the best results on five.

To evaluate the mapping part we compare it to the visual-
inertial version of ORB-SLAM [19], where the vision subsys-
tem is very similar to the one proposed in our mapping layer
(ORB keypoints). The main difference lies in the inertial part
where ORB-SLAM uses preintegrated measurements between
keyframes, while we use recovered non-linear factors that sum-
marize IMU and visual tracking on the VIO layer.

The proposed system clearly outperform ORB-SLAM on the
“machine hall” sequences where the large scale of the envi-
ronment results in large time intervals between keyframes. On
the “Vicon room” sequences the difference is smaller, since the

rapid motion of the MAV that carries the camera in a small room
results in many keyframes with small time intervals between
them.

Qualitative results of reconstructed maps are shown in Fig. 1.
With the proposed system we are able to reconstruct globally
consistent gravity-aligned maps and recover keyframe poses
even for segments where no matches between detected ORB
features can be estimated.

C. Factor Weighting

To evaluate the importance of the extracted factors and their
proper weighting in the final mapping results we consider two
alternative implementations. In the first one we do not use any
factors and rely purely on the BA with ORB features. In the
second one we extract the factors, but use identity weights (i.e.
H;; = H; = Iin Eq. (26)) for all of them, which is a typical
approach for pose graph optimization [19], [20]. The evaluation
results presented in Table I show that the system with the
factor weights recovered according to Section V results in better
accuracy and robustness when compared to those alternatives.

D. Timing

The main source of timing improvement for the mapping
stage is the fact that for a global optimization requires a 2.5
smaller state (no velocity or biases) compared to the naive IMU
integration. In absolute numbers we test our system on an Intel
E5-1620 CPU (4 cores, 8 virtual cores). Our implementation
is highly parallel and utilizes all available CPU resources. For
the VIO the average time per frame on the EuRoC sequences is
7.83 ms (largest: 9.4 ms on MH_02; smallest: 5.5 ms in V1_03).
On average 11.5% of the frames are selected as keyframes and
proceed to the mapping stage.

The timing of the mapping stage is provided in Table II. In
particular, for the MH_05 sequence (see Fig. 1, 2273 stereo
frames, 114 seconds) the processing takes 19.2 seconds for VIO
and 9.7 seconds for mapping for the entire sequence (around 4x
faster than real-time playback).
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TABLE I
MEAN PROCESSING TIME IN MILLISECONDS OF THE MAPPING SUBSYSTEM ON
EUROC SEQUENCES NORMALIZED (DIVIDED) BY THE NUMBER OF
KEYFRAMES IN THE MAP

Total Factor Keypoint ~ Matching and ~ Optimization
ota Extraction  detection  Triangulation (10 iterations)
52.8 3.6 6.4 23.1 19.7

VII. CONCLUSIONS

In this letter we present a novel approach for visual-inertial
mapping that combines the strengths of highly accurate visual-
inertial odometry with globally consistent keyframe-based bun-
dle adjustment. We achieve this in a hierarchical framework that
successively recovers non-linear factors from the VIO estimate
that summarize the accumulated inertial and visual information
between keyframes. VIO is formulated as fixed-lag smoothing
which optimizes a set of active recent frames in a sliding win-
dow and keeps past information in marginalization priors. The
accumulated VIO information between keyframes is extracted
and retained for the visual-inertial mapping when a keyframe
falls outside the window and is marginalized.

Compared to alternative approaches that use preintegrated
IMU measurements between keyframes our system shows better
trajectory estimates on a public benchmark. This formulation
has the potential to reduce the computational cost of optimiza-
tion by reducing the dimensionality of the state space and en-
able large-scale visual-inertial mapping. Integrating information
from other sensor modalities or extending the system for multi-
camera settings are interesting directions for future research.
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