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ABSTRACT

In this paper, we propose Ventriloquist-Net: A network for Talking
Head Generation using only a speech segment and a single source
image of a person. It places emphasis on emotive expressions. Cues
for generating expressions are directly inferred from the speech clip.
We formulate our framework to comprise of independently trained
modules focusing on each of the aforementioned aspects. This not
only expedites convergence but also facilitates handling in-the-wild
source images. Quantitative and qualitative evaluations on generated
videos demonstrates state-of-the-art performance even on unseen in-
put data.

Index Terms— Talking Head Generation, Speech Emotion

1. INTRODUCTION

Talking Head Generation refers to the process of animating the
image of a person’s face according to an input speech clip. It
has recently attracted a lot of attention because of its wide variety
of use-cases [1]. It can be used to produce animated content in
short turnaround times or to animate avatars for virtual assistants
[2]. Other uses are to increase the compression factor for video-
conferencing without loss of quality [3] or to edit target segments of
a video in terms of spoken content [4, 5], etc. The ultimate goal is to
generate a video of a person that not only matches the spoken words
but also includes naturalistic head movements, facial expressions in
keeping with the audio clip.

Early works, like [6, 7], trained models tuned to a single sub-
ject and hence could not scale to unseen identities. Later works of
[8,9, 10, 11, 12] developed speaker-independent pipelines by disen-
tangling identity and speech features. However, they focused mainly
on achieving accurate lip-sync, ignoring all other aspects that make
the Talking Head more naturalistic.

More recently [13, 14] utilize a temporal discriminator teach-
ing the model to produce facial motions like eye blinks. Likewise,
[15] deployed a cascaded GAN to include rhythmic head movements
and eye blinks giving improved realism in the final output. How-
ever, it could not capture well the appropriate facial expressions that
matches the tone of the audio clip. One of the most significant states-
of-art in this area was [16]. Here, a speaker-aware subnetwork mod-
eled speech mannerisms with longer time-dependencies from a small
set of speaker identities. Despite photo-realistic outputs containing
eye-blinks, the exhibited head movements were barely noticeable.
The other such work was [17]. Their 2 major contributions were to
use contrastive loss for mapping speech features to lip motion and to
have modular control over disentangled identity, posture and speech
features. While generating mouth movements from the speech of
one video, they could blend in the head postures of a different video.
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Fig. 1: Schematic of the proposed Ventriloquist-Net, which takes a
speech clip and a single source image as inputs and aims to generate
a naturalistic, emotive face video.
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However, a limitation was that a secondary video of length compa-
rable to the original speech clip was needed to be able to use pose-
control. Moreover,the pose sequence might not match the mood, en-
ergy etc. of the speech clip. Their fixed-pose version produced very
photo-realistic but rigid output videos. All the above one-shot ap-
proaches ignored realism in terms of emotional expression. In con-
trast, our framework is capable of generating emotive expressions
in the final video output by implicitly inferring cues from the audio
clip. This approach prevents the risk arising from explicitly forcing
an emotion that may contradict the tone of the audio clip.

Earlier works such as [18] also focused on emotional expres-
sions. However, their dependence on handcrafted audio features
and manually annotated visual features limited scalability. The au-
thors of [2] developed a method producing very realistic outputs with
learned subject-specific head movements. However, the model re-
quired ~ 20 hours to learn the mannerisms from a 2-3 minute video
of every unseen identity. [19] trained a model for generating realistic
emotional Talking Heads, but it was person-specific . Moreover, the
model needed a target emotion label too as input, instead of inferring
the emotion directly from the speech.

We propose Ventriloquist-Net as a one-shot, subject-independent
Talking Head Generation model. As shown in Figure 1, it only needs
a single speech clip and a single face image of a person as inputs
to generate a lip-synced re-animation. In this regard, our primary
contributions are:

¢ QOur network uses the emotional content, inferred from the
speech without any additional input, to generate expressions
and head motions that match the mood, tone, energy etc. of
the audio clip.

* We formulate our framework to comprise of independently
trained modular components. The two main advantages are
that it (1) allows semi-supervised training on datasets which
do not provide emotion labels; (2) expedites the model con-
vergence by disentangling gradient flows with potentially
competing interests.

* Loss functions are designed not only to reflect our primary
objectives but also to stabilize GAN training and prevent
mode collapse.



2. PROPOSED METHOD

Our model has 2 major independently trained components, shown in
Fig 1. The Audio-to-Expression module converts an input audio into
a facial landmark sequence, while incorporating emotive expressions
matching the speech. The Rendering module converts the previous
sequence into a video, using the source face image. The modules
are made independent for increased stability during training. It can
also provide flexibility during inference, by giving the user an option
to manipulate the intermediate landmarks as required (eg. head re-
orientation).

Before discussing the modules in more detail, we first introduce
the data modalities recurring throughout the work. These can also
be seen in Figures 2 and 3. We primarily use the MEAD dataset
[19] designed for emotional Talking Head Generation. It records
actors in studio settings uttering phoneme-rich sentences with sim-
ulated emotions. We adopt the approach of [20] to extract k(t),
denoting the sequence of 2D positions of facial keypoints k vary-
ing over time ¢. To extract speech features, raw input audio is first
converted into Mel spectrograms (s(t)) and Mel Frequency Cepstral
Coefficients (m(t)). A spectrogram projects the audio to a low-
dimensional space compatible with CNNs, while retaining sufficient
information for predicting mouth shapes. This is chosen because
CNNs were found to perform better for sequential generation tasks,
where RNNs were plagued by gradient issues.

2.1. Joint Pre-training of Emotion-related Subnetworks

Emotion-related subnetworks refer to the CNN-based Speech-to-
Emotion Embedder (Sp2 E'mo) and the biLSTM-based Expression-
to-Emotion Cross Embedder (Fxp2 E'mo) that belong to the Audio-
to-Expression module. They are shown in details in Figure 2.

Sp2Emo processes m(t) to produce an embedding vector
(gemo(t)) and a probability distribution over emotion labels (Iemo).
Cross Entropy loss is used to pre-train it against ground truth emo-
tion labels. Exp2Emo embeds k(t) to pemo, which lies in the same
vector space as lemo. Cosine Embedding Loss between pemo and
lemo supervises this subnetwork’s pre-training. This loss term re-
sults in Sp2 E'mo and Exp2FEmo learning to agree on the predicted
probability distribution over the emotion classes, instead of simply
agreeing on the most likely class. The latter is insufficient, since any
emotion is a composite of the basic emotions [21].

These subnetworks need to be pre-trained prior to training the
entire GAN. The reason is that even the slightest ambiguity in the
loss functions can lead to the training process collapsing. Other-
wise, the generator that is supposed to focus on lip motions/shapes
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Fig. 2: Detailed view of emotion subnetworks Sp2Emo and
Exp2Emo. Cross Entropy loss is computed between ground truth
emotion labels and lc,0, While Cosine Embedding is used between
lemo and pemo. Dotted lines link losses to the modules where they
back-propagate.

will receive gradients from a loss that was the result of Sp2Emo’s
prediction error (and vice-versa). This cross-contamination leads to
the overall model trying to optimize over multiple loss functions that
are at cross-purposes. As an example of such conflict, the expres-
sion generator branch is encouraged to generate dynamic, energetic
motions and expressions so that the final output looks natural. In
contrast, the mouth shape generator branch is discouraged from gen-
erating random, energetic motions. It is encouraged to converge to
correct, stable lip movements.

2.2. Emotive Generator and Semi-supervised Training Scheme

The remainder of the Audio-to-Expression module contains the
Emotive Generator G, the Sequence Discriminator D and additional
losses, as shown in Figure 3. G processes s(t) through CNNs to
produce intermediate lingual features (quing(t)). The latter stage
of the network then takes both giing(t) and gemo(t) through their
respective 1D CNN branches to generate landmark deformations.
These are added through frozen weights for the final output. Frozen
weights ensure that the branch processing giing(t) can only affect
the lip and jaw landmarks, while the other branch mostly affects
other landmarks like eyes, eyebrows etc (while slightly affecting
lips too, eg. for smiling). This also helps separate gradient back-
propagations from lip-sync errors and expression errors into their
respective branches. Also, inputs varying with time ¢ ensure dy-
namism in the output.

G generates not the facial landmark sequence itself but rather
the divergence of the landmarks (5]%(15)) from a default position (k,
pre-computed from the training split of MEAD). The final predicted
landmarks are given by k(t) = k + 0k(t). An advantage of pre-
dicting the deformation (instead of the actual landmarks) is that the
generator does not need to learn the face shape before it can start
predicting landmark motions. This also removes the requirement of
a frame-level discriminator. Since the deformation magnitude can be
controlled via weight initialization and losses, the predicted output
will always be valid face landmarks.

Because of the presence of the pre-trained Exp2Emo subnet-
work, an explicit target emotion label is not required for training
G. The generator uses emotion features provided by Sp2Emo to
generate emotional expressions, while the resulting expressions are
then ‘checked’ by Exzp2Emo to make sure they match the speech
emotion. The corresponding gradient flows are visualized in Figure
3. Moreover, the pre-trained and frozen Sp2Emo and Exp2Emo
do not need to be ‘correct’ (i.e. high accuracy emotion classifica-
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Fig. 3: Detailed view of the complete network showing G and D. G
uses both lingual features (qin g (¢)) from spectrogram and emotional
features (gemo(t)) from Sp2 Emo. Dotted lines show that Adversar-
ial loss alone trains D, while that and other losses update G. Any
‘disagreement’ between emotion predicted from input speech (leymo0)
and emotion predicted from generated expression (Pem.o) is captured
in Cosine Embedding loss and back-propagated to G.
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tion models) as long as they are in agreement. In other words, the
emotion class acts like a latent variable in this training scheme and
becomes obfuscated. The correctness in classifying speech emotions
and expressions individually does not affect the model performance.
Rather, a consistency in matching similar ‘heard” emotions to similar
‘seen’ expressions (even if misclassified) makes G’s outputs consis-
tent. Note that some supervision (from ground truth emotion labels)
is still required during pre-training so that the subnetworks can learn
useful features.

By extending this idea, it can be seen that once the emotion-
related subnetworks are trained on a smaller emotion dataset, they
can then provide supervision for training the full GAN on datasets
where emotion labels are not provided. This addresses the issue
of training on popular Talking Head Generation datasets, like Vox-
Celeb2 [22], which do not provide ground truth for emotion. An-
other problem often encountered is that, when datasets like MEAD
do provide emotion labels, the emotions are emulated by actors. This
is less accurate than the emotions/expressions exhibited in the in-
the-wild settings of VoxCeleb2. However, since our model’s perfor-
mance does not depend on the accuracy of emotion classification, it
can train on in-the-wild emotions despite pre-training on acted emo-
tions.

2.3. Discriminator and Additional Losses

The discriminator D uses biLSTMs to estimate whether the entire
sequence 0k(t) is real or not. It trains adversarially with G. By
looking at sequences rather than at individual frames, D picks up
errors that manifest slowly over time. Examples are absence of eye-
blinks, too much or too little motion of facial keypoints, static head,
infeasible keypoint locations in a certain frame, etc.

_ Lemotion : Exp2Emo acts as a second discriminator to check
k(t). Cosine Embedding Loss over expression is formulated as

Lemotion = CE(Exp2Emo(k(t)),lemo). It encapsulates the mis-
match between the emotion ‘heard’ (Sp2Emo on input speech) and
the emotion ‘seen’ (Exp2Emo on generated expression).

Lomouth: Ll-loss is used to compare outputs of the lip-shape
generating branch with ground truth mouth shapes. An advantage
over L-2 loss is that the latter produces smaller gradients the closer
a value gets to 0. This implies the mouth may not end up closing all
the way (given by k""" (t) — 0 for some ¢ = T', where k"""
includes only lip and jaw landmarks). The loss can be expressed
as Lonoutn = ||0k™%h (t) — 8™t (¢)||,. However, different
speakers uttering the same words will have different mouth shapes
and sizes, despite producing similar sounds. An L-norm loss might
make the model collapse. This will appear as a ‘non-elastic’ mouth
or rigid mouth in the final output video, showing a limited range
of motion. Such an eventuality is countered by weighing the losses
appropriately, by using D and with the help of the next loss term.

Lenergy: L-2 loss on entropy over all landmark points en-
courages the network to produce dynamic head motions, dynamic
expressions and non-static mouth landmarks. G is penalized for
not matching the energy perceived in the ground truth, thus pre-
venting both overly static and overly jittery outputs (static implies
8k(t) &~ 0). The loss term is Lenergy = |[Bt|0k(t)|—Et|0k(t)]]]2+
|[E+|6K' (t)| —E¢ |6k’ (t)|||2- Here k' signifies derivative of k € R
with respect to time, whereas E; is expectation over time ¢.

For the Rendering module (Figure 1), we use a publicly avail-
able model [23]. It was trained to morph a source face image ac-
cording to the orientation, expression etc. given by a set of input
face landmarks. Its design was made to preserve identity and texture
information from the source face in the generated video frames.
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(a) Happy expression smoothly transitions into slightly angry or disgusted ex-
pression as the speech emotion also shifts. Shows blink, slight changes in the
direction in which the subject is looking, head movements (nodding). In com-
parison, while PC-AVS [17] produces sharper lip motions and high synchro-
nisation confidence, their faces are completely static. In case of MakeltTalk
[16], faces are less static but still devoid of changes in expression.
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(b) Transition from neutral to happy/surprised and back to neutral. Has an
elongated eye blink, accompanying the emphasis on “ever”.
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Frame 87
(c) Shifts from neutral to surprise or happy, again to neutral and mild disgust.
Shows blink. Frame 57 shows a larger mouth opening shaping “Hey” with
emphasis. Frame 100 shows the mouth shape corresponding to the sibilant in
“pass”, while subsequent frames show the lip shape changing to form “dude”.

Frame 95

Fig. 4: Video samples generated by our model using a single unseen
source image and an unseen driving speech clip, along with tran-
scripts. The generated expressions are in tandem with the perceived
emotions in the audio channel. Eye blinks and natural head move-
ments are also generated. For the first example, a comparison with
states-of-art is also shown. More video examples are available here.

3. RESULTS

3.1. Training Details

The emotion subnetworks are trained on a 80% subject-level train
split of MEAD, augmented by CREMA-D, RAVDESS, SAVEE and
TESS datasets [24, 25, 26, 27]. Sp2Emo has an initial learning



rate of 1073, decaying by 0.5 every 20 epochs till 100 epochs. The
weights of Exp2 E'mo remain frozen for the first 40 of those epochs.
After that, it also starts training with a learning rate of 10™*, decay-
ing by 0.1 every 20 epochs. Weights of Sp2Emo and Exp2Emo
are then frozen for the rest of the training period. Next, G and D
are adversarially trained with learning rates of 10™* and 4 x 10™°
reSPeCﬁVely. Acadv, Eemotiony L"mouth and [«energy are empirically
weighted respectively by 0.5, 0.5, 10 and 10. Besides stabilizing
GAN training and quickening convergence, this ratio strikes the cor-
rect balance between the emphases placed on each aspect of natural-
ism.

We re-iterate that our model is designed such that emotion sub-
networks do not need to be trained till their classification accuracies
are high. Rather, it is sufficient to train them till they agree on the
classification probabilities for corresponding speech emotion and ex-
pression pairs. This allows them to be pre-trained on acted emotions
or emotion labels with low annotator agreement, and train later on
larger in-the-wild datasets without emotion labels.

3.2. Qualitative Results

For testing, high resolution source images are taken from our test
split of the MEAD dataset. Low resolution source images and speech
samples are taken from the official test split of VoxCeleb2. Fig-
ure 4 illustrates the naturalism in the outputs. The provided ex-
amples, besides showing the quality of lip-sync, demonstrate the
match between speech emotions (judged from the transcripts) and
expressions. The dynamic expressions, manifesting as deformations
around the eyebrows, eyes, mouth corners, etc., cannot be inferred
from the lingual content alone.

We compare primarily with MakeltTalk [16] and the ‘fixed pose’
version of PC-AVS [17] (since their full version uses a pose source
video also as a conditioning input), which are trained on VoxCeleb2.
Outputs from our model are compared with their outputs in Fig 4a.
Though the state-of-art approaches produce higher fidelity lip mo-
tion, their outputs show a static direction in which the speaker is
looking, rigid expressions and head positions. Both PC-AVS and
our work re-orient the face to face the viewer, for more engaging
videos. Our approach produces lip motions while simultaneously
making consistent and subtle changes to the head orientation and
expression, making the videos look quite naturalistic.

3.3. Quantitative Results and User Preference Studies

SyncNet [28] confidence score is a widely accepted measure of how
well the lip motions match the speech. Our model’s score on the test
split of VoxCeleb2 is 2.08, which is outperformed by MakeltTalk at
2.80 and PC-AVS at 5.90. A reason for the difference in SyncNet
scores is that they are estimated from detected landmark motions.
Our outputs can be penalized for producing ‘unnecessary’ motions
uncorrelated to the speech. For example, a subject smiling while
saying a certain word might register as an erroneous lip-shape, mis-
matched to the speech.

Metrics to judge image generation quality (SSIM, PSNR etc.)
are not compared here since that is a feature of the pre-trained
rendering module. It is also difficult to obtain a metric to reflect
the quality of emotive expressions. Usual metrics that compare
landmark positions with the reference are unusable because of the
stochasticity in expressions and head motions produced by our
model. Further, there are no publicly available models to classify
emotion from speech and/or expression. Hence we cannot take
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Fig. 5: Comparison of user feedback with state-of-art approaches
MakeltTalk [16] and PC-AVS [17]. On the left, blue bars denote
percentage of responses which found an approach to be most ex-
pressive, while red bars denote the percentage which found it least
expressive. The right-hand plot deals similarly with most synced and
least synced lip movements.

that route to judge the match between input speech emotion and
generated expression from our model.

In the absence of quantitative metrics, we turn to user prefer-
ence studies. 18 speech clips from the VoxCeleb2 test set are used
to drive the same source face image across all 3 approaches. View-
ers are presented with the three videos in a set simultaneously (in a
randomized order). 43 university students from various disciplines
ranked them with respect to lip-sync and expressiveness. As shown
in Figure 5, 62.7% users find videos generated by our approach the
most emotionally expressive, while 57.2% agree that videos pro-
duced by PC-AVS are the least expressive. On the other hand, an
overwhelming 80.6% of the responses find the lip motions of PC-
AVS to be the most well-synced to the speech audio. In that regard,
both MakeltTalk and our approach are significantly less favoured,
with 40.7% and 52.9% responses voting these as the least synced.
Thus, our model managed to perform at par with MakeltTalk in
terms of lip sync and outperform both in terms of naturalness of
expressions and head movements. These results also show that there
is a trade-off between expressiveness and lip-sync.

3.4. Ablation Studies

We conduct limited ablation studies, as follows.

OursnoEmo: Removing the emotion subnetworks leads to
slightly higher SyncNet scores, but the match between speech emo-
tion and expression goes down from 68.5% (Ours) to 8.5% (as
estimated by our pre-trained subnetworks in the absence of publicly
available ones).

OursnoEntropy: Removing the loss term Lepergy erratically
results in excessively jittery or static outputs (depending on other
parameters). In one example, ratio between absolute of the mean
landmark deformations and the mean of absolutes of the same defor-
mations falls from 0.13 (more stable, Ours) to 0.07 (more jitter).

OursnoPreTrain: The most important ablation study is
where we train all modules simultaneously, instead of pre-training
emotion subnetworks. This understandably results in mode collapse.
Outputs exhibit lips only opening and closing imperceptibly, while
no expressions are produced.

We also verify that convergence is much faster when learning
landmark deformations rather than their absolute positions.

4. CONCLUSION

We have developed a one-shot emotional Talking Head Generation
model, requiring only a speech clip and a single in-the-wild face im-
age as inputs. We have proposed a semi-supervised training scheme
that allows its extension to datasets without explicit emotion labels.



We have shown that, compared to state-of-art approaches, our out-
puts are visually more realistic and natural, with generated expres-
sions in agreement with the source speech emotion. Ablation stud-
ies demonstrate the effectiveness of various design decisions. Future
work should focus on improving both lip synchronization and ex-
pressiveness without hampering each other. A larger feature space
can be adopted for intermediate representations, instead of the limit-
ing face landmark space. Finally, the model will benefit from a voice
conversion module to become a more complete solution.
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