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A data-driven variability assessment of brain diffusion MRI preprocessing pipelines
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Synopsis
The preprocessing of dMRI data sets is a critical step in the experimental workflow that, in general, improves the data reliability. We provide a

comprehensive survey of the preprocessing workflows for dMRI data within our research community, assessing their variability and quantifying its

impact on the dMRI metric reproducibility and inter-site comparisons. We observed that the lack of a standardized preprocessing pipeline across

researchers is a significant source of variability that might lower the reproducibility of studies. These preliminary results highlight the need for

harmonization of the image preprocessing workflow for dMRI data to promote more robust and reproducible analyses.

Introduction
Researchers looking to extract clinically relevant measures from a set of diffusion weighted images must often overcome multiple challenges

throughout a complex workflow going from data organization, processing, to analysis . Without field-accepted standards for handling dMRI data,

the preprocessing pipelines may vary substantially across groups. There is a growing awareness that the lack of such standardization is likely to

impact the reproducibility of our dMRI studies—a topic with increasing focus across many research fields .

Image preprocessing is the multi-step process that corrects the geometric and signal distortions of diffusion-weighted images to minimize false

negatives without increasing the false positives in further analyses. The growing body of literature and publicly available and computationally

efficient software tools have popularized complex preprocessing pipelines in which each processing step adds to the accumulated sources of

ambiguity. However, guiding principles for image preprocessing are still missing, leaving individual researchers with myriad degrees of freedom in

the design of such pipelines, as there is no objective way to determine a canonical preprocessing workflow. 

In this study, we will provide a comprehensive survey of the preprocessing workflows for dMRI data within our research community, assessing their

variability and quantifying its impact on the dMRI metric reproducibility and inter-site comparisons.

Methods
First, an online survey was conducted to capture the preferences in terms of image preprocessing within our research community. 

Second, multi-shell SE-EPI dMRI data (b=0, 1000, and 2000 s/mm ) was acquired on multiple sites using hardware systems from different vendors

(3T GE SIGNA Premier , 3T Connectom Siemens, and 3T Achieva Philips). The data include unprocessed magnitude MRI data sets of 13 subjects.

Defacing was applied to a subset of data to comply with institutional regulations. For each subject, three scan “sessions” with distinct settings and

instructions related to motion were acquired to introduce artifacts of varying shapes and sizes while preserving the encoded diffusion information.

A fourth scan session featured identical settings as the first one for a conventional repeatability assessment. In addition, the data set included non-

diffusion-weighted images with reversed phase encoding, a T -weighted MPRAGE, and a field map. 

We asked research teams to preprocess the individual data sets with their routinely-used preprocessing pipeline. All further processing, including

tensor fitting, was performed with identical software and algorithms.

Results
The survey was completed by 232 participants from 30 countries. Their expertise varied widely, thereby capturing both developers and users of

dMRI preprocessing tools. 85% of the participants favored a standardized image preprocessing pipeline. However, 42% of the respondents state
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that there is currently no standardization within their own research team. 87% of the respondents consider a preprocessing time of 1 to 2 hours

per data set acceptable. Although the software platform and operating system are less critical, 73% of the respondents find it important that the

used software be open source. Most respondents recognize the importance of streamlining data acquisition and image preprocessing to optimize

the performance of image preprocessing tools. The acquisition of a non-diffusion weighted image with reversed phase encoding, interleaving the

non-diffusion-weighted images, and providing user-defined gradient files are the most preferred examples of such an integration. 

Preprocessing pipelines varied widely across the survey participants. However, the majority of the participants include motion correction, eddy

current distortion correction, susceptibility-induced distortion correction, and b-matrix rotation. In contrast, signal drift correction, gradient

nonlinearity corrections, and Rician bias correction are much less widely adopted amongst the survey participants (Fig. 1). In general, the leading

arguments to exclude certain preprocessing steps are not being aware or not being convinced of importance, followed by not having access to tools

or preferring a minimal preprocessing pipeline (Fig. 2).

The project-specific data were independently preprocessed by 52 groups (38 users and 14 developers). A qualitative comparison of six exemplary

fractional anisotropy (FA) maps is shown in Fig. 3. Next, we quantified the inter-pipeline variability in the estimation of widely-adopted diffusion

metrics, for various analysis strategies. We also compared the inter-pipeline variability with inter-subject and intra-subject variability. Fig. 4 shows

the inter-pipeline, intra-subject and inter-subject variability in the segment-wise quantification of FA along the left cortico-spinal tract (CST) . This

analysis was limited to the Siemens data; covering 5 subjects. For intra-subject evaluation, the dMRI data were either not, or minimally

preprocessed . The inter-pipeline variability widely exceeds the intra-subject “test-retest” variability; nearly equaling the inter-subject variability. The

bulk of the preprocessing pipelines had significantly lower "test-retest" variability than unprocessed data (Fig. 5).

Discussion and Conclusion
The preprocessing of dMRI data sets is a critical step in our experimental workflow that, in general, improves the data reliability. However, we

observe that the lack of a standardized preprocessing pipeline across researchers is a significant source of variability that might lower the

reproducibility of studies, especially across sites and with incomplete description of the preprocessing workflows. Moreover, as observed in this

study, complex preprocessing pipelines are prone to errors, leading to a reduction in accuracy, precision, or reproducibility. These preliminary

results highlight the need for best practices, if not complete standardization, of the image preprocessing workflow for diffusion-weighted MRI data

to promote more robust and reproducible analyses.
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Figures

Fig. 1: (a) The variability of the dMRI preprocessing pipeline. The height of the bars indicates the frequency of including (top) or excluding (bottom) a

preprocessing step in the pipelines that were provided in the survey, without any classification based on the used correction strategy. The image

preprocessing steps are ordered by their prevalence. (b) The normalized co-occurrence matrix of image preprocessing steps within pipelines. The

radius of the circles scales with the normalized co-occurrence; the largest circle represents 95%. The diagonal elements are masked.

Fig. 2: (a) For each preprocessing step, we asked the survey participants which, if any, strategy or algorithm they typically use. Results for Gibbs

ringing are shown; Similar trends are noticeable for all other preprocessing steps (not shown): despite a strong preference towards one particular

strategy, there are competing strategies that are widely used. (b) Stated reasons why preprocessing steps are excluded from the participants’

preprocessing pipelines, aggregated over all preprocessing steps.
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Fig. 3: Fractional anisotropy (FA) maps, derived from the same dMRI data, but estimated from data preprocessed independently by six different

research teams. The maps show differences in geometric deformation, signal- and contrast-to-noise ratio, upsampling factor, and intensity. This

selection of FA maps shows the general trend of high inter-pipeline variability in the estimation of widely-used diffusion metrics qualitatively. Of

note, the same tensor fitting algorithm was used for all preprocessed data set in the computation of FA.

Fig. 4: Profile of FA in the CST of (a) 1 subject/session for all pipelines, (b) repeated sessions for 5 subjects using minimal preprocessing, and (c) the 5

subjects; all data were acquired on the Siemens system. Subject-specific profiles were centered to minimize inter-subject variability. The 95%-

interval of the inter-pipeline variability is shown by the shaded profile. (d) The center of the tract segments. (e) The coefficient of variation in the 8th

segment. Intra-subject reliability is shown for the results without preprocessing (white) and with minimal preprocessing (green).

Fig. 5: Mean squared difference (MSD) between the FA profiles in the CST derived from two scan sessions for a single subject that was acquired on

the Siemens system. Various artifacts and SNR were imposed to be different in shape and strength between the sessions by varying scan settings.

The MSD are shown for each individual pipeline (black dots) and summarized by a boxplot (gray). The MSD for the unprocessed data is shown by

the red line; the blue line indicates the mean squared difference between two scan sessions without varying scan settings, i.e., a classical

repeatability assessment.
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