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Abstract

We introduce Power Bundle Adjustment as an expansion
type algorithm for solving large-scale bundle adjustment
problems. It is based on the power series expansion of the
inverse Schur complement and constitutes a new family of
solvers that we call inverse expansion methods. We theo-
retically justify the use of power series and we prove the
convergence of our approach. Using the real-world BAL
dataset we show that the proposed solver challenges the
state-of-the-art iterative methods and significantly acceler-
ates the solution of the normal equation, even for reaching a
very high accuracy. This easy-to-implement solver can also
complement a recently presented distributed bundle adjust-
ment framework. We demonstrate that employing the pro-
posed Power Bundle Adjustment as a sub-problem solver
significantly improves speed and accuracy of the distributed
optimization.

1. Introduction

Bundle adjustment (BA) is a classical computer vision
problem that forms the core component of many 3D recon-
struction and Structure from Motion (SfM) algorithms. It
refers to the joint estimation of camera parameters and 3D
landmark positions by minimization of a non-linear repro-
jection error. The recent emergence of large-scale internet
photo collections [1] raises the need for BA methods that
are scalable with respect to both runtime and memory. And
building accurate city-scale maps for applications such as
augmented reality or autonomous driving brings current BA
approaches to their limits.

As the solution of the normal equation is the most time
consuming step of BA, the Schur complement trick is usu-
ally employed to form the reduced camera system (RCS).
This linear system involves only the pose parameters and is
significantly smaller. Its size can be reduced even more by
using a QR factorization, deriving only a matrix square root
of the RCS, and then solving an algebraically equivalent
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(a) Ladybug-1197

(b) Venice-1102

Figure 1. Power Bundle Adjustment (PoBA) is a novel solver
for large-scale BA problems that is significantly faster and more
memory-efficient than existing solvers. (a) Optimized 3D recon-
struction of a Ladybug BAL problem with 1197 poses. PoBA-32
(resp. PoBA-64) is 41% (resp. 36%) faster than the best competing
solver to reach a cost tolerance of 1%. (b) Optimized 3D recon-
struction of a Venice BAL problem with 1102 poses. PoBA-32
(resp. PoBA-64) is 71% (resp. 69%) faster than the best compet-
ing solver to reach a cost tolerance of 1%. PoBA is five times (resp.
twice) less memory-consuming than v/ BA (resp. Ceres).

problem [4]. Both the RCS and its square root formulation
are commonly solved by iterative methods such as the pop-
ular preconditioned conjugate gradients algorithm for large-
scale problems or by direct methods such as Cholesky fac-
torization for small-scale problems.

In the following, we will challenge these two families
of solvers by relying on an iterative approximation of the
inverse Schur complement. In particular, our contributions



are as follows:

e We introduce Power Bundle Adjustment (PoBA) for ef-
ficient large-scale BA. This new family of techniques
that we call inverse expansion methods challenges the
state-of-the-art methods which are built on iterative
and direct solvers.

e We link the bundle adjustment problem to the theory
of power series and we provide theoretical proofs that
justify this expansion and establish the convergence of
our solver.

e We perform extensive evaluation of the proposed ap-
proach on the BAL dataset and compare to several
state-of-the-art solvers. We highlight the benefits
of PoBA in terms of speed, accuracy, and memory-
consumption. Figure 1 shows reconstructions for two
out of the 97 evaluated BAL problems.

e We incorporate our solver into a recently proposed
distributed BA framework and show a significant im-
provement in terms of speed and accuracy.

e We release our solver as open source to facili-
tate further research: https://github.com/
simonwebertum/poba

2. Related Work

Since we propose a new way to solve large-scale bundle
adjustment problems, we will review works on bundle ad-
justment and on traditional solving methods, that is, direct
and iterative methods. We also provide some background
on power series. For a general introduction to series expan-
sion we refer the reader to [14].

Scalable bundle adjustment.

A detailed survey of bundle adjustment can be found
in [16]. The Schur complement [20] is the prevalent way
to exploit the sparsity of the BA Problem. The choice of
resolution method is typically governed by the size of the
normal equation: With increasing size, direct methods such
as sparse and dense Cholesky factorization [15] are outper-
formed by iterative methods such as inexact Newton algo-
rithms. Large-scale bundle adjustment problems with tens
of thousands of images are typically solved by the conju-
gate gradient method [1,2, 8]. Some variants have been de-
signed, for instance the search-space can be enlarged [17] or
a visibility-based preconditioner can be used [9]. A recent
line of works on square root bundle adjustment proposes
to replace the Schur complement for eliminating landmarks
with nullspace projection [4, 5]. It leads to significant per-
formance improvements and to one of the most performant
solver for the bundle adjustment problem in term of speed

and accuracy. Nevertheless these methods still rely on tradi-
tional solvers for the reduced camera system, i.e. precondi-
tioned conjugate gradient method (PCG) for large-scale [4]
and Cholesky decomposition for small-scale [5] problems,
besides an important cost in term of memory-consumption.
Even with PCG, solving the normal equation remains the
bottleneck and finding thousands of unknown parameters
requires a large number of inner iterations. Other authors try
to improve the runtime of BA with PCG by focusing on effi-
cient parallelization [13]. Recently, Stochastic BA [22] was
introduced to stochastically decompose the reduced cam-
era system into subproblems and solve the smaller normal
equation by dense factorization. This leads to a distributed
optimization framework with improved speed and scalabil-
ity. By encapsulating the general power series theory into
a linear solver we propose to simultaneously improve the
speed, the accuracy and the memory-consumption of these
existing methods.

Power series solver.

While power series expansion is common to solve dif-
ferential equations [3], to the best of our knowledge it has
never been employed for solving the bundle adjustment
problem. A recent work [21] links the Schur complement
to Neumann polynomial expansion to build a new precondi-
tioner. Although this method presents interesting results for
some physics problems such as convection-diffusion or at-
mospheric equations, it remains unsatisfactory for the bun-
dle adjustment problem (see Figure 2). In contrast, we pro-
pose to directly apply the power series expansion of the in-
verse Schur complement for solving the BA problem. Our
solver therefore falls in the category of expansion methods
that — to our knowledge — have never been applied to the BA
problem. In addition to being an easy-to-implement solver
it leverages the special structure of the BA problem to si-
multaneously improve the trade-off speed-accuracy and the
memory-consumption of the existing methods.

3. Power Series

We briefly introduce power series expansion of a matrix.
Let p(A) denote the spectral radius of a square matrix A,
i.e. the largest absolute eigenvalue and denote the spectral
norm by || A|| = p(A). The following proposition holds:

Proposition 1. Let M be a n x n matrix. If the spectral
radius of M satisfies | M| < 1, then

(I-M)"'=> M+R, (1)
=0

where the error matrix

R= i M, )

1=m-+1
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Figure 2. Although [21] explores the use of power series as a preconditioner for some physics problems it suffers from the special structure
of the BA formulation. Given a preconditioner M ™' and the Schur complement S, the condition number #(M ~'S) is linked to the
convergence of the conjugate gradients algorithm. (a) illustrates the behaviour of « for the ten first iterations of the LM algorithm for
the real problem Ladybug-49 with 49 poses from BAL dataset and for different orders m of the power series expansion (22) used as
preconditioner for the CG algorithm. The condition number associated to the popular Schur-Jacobi preconditioner is reduced with this
power series preconditioner, that is illustrated by a better convergence of the CG algorithm and then a smaller number of CG iterations (b).
Nevertheless each supplementary order m is more costly in terms of runtime as the application of the power series preconditioner involves
4m matrix-vector product, whereas the Schur-Jacobi preconditioner can be efficiently stored and applied. (c) It leads to an increase of the

overall runtime when solving the normal equation (6).

satisfies
[t

. 3
L[] ©)

1R[]l <

A proof is provided in Appendix and an illustration with
real problems is given in Figure 5.

4. Power Bundle Adjustment

We consider a general form of bundle adjustment with
n, poses and n; landmarks. Let & = (z,, ;) be the state
vector containing all the optimization variables, where the
vector x,, of length d,n,, is associated to the extrinsic and
(possibly) intrinsic camera parameters for all poses and the
vector x; of length 3n; is associated to the 3D coordinates
of all landmarks. In case only the extrinsic parameters are
unknown then d, = 6 for rotation and translation of each
camera. For the evaluated BAL problems we additionally
estimate intrinsic parameters and d,, = 9. The objective is
to minimize the total bundle adjustment energy

ZHn )13, 4)

1
F@) = Slr@I} =

where the vector r(z) = [ry(2)",...,7%(z)T]T comprises
all residuals capturing the discrepancy between model and
observation.

4.1. Least Squares Problem

This nonlinear least squares problem is commonly
solved with the Levenberg-Marquardt (LM) algorithm,
which is based on the first-order Taylor approximation of
r(x) around the current state estimate 2° = (z0,z). By

adding a regularization term to improve convergence the
minimization turns into

amig s (0 G (32) ]
e, oy (3]

with 70 = r(29), J, = 8%:,|900’ J; = %|wo, A a damping
coefficient, and D,, and D, diagonal damping matrices for
pose and landmark variables. This damped problem leads
to the corresponding normal equation

Ax b
a(n) == ()

where

H= (V% ‘VX) , )
Ux=J, Jp+AD, Dy, (8)
Va=J,'Ji+AD/ Dy, 9)
W =.J,J, (10)

by =J, 10 by =J 10, (11)

U, V, and H are symmetric positive-definite [16].

4.2. Schur Complement

As inverting the system matrix H of size (dpn, + 3n;)?
directly tends to be excessively costly for large-scale prob-
lems it is common to reduce it by using the Schur comple-
ment trick. The idea is to form the reduced camera system



SAz, = b, (12)

with
S=Uy-WV'WT, (13)
b=b, — WV, b (14)

(12) is then solved for Az,. The optimal Az; is obtained
by back-substitution:

Az = -V H=b+ WTAz,). (15)
4.3. Power Bundle Adjustment

Factorizing (13) with the block-matrix Uy

S=U\I-U'WV'wT) (16)
leads to formulate the inverse Schur complement as
STt=g-u'twyvtwh ot (17)

In order to expand (17) into a power series as detailed in
Proposition 1, we require to bound the spectral radius of
U WVt w T by 1.

By leveraging the special structure of the BA problem
we prove an even stronger result:

Lemma 1. Let u be an eigenvalue of U;1WV;1WT.
Then
e [0,1]. (18)

1

_1 _
Proof. On the one hand U, * WVA_1WTU)\ ? is symmet-
ric positive semi-definite, as Uy and V) are symmetric pos-
itive definite. Then its eigenvalues are greater than 0. As

_1 1
U, WV, 'WTU, ? and Uy "WV, 'WT are similar,
w=0. (19)
1 _1
On the other hand U, *SU, * is symmetric positive def-

inite as S and U, are. It follows that the eigenvalues of
Uy 1S are all strictly positive due to its similarity with

Uy 2 SU; 2. As

Uy'wvotw =1-0U,'S, (20)
it follows that
p<l, 21
that concludes the proof. O
Let be
Soam)=> U wvotwhiugt, @)
i=0

and ~ ~

x(m) =—=5_1(m)b, (23)

for m > 0. The following proposition confirms that the
approximation indeed converges with increasing order of
m:

Proposition 2. |z(m) — Azpl|2 = 0.
m—r—+00

Proof. We denote P = U, "WV, 'WT. Due to Lemma 1
1P| <1. 24)

The inverse Schur complement associated to (6) admits a
power series expansion:

S1=S8_1(m)+R,,, (25)
where -
Ry = Y PU* (26)
i=m-+1
satisfies )
1Rl gy @)
L—|P]
It follows that:
z(m) — Az, = Rpb. (28)

The consistency of the spectral norm with respect to the vec-
tor norm implies:

1Rmbllz < | R ll[1B]2 - (29)
From (24), (27) and (29) we conclude the proof:
|Rubllz — 0, (30)
and then
lz(m) — Azp|l2 mjm 0. (31)
O

This convergence result proves that

* an approximation of Az, can be directly obtained by
applying (22) to the right-hand side of (12);

* the quality of this approximation depends on the order
m and can be as small as desired.

The power series expansion being iteratively derived, a
termination rule is necessary.

By analogy with inexact Newton methods [11, 12, 18]
such that the conjugate gradients algorithm we set a stop
criterion

4+ 1) () — 2@ = D)ll2/lle@)]2 <€, (32)

for a given e. This criterion ensures that the power series
expansion stops when the refinement of the pose update by
expanding the inverse Schur complement into a supplemen-
tary order

[(x (i) — 2(i = 1))]2 (33)
is much smaller than the average refinement when reaching
the same order

IIZézl (@) —2z(G = 1)+ 202 |jz(d)]>
i+1 i1

(34)
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Figure 3. Performance profiles for all BAL problems show the percentage of problems solved to a given accuracy tolerance 7 €
{0.1,0.01,0.003,0.001} with relative runtime c.. Our proposed solver PoBA using series expansion of the Schur complement signifi-
cantly outperforms all the competing solvers up to the high accuracy 7 = 0.003.

124 « PoBA-32 (ours) .
= PoBA-64 (ours) * )
01 L Ve
o
O 81 . VBA-64 L
g 6l ° ceres—.expli.ci.t . .
£ +  ceres-implicit
g 47 no"“. ¢
. ® * -
5 - - . 0 . mmui= e
:.»“ : - 5 "
s ¢ 9
O -
0 1 2 3 4 5

#observations (millions)

Figure 4. Memory consumption for all BAL problems. The pro-
posed PoBA solver (orange and blue points) is five times less
memory-consuming than v/ B A solvers.

5. Implementation

We implement our PoBA solver in C++ in single (PoBA-
32) and double (PoBA-64) floating-point precision, directly
on the publicly available implementation' of [4]. This re-
cent solver presents excellent performance to solve the bun-
dle adjustment by using a QR factorization of the landmark
Jacobians. It notably competes the popular Ceres solver.
We additionally add a comparison with Ceres’ sparse Schur
complement solvers, similarly as in [4]. Ceres-explicit and
Ceres-implicit iteratively solve (12) with the conjugate gra-
dients algorithm preconditioned by the Schur-Jacobi pre-
conditioner. The first one saves S in memory as a block-
sparse matrix, the second one computes S on-the-fly during
iterations. v/BA and Ceres offer very competitive perfor-
mance to solve the bundle adjustment problem, that makes
them very challenging baselines to compare PoBA to. We
run experiments on MacOS 11.2 with an Intel Core i5 and
4 cores at 2GHz.

"https://github.com/NikolausDemmel/rootba
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Figure 5. Illustration of the inequality (3) in Proposition 1 for
the first LM iteration of two BAL problems: (a) Ladybug with 49
poses and (b) Trafalgar with 193 poses. The spectral norm of the
error matrix R is plotted in green for m < 20. The right-side
of the inequality plotted in blue represents the theoretical upper
bound of the spectral norm of the error matrix and depends on the
considered m and on the spectral norm of M = U; '"WV, 'W .
With Spectra library [23] p(M) takes the values (a) 0.999858 for
L-49 and (b) 0.999879 for 7-193. Both values are smaller than 1
and p(R) is always smaller than p(M)™ %! /(1 — p(M)), as stated
in Lemma 1.

Efficient storage.

We leverage the special structure of BA problem and design
a memory-efficient storage. We group the Jacobian matri-
ces and residuals by landmarks and store them in separate
dense memory blocks. For a landmark with &k observations,
all pose Jacobian blocks of size 2 x d,, that correspond to
the poses where the landmark was observed, are stacked and
stored in a memory block of size 2k X d,,. Together with the
landmark Jacobian block of size 2k x 3 and the residuals
of length 2k that are also associated to the landmark, all
information of a single landmark is efficiently stored in a
memory block of size 2k x (d, + 4). Furthermore, oper-
ations involved in (15) and (23) are parallelized using the
memory blocks.

Performance Profiles.

To compare a set of solvers the user may be interested in
two factors, a lower runtime and a better accuracy. Per-
formance profiles [6] evaluate both jointly. Let S and P be
respectively a set of solvers and a set of problems. Let fo(p)
be the initial objective and f(p, s) the final objective that is
reached by solver s € S when solving problem p € P. The
minimum objective the solvers in S attain for a problem p is
f*(p) = mingeg f(p, s). Given a tolerance 7 € (0,1) the
objective threshold for a problem p is given by

f=(0) = F*(p) + 7(f°(p) — f*(p)) (35)

and the runtime a solver s needs to reach this threshold is
noted 7', (p, s). It is clear that the most efficient solver s*
for a given problem p reaches the threshold with a runtime
T.(p,s*) = minges Ty (p, s). Then, the performance pro-
file of a solver for a relative runtime « is defined as

100 .
pls.0) = Tpil{p € PIT:(p,5) < aminT-(p.)}| G0

Graphically the performance profile of a given solver is the
percentage of problems solved faster than the relative run-
time « on the x-axis.

5.1. Experimental Settings

Dataset.

For our extensive evaluation we use all 97 bundle adjust-
ment problems from the BAL project page. They are di-
vided within five problems families. Ladybug is composed
with images captured by a vehicle with regular rate. Images
of Venice, Trafalgar and Dubrovnik come from Flickr.com
and have been saved as skeletal sets [1]. Recombination of
these problems with additional leaf images leads to the Fi-
nal family. Details about these problems can be found in
Appendix.

LM loop.

PoBA is in line with the implementation [4] and with Ceres.
Starting with damping parameter 10~* we update A depend-
ing on the success or failure of the LM loop. We set the
maximal number of LM iterations to 50, terminating earlier
if a relative function tolerance of 109 is reached. Con-
cerning (23) and (32) we set the maximal number of inner
iterations to 20 and a threshold € = 0.01. Ceres and v BA
use same forcing sequence for the inner CG loop, where
the maximal number of iterations is set to 500. We add a
small Gaussian noise to disturb initial landmark and camera
positions.
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1102 poses. Fig. 1 shows a visualization of 3D landmarks and camera poses for these problems. The dotted lines correspond to cost
thresholds for the tolerances 7 € {0.1,0.01,0.003,0.001}.

100

percentage

100

percentage

tolerance T = 0.1

N Ey [e)] (o]
o (] o o o
1 1 1 1

l'"—’_—-
‘I
1 2 3 4 5
relative time a
tolerance T = 0.003
/”_”
/
/J
/
7
4
1 2 3 4

N H [e)) (0]
o o o (@] o
1 1 1 L

\

relative time a

percentage

percentage

tolerance T = 0.01

100
80 A ’_/-"”
L=
60 + e
-
/
40 A -’
’/

20 A _”’I

Vv

0 T T T
1 2 3 4 5
relative time a
tolerance T = 0.001
100
80 Sy ——
//

60 1,7

4
40 A
20 PoST (ours)

-—- STBA
0 T T T
1 2 3 4

relative time a

Figure 7. Performance profiles for all BAL problems with stochastic framework. Our proposed solver PoST outperforms the challenging
STBA across all accuracy tolerances 7 € {0.1,0.01,0.003}, both in terms of speed and precision, and rivals STBA for 7 = 0.001.



ladybugl138

2x10°

105 4

cost

=~

6x10% \

4x10% S

time [s]

dubrovnik356

! PoST (ours)
R STBA
% |l
o |
b !
10° =\\
0 20 40 60 80

time [s]

Figure 8. Convergence plots of Ladybug-138 (left) from BAL dataset with 138 poses and Dubrovnik-356 (right) from BAL dataset with
356 poses. The dotted lines correspond to cost thresholds for the tolerances 7 € {0.1,0.01,0.003,0.001}.

5.2. Analysis

Figure 3 shows the performance profiles for all BAL
datasets with tolerances 7 € {0.1,0.01,0.003,0.001}. For
7 = 0.1 and 7 = 0.01 PoBA-64 clearly outperforms all
challengers both in terms of runtime and accuracy. PoBA-
64 remains clearly the best solver for the excellent accu-
racy 7 = 0.003 until a high relative time a« = 4. For
higher relative time it is competitive with v/BA — 32 and
still outperforms all other challengers. Same conclusion
can be drawn from the convergence plot of two differently
sized BAL problems (see Figure 6). Figure 4 highlights
the low memory consumption of PoBA with respect to its
challengers for all BAL problems. Whatever the size of the
problem PoBA is much less memory-consuming than v/ BA
and Ceres. Notably it requires almost five times less mem-
ory than v/BA and almost twice less memory than Ceres-
implicit and Ceres-explicit.

5.3. Power Stochastic Bundle Adjustment (PoST)
Stochastic Bundle Adjustment.

STBA decomposes the reduced camera system into clusters
inside the Levenberg-Marquardt iterations. The per-cluster
linear sub-problems are then solved in parallel with dense
LL" factorization due to the dense connectivity inside cam-
era clusters. As shown in [22] this approach outperforms
the baselines in terms of runtime and scales to very large
BA problems, where it can even be used for distributed op-
timization. In the following we show that replacing the sub-
problem solver with our Power Bundle Adjustment can sig-
nificantly boost runtime even further.

We extend STBA? by incorporating our solver instead
of the dense LL " factorization. Each subproblem is then
solved with a power series expansion of the inverse Schur

thtps://qithub.com/zlthinker/STBA

complement with the same parameters as in Section 5.1. In
accordance to [22] we set the maximal cluster size to 100
and the implementation is written in double in C++.

Analysis.

Figure 7 presents the performance profiles with all BAL
problems for different tolerances 7. Both solvers have sim-
ilar accuracy for 7 = 0.001. For 7 € {0.1,0.01,0.003},
PoST clearly outperforms STBA both in terms of runtime
and accuracy, most notably for 7 = 0.01. Same observa-
tions are done when we plot the convergence for differently
sized BAL problems (see Figure 8).

6. Conclusion

We introduce a new class of large-scale bundle adjust-
ment solvers that makes use of a power expansion of the in-
verse Schur complement. We prove the theoretical validity
of the proposed approximation and the convergence of this
solver. Moreover, we experimentally confirm that the pro-
posed power series representation of the inverse Schur com-
plement outperforms competitive iterative solvers in terms
of speed, accuracy, and memory-consumption. Last but not
least, we show that the power series representation can com-
plement distributed bundle adjustment methods to signifi-
cantly boost its performance for large-scale 3D reconstruc-
tion.
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Power Bundle Adjustment for Large-Scale 3D Reconstruction
Appendix

In this supplementary material we provide additional details to augment the content of the main paper. Section A contains
a proof of Proposition 1 in the main paper. In Section B we evaluate different levels of noises to highlight the consistence
of our solver. In Section C we tabulate the percentage of solved problems of the performance profiles (Sec. 5.2.) for each
tolerance 7 € {0.1,0.01,0.03,0.001} and for each solver. In Section D we list the evaluated problems from the BAL dataset.

A. Proof of Proposition 1

Firstly, simple product expansion gives

(I—M)IT+..+M)=1-M"T". (37)
Since the spectral norm is sub-multiplicative and
M| <1, (38)
it is straightforward that 4 ,
I < M) — 0. (39)
Thus, _
M'" — 0. (40)
1— 00
Taking the limit of both sides in (37) gives (1).
Secondly,
R= Y M =M""Y "M =M""I-M)". (41)
i=m—+1 i=0
It follows that - -
IR|| = MY M < (| MY M (42)
i=0 i=0
Since || M| < 1 we have
|M||" = ———+ (43)
2 L[]
which directly leads to the inequality
) < I @
1 —|[M]]

B. Consistence

In Sec. 5.2. initial landmark and camera positions are perturbated with a small Gaussian noise (m, o) = (0,0.01). We
observe that the relative performance of solvers is similar for different noise levels. Fig. 9 and 10 illustrate the consistence
of our results with different initial noises o = 0.05 and o = 0.1.
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Figure 9. Performance profiles for all BAL problems show the percentage of problems solved to a given accuracy tolerance 7 €
{0.1,0.01,0.003,0.001} with relative runtime «. Initial landmark and camera positions are disturbed with a Gaussian noise (0, 0.05).
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Figure 10. Performance profiles for all BAL problems show the percentage of problems solved to a given accuracy tolerance 7 €
{0.1,0.01,0.003,0.001} with relative runtime «. Initial landmark and camera positions are disturbed with a Gaussian noise (0, 0.1).
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C. Tables of solved problems associated to the performance profiles

Solver a=1 |a=3 |a=x Solver a=1 |a=3 |a=x
PoBA-64 (ours) % 100% | 100% PoBA-64 (ours) 18% 98% 98%
PoBA-32 (ours) || 62% 88% 88% PoBA-32 (ours) || 60% 84% 84%
VBA-64 0% 60% | 81% VBA-64 0% 62% | 79%
VBA-32 31% | 90% | 98% VBA-32 2% | 83% | 9%
ceres-explicit 0% 49% 95% ceres-explicit 2% 66% 90%
ceres-implicit 0% 81% 95% ceres-implicit 0% 80% 90%
Solver a=1 |a=3 |a=x Solver a=1 |a=3 |a=0x
PoBA-64 (ours) 20% 90% 93% PoBA-64 (ours) 13% 52% 58%
PoBA-32 (ours) || 44% 5% 79% PoBA-32 (ours) 8% 26% 27%
VBA-64 0% 58% | 84% VBA-64 0% 63% | 85%
VBA-32 22% | 90% | 98% VBA-32 21% | 88% | 98%
ceres-explicit 14% 1% 90% ceres-explicit 54% 83% 90%
ceres-implicit 0% 66% 91% ceres-implicit 4% 5% 90%

Table 1. Percentage of solved problems of the performance profiles (Sec. 5.2.) for each solver and for tolerance 7 = 0.1 (upper left),
7 = 0.01 (upper right), 7 = 0.003 (lower left) and 7 = 0.001 (lower right). We conclude that PoBA is particularly well suited for very
fast/low-accurate (7 = 0.1), fast/medium-accurate (7 = 0.01) and slow/high-accurate (7 = 0.003) applications.

D. Problems Table

cameras landmarks observations
ladybug-49 49 7,766 31,812
ladybug-73 73 11,022 46,091
ladybug-138 138 19,867 85,184
ladybug-318 318 41,616 179,883
ladybug-372 372 47,410 204,434
ladybug-412 412 52,202 224,205
ladybug-460 460 56,799 241,842
ladybug-539 539 65,208 277,238
ladybug-598 598 69,193 304,108
ladybug-646 646 73,541 327,199
ladybug-707 707 78,410 349,753
ladybug-783 783 84,384 376,835
ladybug-810 810 88,754 393,557
ladybug-856 856 93,284 415,551
ladybug-885 885 97,410 434,681
ladybug-931 931 102,633 457,231
ladybug-969 969 105,759 474,396
ladybug-1064 1,064 113,589 509,982
ladybug-1118 1,118 118,316 528,693
ladybug-1152 1,152 122,200 545,584
ladybug-1197 1,197 126,257 563,496
ladybug-1235 1,235 129,562 576,045
ladybug-1266 1,266 132,521 587,701
ladybug-1340 1,340 137,003 612,344
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ladybug-1469 1,469 145,116 641,383
ladybug-1514 1,514 147,235 651,217
ladybug-1587 1,587 150,760 663,019
ladybug-1642 1,642 153,735 670,999
ladybug-1695 1,695 155,621 676,317
ladybug-1723 1,723 156,410 678,421

cameras landmarks observations
trafalgar-21 21 11,315 36,455
trafalgar-39 39 18,060 63,551
trafalgar-50 50 20,431 73,967
trafalgar-126 126 40,037 148,117
trafalgar-138 138 44,033 165,688
trafalgar-161 161 48,126 181,861
trafalgar-170 170 49,267 185,604
trafalgar-174 174 50,489 188,598
trafalgar-193 193 53,101 196,315
trafalgar-201 201 54,427 199,727
trafalgar-206 206 54,562 200,504
trafalgar-215 215 55,910 203,991
trafalgar-225 225 57,665 208,411
trafalgar-257 257 65,131 225,698

cameras landmarks observations
dubrovnik-16 16 22,106 83,718
dubrovnik-88 88 64,298 383,937
dubrovnik-135 135 90,642 552,949
dubrovnik-142 142 93,602 565,223
dubrovnik-150 150 95,821 567,738
dubrovnik-161 161 103,832 591,343
dubrovnik-173 173 111,908 633,894
dubrovnik-182 182 116,770 668,030
dubrovnik-202 202 132,796 750,977
dubrovnik-237 237 154,414 857,656
dubrovnik-253 253 163,691 898,485
dubrovnik-262 262 169,354 919,020
dubrovnik-273 273 176,305 942,302
dubrovnik-287 287 182,023 970,624
dubrovnik-308 308 195,089 1,044,529
dubrovnik-356 356 226,729 1,254,598

cameras landmarks observations
venice-52 52 64,053 347,173
venice-89 89 110,973 562,976
venice-245 245 197,919 1,087,436
venice-427 427 309,567 1,695,237
venice-744 744 542,742 3,054,949
venice-951 951 707,453 3,744,975
venice-1102 1,102 779,640 4,048,424
venice-1158 1,158 802,093 4,126,104
venice-1184 1,184 815,761 4,174,654
venice-1238 1,238 842,712 4,286,111
venice-1288 1,288 865,630 4,378,614
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venice-1350 1,350 893,894 4,512,735
venice-1408 1,408 911,407 4,630,139
venice-1425 1,425 916,072 4,652,920
venice-1473 1,473 929,522 4,701,478
venice-1490 1,490 934,449 4,717,420
venice-1521 1,521 938,727 4,734,634
venice-1544 1,544 941,585 4,745,797
venice-1638 1,638 975,980 4,952,422
venice-1666 1,666 983,088 4,982,752
venice-1672 1,672 986,140 4,995,719
venice-1681 1,681 982,593 4,962,448
venice-1682 1,682 982,446 4,960,627
venice-1684 1,684 982,447 4,961,337
venice-1695 1,695 983,867 4,966,552
venice-1696 1,696 983,994 4,966,505
venice-1706 1,706 984,707 4,970,241
venice-1776 1,776 993,087 4,997,468
venice-1778 1,778 993,101 4,997,555

cameras landmarks observations
final-93 93 61,203 287,451
final-394 394 100,368 534,408
final-871 871 527,480 2,785,016
final-961 961 187,103 1,692,975
final-1936 1,936 649,672 5,213,731
final-3068 3,068 310,846 1,653,045
final-4585 4,585 1,324,548 9,124,880
final-13682 13,682 4,455,575 28,973,703

Table 2. List of all 97 BAL problems including number of cameras, landmarks and observations. These are the problems evaluated for

performance profiles in the main paper.
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