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Abstract. We present an approach for identifying and segmenting independently
moving objects from dense scene flow information, using a moving stereo camera
system. The detection and segmentation is challenging due to camera movement
and non-rigid object motion. The disparity, change in disparity, and the optical
flow are estimated in the image domain and the three-dimensional motion is in-
ferred from the binocular triangulation of the translation vector. Using error prop-
agation and scene flow reliability measures, we assign dense motion likelihoods
to every pixel of a reference frame. These likelihoods are then used for the seg-
mentation of independently moving objects in the reference image. In our results
we systematically demonstrate the improvement using reliability measures for
the scene flow variables. Furthermore, we compare the binocular segmentation of
independently moving objects with a monocular version, using solely the optical
flow component of the scene flow.

1 Introduction and Related Work

In this paper we present the segmentation of independently moving objects from stereo
camera sequences, obtained from a moving platform. Classically, moving objects are
separated from the stationary background by change detection (e. g. [1]). But if the
camera is also moving in a dynamic scene, motion fields become rather complex. Thus,
the classic change detection approach is not suitable as it can be seen in Fig. 1. Our goal
is to derive a segmentation of moving objects for this general dynamic setting.

Fig. 1. From left to right: input image, difference image between two consecutive frames, motion
likelihood, and segmentation result. With the motion likelihood derived from the scene flow, the
segmentation of the moving object becomes possible although the camera itself is moving.
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Fig. 2. The segmentation pipeline. Firstly, disparity and scene flow are computed; secondly, mo-
tion likelihoods are derived, and thirdly the image is segmented using graph cut.

We do not constrain the motion of the camera itself nor imply assumptions on the
structure of the scene, such as rigid body motion. Rigid objects constrain the motion
onto sub-spaces which yield efficient means to segment dynamic scenes using two
views [2]. Another approach is used in [3], where the segmentation process is solved
efficiently by incorporating a shape prior. If nothing about object appearance is known,
the segmentation clearly becomes more challenging.

High-dynamic scenes with a variety of different conceivable motion patterns are es-
pecially challenging and reach the limits of many state-of-the-art motion segmentation
approaches (e. g. [4, 5]). This is a pity because the detection of moving objects implies
certain scene dynamics. Although we do not constraint the camera motion, we assume
that it is approximately known. In particular, we compute the fundamental matrix to-
gether with the scene flow, as proposed for the optical flow setting in [6, 7]. From this,
the motion of the camera is derived where the free scale parameter is fixed using the
velocity sensor of the moving platform.

In [8] the authors use dense optical flow fields over multiple frames and estimate
the camera motion and the segmentation of a moving object by bundle adjustment. The
necessity of rather long input sequences however limits its practicability; furthermore,
the moving object has to cover a large part of the image in order to detect its motion. The
closest work related to our work is the work presented in [9]. It presents a monocular
and a binocular approach to moving object detection and segmentation in high-dynamic
situations using sparsely tracked features over multiple frames. In this paper we focus
on moving object detection using only two consecutive stereo pairs, we use a dense
scene flow fiels, and we show how per-pixel motion confidences are derived.

Fig. 2 illustrates the segmentation pipeline. The segmentation is performed in the
image of a reference frame (left frame at time t) employing the graph cut segmenta-
tion algorithm [10]. The motion cues we use are derived from dense scene flow and
calculated from the two stereo image pairs at time t-1 and t. Furthermore, we consider
individual reliability measures for the variances of the flow vectors and the disparities
at each image pixel. To our knowledge, the direct use of dense scene flow estimates for
the detection and segmentation of moving objects is novel.

Paper Outline

In Section 2 we present the core graph cut segmentation algorithm. It minimizes an
energy consisting of a motion likelihood for every pixel and a length term, favoring
segmentation boundaries along intensity gradients.
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The employed motion likelihoods are derived from dense scene flow in Section 3.
Scene flow consists of the optical flow, the disparity, and the change of disparity over
time. In the monocular setting, only the optical flow component of the scene flow is
used. Compensating for the camera motion is a prerequisite step to detecting moving
objects; additionally, one has to deal with inaccuracies in the estimates. We show how
inaccuracies in the images can be modelled with reliability measures for the disparity
and scene flow variables, and use error propagation to derive the motion likelihoods.

In Section 4 we compare the monocular method and the binocular method for the
segmentation of independently moving objects in different scenarios. We systematically
demonstrate that the consideration of inaccuracies, when computing the motion likeli-
hoods for every pixel, yields increased robustness for the segmentation. Furthermore,
we demonstrate the limits of the monocular and binocular segmentation methods and
provide ideas for further research to overcome these limitations.

2 Segmentation Algorithm

The segmentation of the reference frame into moving and stationary parts can be ex-
pressed by a binary labelling of the pixels,

L(x) =

{
1 if the pixel x is part of a moving object
0 otherwise.

(1)

The goal is now to determine an optimal assignment of each pixel to moving or non
moving. There are two competing constraints. Firstly, a point should be labelled mov-
ing if it has a high motion likelihood ξmotion derived from the scene flow information
and vice versa. Secondly, points should favour a labelling which matches that of their
neighbors. Both constraints enter a joint energy of the form

E(L) = Edata(L) + λEreg(L) , (2)

where λ weighs the influence of the regularization force. The data term is given by

Edata = −
∑
Ω

{
L(x) ξmotion(x) +

(
1− L(x)

)
ξstatic(x)

}
(3)

on the image planeΩ, where ξstatic is a fixed prior likelihood of a point to be static. The
regularity term favors labellings of neighboring pixels to be identical. This regularity is
imposed more strongly for pixels with similar brightness:

Ereg =
∑
Ω

 ∑
x̂∈N4(x)

g (I(x)− I(x̂)) |L(x̂)− L(x)|

 , (4)

where N4 is the 4 neighborhood (upper, lower, left, right) of a pixel and g(·) is a posi-
tive, monotonically decreasing function of the brightness difference between neighbor-
ing pixels. Here, we set g(z) = 1

z+α with a positive constant α.
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Fig. 3. Illustration of the graph mapping. Red connections illustrate graph edges from the source
node s to the nodes, green connections illustrate graph edges from nodes to the target node t.
Note, that the ξmotion likelihood may be sparse due to occlusion. In the illustration only pixels
with yellow spheres contribute to this motion likelihood. Black connections (indicated by the
arrow) illustrate edges between neighboring pixels.

Graph Mapping.

Summarizing the above equations, this yields for the energy (Equation 2)

∑
Ω

{
−L(x) ξmotion(x)−

(
1− L(x)

)
ξstatic(x) + λ

∑
x̂∈N4(x)

|L(x̂)−L(x)|
|I(x)−I(x̂)|+α

}
. (5)

Due to the combinatorial nature, finding the minimum of this energy is equivalent to
finding the s-t-separating cut with minimum costs of a particular graph G(v, s, t, e),
consisting of nodes v(x) for every pixel x in the reference image and two distinct
nodes: the source node s and the target node t [11]. The edges e in this graph con-
nect each node with the source, target, and its N4 neighbors. The individual edge costs
are defined as follows:

edge edge cost

source link: s→ v(x) −ξmotion(x)

target link: v(x)→ t −ξstatic(x)

N4 neighborhood: v(x̂)↔ v(x) λ 1

|I(x)−I(x̂)|+α

The cost of a cut in the graph is computed by summing up the costs of the cut
(removed) edges. Removing the edges of an s-t-separating cut from the graph yields a
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graph where every node v is connected to exactly one terminal node, either the source
s or the target t. If we define nodes that are connected to the source as static and those
connected to the target as moving, it turns out that the cost of an s-t-separating cut is
equal to the energy in Equation (5) with the corresponding labelling, and vice versa.
Thus, the minimum s-t-separating cut yields the labeling that minimizes Equation (5).
The minimum cut is found using the graph cut algorithm in [10].

In the next Section, we will derive the likelihoods ξmotion(x) from the disparity and
scene flow estimates.

3 Motion Likelihoods

Independently moving objects can only be detected from an image sequences if at least
two consecutive images are evaluated. In this paper we constraint ourselves to the min-
imum case of only two consecutive images. If more images are available, the detection
task essentially becomes a tracking task because previously detected objects influence
the current segmentation.

We analyze a monocular and a binocular camera setting, and derive likelihoods that
pixels of a reference frame depict moving objects. In the monocular case, these con-
straints have been proposed in [12]. We will review the constraints and derive a Maha-
lanobis distance for every pixel in the image space which corresponds to the likelihood
that the depicted object is moving. In the binocular case, the three-dimensional position
for every pixel and its three-dimensional motion vector are reconstructed. Then the Ma-
halanobis distance of the three-dimensional translation vector yields a likelihood that
the depicted object is moving.

3.1 Scene Flow Computation.

The input for the motion likelihood is given by dense disparity and scene flow estimates
[d, u, v, p] for every pixel in the reference frame. The image position, x = [x, y], and the
disparity, d, encode the three-dimensional position of a point. The optical flow (change
of image position in between two frames), [u, v], and the change in disparity, p, encode
the scene flow motion information. Note, that for the monocular setting only the optical
flow information, [u, v], is used.

A variational approach to estimating this flow field was first proposed in [13]. The
authors imposed regularity over all four variables and estimated all variables by mini-
mizing a resulting single functional. Here we use the approach proposed in [14], where
the authors split the position and motion estimation steps into two separate problems,

(A) Ω → R , [x, y] 7→ d (6)
and (B) Ω × R→ R3 , [x, y]× d 7→ [u, v, p] . (7)

While (A) is the well-known disparity estimation step, (B) implies minimizing a scene
flow energy, consisting of a data term and a smoothness term,

SF (u, v, p, d) = SFdata(u, v, p, d) + SFsmooth(u, v, p) . (8)
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stereo
(given)

Optical Flow Left
Equation (10)

Optical Flow Right
Equation (11)

Disparity
Eq. (12)

Fig. 4. Scene flow computation from two stereo image pairs. The stereo at the last time instance,
t-1, is given by the semi-global matching algorithm. The data terms and smoothness term are
described in the text in Equations (10 - 13).

The implicit dependancy of the variables u, v, p, and d on [x, y] (e.g. u(x, y)) is left out
in the notation to keep the notation uncluttered. Note, that the coupling between position
and motion in such an approach is taken care of implicitly as the motion estimation step
in (B) depends on the position estimation, which is the previously computed disparity
map in (A).

The data term evaluates the gray value constancy of the scene flow,

SFdata(u, v, p, d) =
∫
Ω

{
Esf-data-left + Esf-data-right + Esf-data-disp

}
dx dy . (9)

It evaluates the gray value constancy assumption for the optical flow field in the left
image pair (IL) and the right image pair (IR):

Esf-data-left = |IL(x, y, t− 1)− IL(x+ u, y + v, t)| (10)
Esf-data-right = |IR(x+ d, y, t− 1)− IR(x+ d+ u+ p, y + v, t)| . (11)

Additionally, the gray value constancy assumption for the stereo disparity field at time
t is evaluated:

Esf-data-disp = |IL(x+ u, y + v, t)− IR(x+ d+ u+ p, y + v, t)| . (12)

The smoothness term minimizes the fluctuation in the scene flow field by penalyzing
the flow field derivatives,

SFsmooth(u, v, p) =
∫
Ω

Esf-reg dx dy with Esf-reg = |∇u|+ |∇v|+ |∇p| . (13)

The resulting energy can be solved by calculus of variation. For the numerical solu-
tion scheme we refer to [14].
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3.2 Variances for Disparity and Scene Flow.

Computing the Mahalanobis distance implies that variances for the image position
(monocular setting) or three-dimensional translation vector (binocular setting) need to
be known. Although constant variances for the whole image may be used, our experi-
ments show that individual variances yield more reliable segmentation results. There-
fore, we derive such variances for the disparity and scene flow estimates for every pixel,
depending on the corresponding underlying energy functional.

Fig. 5. The slope of the disparity
cost function serves as a quality
measure for the disparity estimate.

Disparity Reliability. The scene flow algorithm
in [14] uses the semi-global matching algorithm
[15] for the disparity estimation and a variational
framework for the scene flow estimates. The core
semi-global matching algorithm is pixel-accurate.

Let k be the disparity estimate of the core
SGM method for a certain pixel in the left image.
The SGM method in [15] is formulated as an en-
ergy minimization problem. Hence, changing the
disparity by ±1 yields an increase in costs (yield-
ing an increased energy). The minimum, however,
may be located in between pixels, motivating a
subsequent sub-pixel estimation step. Sub-pixel accuracy is achieved by a subsequent
fit of a symmetric equiangular function (see [16]) in the cost volume. The basic idea of
this step is illustrated in Figure 5. The costs for the three disparity assumptions k-1 px,
k px, and k+1 px are taken and a symmetric first order function is fitted to the costs.
This fit is unique and yields a specific sub-pixel minimum, located at the minimum of
the function. Note, that this might not be the minimum of the underlying energy but is
a close approximation, evaluating the energy only at pixel position.

The slope of this fitting function (the larger of the two relative cost differences
between the current estimate and neighboring costs,∆y) serves as a quality measure for
the goodness-of-fit. If the slope is low, the disparity estimate is not accurate in the sense
that other disparity values could also be valid. If on the other hand the slope is large,
the sub-pixel position of the disparity is expected to be quite accurate as deviation from
this position increases the energy. Hence, the larger the slope, the better is the expected
quality of the disparity estimate. Note that the costs mentioned here are accumulated
costs that also incorporate smoothness terms.

Based on this observation an uncertainty measure is derived for the expected vari-
ance of the disparity estimate:

UD(x, y, d) =
1
∆y

. (14)

Scene Flow Reliability. For variational optic flow methods the idea of using the incline
of the cost function or energy function as uncertainty measure becomes more complex
than in the disparity setting. This is due to the higher dimensionality of the input and
solution space. An alternative, energy-based confidence measure was proposed in [17].
The novel idea is that the reliability is inversely proportional to the local energy contri-
bution in the energy functional, used to compute the optical flow. A large contribution
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Fig. 6. Plots of the proposed reliability measures and corresponding variances for the disparity
(VAR(d) vs. UD , left) and for the scene flow u-component (VAR(u) vs. USF , right). The plots
reveal that the proposed reliability measures are approx. proportional to the observed variances.

to the total energy implies low expected accuracy while the accuracy is expected to be
good if the energy contribution is small. The authors show that this energy-based mea-
sure yields a better approximation of the optimal confidence for optic flow estimates
than an image-gradient-based measure. The same idea is now applied to the scene flow
case, yielding an expected variance of the scene flow estimate:

USF (x, y, d, u, v, p) = Esf-data-left + Esf-data-right + Esf-data-disp + λEsf-reg . (15)

Comparing Variances and Reliability Measures. To evaluate the reliability measures
for the disparity and scene flow estimates, we plot the derived uncertainty measures
against the observed error in Fig. 6 (for the disparity d and the u-component of the
optical flow). To generate the plots a 400 frames long evaluation sequence, rendered
with Povray and available in [18] together with the ground truth flow, is used.

The plots illustrate, that the proposed reliability measures are correlated to the true
variances of the errors. Furthermore, the variance σz (for a scene flow component z ∈
{d, u, v, p}) can be approximated by a linear function of the reliability measure, denoted
by γz , with fixed parameters az and bz: σ2

z(x) = az + bzγz(x).

3.3 Monocular Motion Likelihood.

For the monocular case we use the motion likelihood proposed for sparse data in [12].
There is a fundamental weakness of monocular three-dimensional reconstruction when
compared to stereo methods – moving points cannot be correctly reconstructed by
monocular vision. This is due to the camera movement between the two sequential
images. Thus, optical flow vectors are triangulated, assuming that every point belongs
to a static object. Such triangulation is only possible, if the displacement vector itself
does not violate the fundamental matrix constraint. Needless to say that every track vi-
olating the fundamental matrix constraint belongs to a moving object and the distance
to the fundamental rays directly serves as a motion likelihood.
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However, even if flow vectors are aligned with the epipolar lines, they may belong
to moving objects. This is due to the fact that the triangulated point may be located
behind one of the two cameras or below the ground surface (for this constraint we make
a planar road assumption). Certainly such constellations are only virtually possible,
assuming that the point is stationary. In reality such constellations are prohibited by the
law of physics. Therefore, such points must be located on moving objects.

In summary, a point is detected as moving if its 3D reconstruction is identified as er-
roneous. For calculating the distance dvalid(x) between the observed optical flow vector
and the closest optical flow vector fulfilling above constraints, we refer to [12] where
above verbal descriptions are expressed in mathematical formulations. We calculate the
Mahalanobis distance to this closest optical flow vector by weighing the distance with
the variance of the optical flow vector, yielding

ξmotion(x) =
√
dvalid (x)2 σu,v (x)2 . (16)

Note, that due to the coupling in the variational framework, the variances σu and σv are
assumed to be equal.

3.4 Binocular Motion Likelihood.

In the stereo setting, the full disparity and scene flow information is available. A point
is transformed from the image coordinates (x, y, d) into world coordinates (X,Y, Z)
according to X = (x− x0) bd , Y = (y − y0) bd

fx

fy
, and Z = fx b

d , where b is the basis
length of the stereo camera system, fx fy are the focal lengths of the camera in pixels,
and (x0, y0) its principal point. As a simplification, we assume the focal lengths fx fy
to be equal. Transforming the points (x, y, d) and (x + u, y + v, d + p) into world
coordinates and compensating the camera rotation R and translation T yields the three-
dimensional residual translation (or motion) vector M with

M =
b

d
R

x− x0

y − y0
fx

− b

d+ p

x+ u− x0

y + v − y0
fx

+ T (17)

Using error propagation we calculate the Mahalanobis length of the translation vector.
Essentially, this incorporates the variances of the disparity, scene flow estimates, and the
camera rotation and translation. Here, we assume the variances of the camera rotation
to be negligible. Although this is certainly not true, such procedure is possible because
the estimation of the fundamental matrix from the complete optical flow field does yield
vanishing variances for the rotational parts. We do however use fixed variances in the
camera translation because the translation information from the velocity sensor of the
ego-vehicle is rather inaccurate. With the variances σ2

u, σ2
v , σ2

p, and σ2
d for the scene

flow and σ2
T for the translation this yields the Mahalanobis distance

ξmotion(x) =

√
M>

(
J>diag(σu, σv, σp, σd, σT)J

)−1

M , (18)

where J is the Jacobian of Equation (17).
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no error propagation

spatially fixed variances used in error propagation

variances from reliability measures used for error propagation

Fig. 7. Results for different error propagation methods. The left images show the motion likeli-
hoods and the right images the segmentation results.

4 Experimental Results and Discussion

In this section we present results which demonstrate the accurate segmentation of mov-
ing objects using scene flow. In the first part, we show that the presented reliability
measures greatly improve the segmentation results when compared to a fixed variance
for the disparity and scene flow variables. In the second part, we compare the segmen-
tation results using the monocular and binocular motion segmentation approaches.

4.1 Robust Segmentation

Figure 7 illustrates the importance of using the reliability measures to derive individual
variances for the scene flow variables. If the propagation of uncertainties is not used
at all, the segmentation of moving objects is not possible (top row). Using the same
variance for every image pixel the segmentation is more meaningful; but still outliers
are present in both, the motion likelihoods and the segmentation results (middle row).
Only when the reliability measures are used to derive individual variances for the pixels,
is the segmentation accurate and outlier influence is minimized (bottom row).
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4.2 Monocular versus Binocular Segmentation of Independently Moving Object

A binocular camera system will always outperform a monocular system, simply be-
cause more information is available. However, in many situations a monocular system
is able to detect independent motion and segment the moving objects in the scene. In
this section we demonstrate the segmentation of independently moving objects using a
monocular and a binocular camera system and discuss the results.

In a monocular setting, motion which is aligned with the epipolar lines cannot be
detected without prior knowledge about the scene. Amongst other motion patterns, this
includes objects moving parallel to the camera motion. For a camera moving in depth
this includes all (directly) preceding objects and (directly) approaching objects. The
PreceedingCar and HillSide sequences in Figure 8 show such constellations.

Using the ground plane assumption in the monocular setting (no virtually triangu-
lated point is allowed to be located below the road surface) facilitates the detection
of preceding objects. This can be seen in the PreceedingCar experiment, where lower
parts of the car become visible. If compared to the stereo settings, which does not use
any information about scene structure, the motion likelihood for the lower part of the
preceding car is more discriminative. However, if parts of the scene are truly located
below the ground plane, as the landscape at the right in the HillSide experiment, these
will always be detected as moving, too. Additionally, this does not help to detect ap-
proaching objects. Both situations are solved using a binocular camera.

If objects do not move parallel to the camera motion, they are essentially detectable
in the monocular setting (Bushes and Running sequences in Figure 9). However, the
motion likelihood using a binocular system is more discriminative. This is due to the
fact that the three-dimensional position of an image point is known from the stereo
disparity. Thus, the complete viewing ray for a pixel does not need to be tested for
apparent motion in the images, as in the monocular setting. In the unconstrained setting
(not considering the ground plane assumption), the stereo motion likelihood therefore
is more restrictive than the monocular motion likelihood. Note, that non-rigid objects
(as in the Running sequence in Figure 9) are detected as well as rigid objects and do not
limit the detection and segmentation at any stage.

5 Conclusion

Building up on a recent variational approach to scene flow estimation, we proposed in
this paper an energy minimization method to detect and segment independently moving
objects filmed in two video cameras installed in a driving car. The central idea is to
assign, to each pixel in the image plane, a motion likelihood which specifies whether,
based on 3D structure and motion, the point is likely to be part of an independently mov-
ing object. Subsequently, these local likelihoods are fused in an MRF framework and
a globally optimal spatially coherent labelling is computed using the min cut max flow
duality. In challenging real world scenarios where traditional background subtraction
techniques would not work (because everything is moving), we are able to accurately
localize independently moving objects. The results of our algorithm could directly be
employed for automatic driver assistance.
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PreceedingCar HillSide

Optical Flow Result

Monocular Segmentation of Independently Moving Objects

Binocular Segmentation of Independently Moving Objects

Fig. 8. The figure shows the energy images and the segmentation results for objects moving paral-
lel to the camera movement. This movement cannot be detected monocularly without additional
constraints, such as a planar ground assumption. Moreover if this assumption is violated, this
yields errors (as in the HillSide sequence). In a stereo setting prior knowledge is not needed to
solve the segmentation task in these two scenes.
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Bushes Running

Optical Flow Result

Monocular Segmentation of Independently Moving Objects

Binocular Segmentation of Independently Moving Objects

Fig. 9. The figure shows the energy images and the segmentation results for objects which move
not parallel to the camera motion. In such constallations a monocular as well as a binocular
segmentation approach is successfull. However, one can see in the energy images and in the more
accurate segmentation results (the head of the person in the Running sequence) that stereo is more
discriminative. Note, that the also non-rigid independently moving objects are segmented.
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