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Abstract Building upon recent developments in optical
flow and stereo matching estimation, we propose a varia-
tional framework for the estimation of stereoscopic scene
flow, i.e., the motion of points in the three-dimensional
world from stereo image sequences. The proposed algorithm
takes into account image pairs from two consecutive times
and computes both depth and a 3D motion vector associ-
ated with each point in the image. In contrast to previous
works, we partially decouple the depth estimation from the
motion estimation, which has many practical advantages.
The variational formulation is quite flexible and can handle
both sparse or dense disparity maps. The proposed method
is very efficient; with the depth map being computed on an
FPGA, and the scene flow computed on the GPU, the pro-
posed algorithm runs at frame rates of 20 frames per sec-
ond on QVGA images (320 × 240 pixels). Furthermore, we
present solutions to two important problems in scene flow
estimation: violations of intensity consistency between in-
put images, and the uncertainty measures for the scene flow
result.
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1 Introduction

One of the most important features to extract in image se-
quences from a dynamic environment is the motion of points
within the scene. Humans perform this using a process
called visual kinesthesia, which encompasses both the per-
ception of movement of objects in the scene and the ob-
server’s own movement. Perceiving this using computer vi-
sion based methods proves to be difficult. Images from a sin-
gle camera are not well constrained. Only the perceived two-
dimensional motion can be estimated from sequential im-
ages, commonly referred to as optical flow. Up to estimation
errors and some well-known ambiguities (aperture prob-
lem), the optical flow corresponds to the three-dimensional
scene motion projected to the image plane. The motion in
depth is lost by the projection.

There are ways to recover the depth information from
calibrated monocular video in a static scene with a mov-
ing observer up to a similarity transform. However, this re-
quires a translating motion of the observer. The process be-
comes even more complex when there are independently
moving objects in the scene. The estimation of the motion
then has to be combined with a separation of independent
motions—a chicken-and-egg problem which is susceptible
to noise and/or local optima (Costeira and Kanande 1995;
Kanatani and Sugaya 2004; Rao et al. 2008; Yan and Polle-
feys 2006).

Once a stereo camera system is available, the task be-
comes better constrained and feasible in practice. The dis-
tance estimate from the triangulation of stereo correspon-
dences provides vital additional information to reconstruct
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Fig. 1 (Color online) The scene
flow motion field depicted on
the right is computed from two
stereo input image pairs. On the
left, the images from the left
camera are shown for the two
time instances. The colour
encodes speed from stationary
(green) to rapidly moving (red)
after camera ego-motion
compensation. Note the accurate
motion estimation of the leg and
the arm of the running person

the three-dimensional scene motion. Then, ambiguities only
arise

1. If the camera motion is not known, in particular the cam-
era is not stationary. In this case, only the motion relative
to the camera can be estimated.

2. When points are occluded.
3. Around areas with missing structure in a local neighbour-

hood.

The first two ambiguities are quite natural and affect also
human perception. For instance, human perception cannot
distinguish whether the earth is rotating or the stars circu-
late around us.1 The third ambiguity is well-known in both
disparity estimation and optical flow estimation. A common
way to deal with the missing structure and to achieve dense
estimates is the use of variational approaches that incorpo-
rate a smoothness prior that resolves the ambiguity. In this
sense, when we speak of dense estimates we mean that for
each 3D point that is seen in both cameras, we have an esti-
mate of its motion. Figure 1 is an example, where the move-
ment of a running person becomes visible in the 3D scene
flow.

1.1 Related Work

2D motion vectors are usually obtained by optical flow es-
timation techniques. Sparse techniques, such as KLT track-
ing (Tomasi and Kanade 1991), perform some kind of fea-
ture tracking and are preferred in time-critical applications.
Dense optical flow is mostly provided by variational mod-
els based on the method of Horn and Schunck (1981). Local
variational optimisation is used to minimise an energy func-
tional that assumes constant pixel intensities and a smooth
flow field. The basic framework of Horn and Schunck has
been improved over time to cope with discontinuities in
the flow field, and to obtain robust solutions with the pres-
ence of outliers in image intensities (Black and Anandan

1A fact that has nurtured many religious discussions.

1996; Mémin and Pérez 1998). Furthermore, larger dis-
placements can be estimated thanks to image warping and
non-linearised model equations (Mémin and Pérez 1998;
Brox et al. 2004). Currently, variational techniques yield
the most accurate optical flow in the literature (Wedel et al.
2008a; Werlberger et al. 2010; Zimmer et al. 2009). For the
current state-of-the-art we refer to the Middlebury bench-
mark on optical flow (Scharstein and Szeliski 2002). Real-
time methods have been proposed in Bruhn et al. (2005),
Zach et al. (2007).

Scene flow computation involves an additional dispar-
ity estimation problem, as well as the task of estimating
the change of disparity over time. The work in Patras et
al. (1996) introduced scene flow as a joint motion and dis-
parity estimation method. The succeeding works in Huguet
and Devernay (2007), Min and Sohn (2006), Zhang and
Kambhamettu (2001) presented energy minimisation frame-
works including regularisation constraints to provide dense
scene flow. Other dense scene flow algorithms have been
presented in multiple camera set-ups (Pons et al. 2007;
Vedula et al. 2005). However, these only allow for non-
consistent flow fields in single image pairs.

None of the above approaches run in real-time (see Ta-
ble 1), giving best performances in the scale of minutes. The
work in Isard and MacCormick (2006) presents a probabilis-
tic scene flow algorithm with computation times in the range
of seconds, but yielding only discrete integer pixel-accurate
(not sub-pixel) results. Gong and Yang (2006) presented a
discrete disparity flow (i.e., scene flow) algorithm that ran
in the range of 1–2 seconds on QVGA (320 × 240 pixel)
images. Real-time sub-pixel accurate scene flow algorithms,
such as the one presented in Rabe et al. (2007), provide only
sparse results both for the disparity and the displacement es-
timates.

The only real-time scene flow algorithm presented in the
literature so far is the disparity flow algorithm in Gong
(2009), which is an extension of Gong and Yang (2006).
This method is a discrete, combinatorial method and re-
quires, a-priori, the allowed range (and discretisation) of
values. It runs on QVGA images at 12 Hz using a local
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Table 1 Scene flow algorithms with their running times, density, and range tested

Algorithm # cameras Dense approach Close/far Running

(yes/no) time

“Joint motion . . . ” (Patras et al. 1996) 2 Yes Close ?

“Decouple: image segmentation . . . ” (Zhang and Kambhamettu 2001) 2 Yes Close ?

Three-dimensional scene flow (Vedula et al. 2005) 17 Yes Close ?

6D Vision (Rabe et al. 2007) 2 No Both 40 ms

“Dense motion . . . ” (Isard and MacCormick 2006) 2 Yes Very close 5 s

“Multi view reconstruction . . . ” (Pons et al. 2007) 30 Yes Close 10 min

Huguet-Devernay (Huguet and Devernay 2007) 2 Yes Both 5 hours

“Disparity flow . . . ” (Gong 2009) 3 Yes Close 80 ms

Decoupled (this paper) 2 Yes Both 50 ms

stereo method and at 5 Hz for the dynamic programming
method (running on a GPU). Note that this is for a range of
40 discrete values (the author chose the range ±5 for the op-
tical flow component and ±1 for the disparity flow), which is
rather limited in its application. This method uses a decou-
pled approach for solving the disparity and the scene flow
separately, but provides a loose coupling by predicting the
disparity map using the scene flow with an error validation
step.

In contrast, the method we present here provides sub-
pixel accurate scene flow, due to the variational nature of
the implementation, for any sized flow vector (handles both
large and small vectors easily), and close to real-time (5 Hz
on a CPU, 20 Hz on a GPU) for QVGA images. Parts of this
work have been presented in three preliminary conference
papers (Wedel et al. 2008b, 2008c, 2009).

1.2 Contributions

Combining disparity estimation and motion estimation into
one framework has been the common approach for scene
flow computation (e.g., Huguet and Devernay 2007; Patras
et al. 1996; Zhang and Kambhamettu 2001). In this paper,
scene flow is presented as an alternative to the work from
Huguet and Devernay (2007), which is based on Brox et al.
(2004). The main contribution is that we propose decoupling
of the motion estimation from the disparity estimation while
maintaining the stereo constraints. In addition to the decou-
pling, we elaborate on the intensity consistency assumption
(or Lambertian reflectance assumption) that is part of op-
tical flow and most scene flow algorithms. It is known to
cause errors when real-world lighting conditions have vari-
able effects on the different input images. In scene flow com-
putation, where we match four images, the effects are even
greater than in optical flow estimation. We present a solution
based on residual images (Vaudrey et al. 2010). Finally, we
provide uncertainty measures for every pixel, and present
their use for object segmentation.

1.3 Why Decoupling is Advantageous

The decoupling of depth (disparity) and motion (optical flow
and disparity change) estimation might look unfavourable at
a first glance, but it has two important advantages. Firstly,
the challenges in motion estimation and disparity estimation
are quite different. With disparity estimation, thanks to the
epipolar constraint, only an ordered scalar field needs to be
estimated. This enables the use of optimisation methods that
guarantee global optima, such as dynamic programming or
graph-cuts, to establish point correspondences. Optical flow
estimation, on the other hand, requires the estimation of a
vector field without ordered labels. In this setting, global op-
timisation in polynomial time is not available. Another im-
portant difference is that motion vectors tend to be smaller
in magnitude than disparities. This is valid for most applica-
tions and can be assured for all applications by minimising
the time delay in between the images) . Thus sub-pixel accu-
racy as provided by variational methods is more important
for motion estimation, whereas occlusion handling is more
critical in disparity estimation.

Splitting scene flow computation into the estimation
sub-problems, disparity and optical flow with dispar-
ity change, allows one to choose the optimal technique
for each task.

It is worth noting that, although we separate the disparity es-
timation problem from the motion estimation, the proposed
method still involves a coupling of these two tasks in the fi-
nal scene flow computation, as the optical flow is enforced
to be consistent with the computed disparities.

Secondly, the two sub-problems can be solved more effi-
ciently than the joint problem. We find that the decoupling
strategy allows for real-time computation of high-quality
scene flow on the GPU with a frame rate of 20 Hz on QVGA
images assuming the disparity map is provided (or imple-
mented in hardware). On the CPU, we achieve 5 Hz.
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The splitting approach to scene flow is about 500
times faster compared to recent techniques for joint
scene flow computation.2

How does the decoupling affect the quality of the results?
In the decoupling strategy we propose, the motion field es-
timation takes into account the estimated disparities, but the
disparity computation does not benefit from the computed
motion fields. In coupled approaches like Huguet and De-
vernay (2007), all variables are optimised at the same time.
However, variational optimisation is a local approach, which
is likely to run into local minima, especially when there are
many coupled variables. Even though a coupled energy is
an advantageous formulation of the problem, it is impossi-
ble to globally optimise this energy. In contrast, our disparity
estimates are based on a global optimisation technique. Al-
though the disparities are not refined later in the variational
approach anymore, they are more likely to be correct than in
a coupled variational setting. This explains why the estima-
tion accuracy of our decoupled approach actually turns out
to compare favourably to that of joint estimation methods.

1.4 Paper Organisation

Section 2 first formulates the scene flow assumptions and
energy equations, and then discusses implementation strate-
gies, along with pseudo-code. In Sect. 3, we provide a way
of estimating the pixel-wise uncertainty of our calculated re-
sults. This aims to be used for follow-on processes, such as
filtering and segmentation. Section 4 takes the image based
scene flow and formulates the transformation to real-world
coordinates. Furthermore, this section provides metrics and
likelihoods for understanding motion and speed. We present
experimental results in Sect. 5 and conclude the paper in the
final section.

2 Formulation of Scene Flow

Figure 2 shows the outline of the approach. As seen from
this figure, disparity estimation is decoupled from the vari-
ational scene flow computation in order to allow for the use
of efficient and optimal stereo algorithms. Given the dispar-
ity at t , we compute the optical flow and change in disparity
from the two stereo pairs at time t and t + 1. The disparity,
optical flow and disparity change together determine scene
flow.

2.1 Disparity Estimation

A disparity d := d(x, y, t) is calculated for every pixel po-
sition [x, y]� at every time frame t . Here, the pixel posi-
tion is found in the image domain �. Current state-of-the-art

2The exception is Gong (2009), which is a loosely coupled approach.

algorithms (e.g., see Scharstein and Szeliski 2002) require
normal stereo epipolar geometry, such that pixel row y for
the left and right images coincide. This is achieved by a so-
called rectification process given the fundamental matrix of
the stereo camera (Hartley and Zisserman 2000).

A world point [X,Y,Z]� (lateral, vertical and depth
resp.) is projected into the cameras images, yielding [x, y]�
in the left image and [x + d, y]� in the right image, accord-
ing to:

⎛
⎝

x

y

d

⎞
⎠ = 1

Z

⎛
⎝

Xfx

−Yfy

bfx

⎞
⎠ +

⎛
⎝

x0

y0

0

⎞
⎠ (1)

with the focal lengths fx and fy (in pixels) for the x and y

direction, [x0, y0]� is the principal point of the stereo cam-
era system, and b is the baseline distance between the two
camera projection centres (in metres). The disparity value
d therefore encodes the difference in the x-coordinate of
an image correspondence between the left and right image.
With known intrinsic camera parameters (from calibration),
the position of a world point [X,Y,Z]� can be recovered
from an [x, y, d]� measurement using (1).

The goal of the stereo correspondence algorithm is to es-
timate the disparity d , for every non-occluded pixel in the
left image. This is accomplished by local methods, which
use a small matching window from the left to the right im-
age, or global methods, which incorporate some global regu-
larity constraints. The scene flow algorithm that we present
later has the flexibility to use any disparity map as input.
Dense or sparse algorithms are handled effectively due to
the variational nature of the approach. In Sect. 5 we show
scene flow results for different disparity estimation algo-
rithms. One is a hierarchical correlation algorithm yield-
ing sparse sub-pixel accurate disparity maps, which runs at
about 100 Hz (Franke and Joos 2000). The other produces a
sparse, pixel-discrete disparity map using Census based hash
tables (Stein 2004). It is massively parallel and available in
hardware (FPGA—field programmable gate array) without
extra computational cost. Finally, we consider semi-global
matching (SGM) with mutual information (Hirschmüller
2008), a globally consistent energy minimisation technique
that provides a disparity estimate for every non-occluded
pixel. This algorithm is implemented on dedicated hardware
(FPGA) and runs at 30 Hz on images with a resolution of
640×480 pixels. SGM is used as our main stereo algorithm.

2.2 Stereo Motion Constraints

The data dependencies exploited in the scene flow algorithm
are shown in Fig. 3. We use two consecutive pairs of stereo
images at time t and t + 1. The scene flow field [u,v,p]� is
an extension of the optical flow field [u(x, y, t), v(x, y, t)]�
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Fig. 3 Motion and disparity constraints employed in our scene flow
algorithm. Intensity consistency of corresponding points in the left and
right stereo image and in successive frames is assumed. This assump-
tion is relaxed later in Sect. 2.5

(flow in the x and y direction respectively) by an additional
component p(x, y, t) that constitutes the disparity change.

Three-dimensional scene flow can be reconstructed for
points, where both the image positions described by
[x, y, d]� and their temporal change described by [u,v,p]�
are known. d is estimated using an arbitrary stereo algo-
rithm, see Sect. 2.1. The disparity change and the two-
dimensional optical flow field have to be estimated from
the stereo image pairs.

For all the equations derived for scene flow, we employ
the normal optical flow intensity consistency assumption,
i.e., the intensity should be the same in both images for the
same world point in the scene. We expand this to couple the
four images involved with the scene flow calculation.

The first equation that we derive is from the left half of
Fig. 3. Let L(x, y, t) be the intensity value of the left im-
age, at pixel position [x, y]� and time t . This leads to the
following constraint, which we call the left flow constraint:

L(x, y, t) = L(x + u(x, y, t), y + v(x, y, t), t + 1) (2)

The flow in the right hand image can also be derived us-
ing the same principle. Let R(x, y, t) be the intensity of the

right image, at pixel position [x, y]� and time t . Due to rec-
tification, we know that flow in the left image and right im-
age will have the same y component, this means that the
difference is only in the x component of the equation. This
leads to the right flow constraint:

R (x + d(x, y, t), y, t)

= R(x + u(x, y, t) + d(x, y, t)

+ p(x, y, t), y + v(x, y, t), t + 1) (3)

highlighting that the position in the x component is offset by
the disparity d and the flow is only different by the disparity
change p.

Calculating optical flow in the left and right image sep-
arately, we could directly derive the disparity change p =
uR − uL, where uR and uL denote the estimated flow fields
in the left and right image, respectively. However, to esti-
mate the disparity change more accurately, consistency of
the left and right image at time t + 1 is enforced. More pre-
cisely, the gray values of corresponding pixels in the stereo
image pair at time t + 1 should be equal, as illustrated in the
bottom halve of the diagram in Fig. 3. This yields the third
constraint, the disparity flow constraint:

L(x + u(x, y, t), y + v(x, y, t), t + 1)

= R(x + u(x, y, t) + d(x, y, t)

+ p(x, y, t), y + v(x, y, t), t + 1) (4)

If we rearrange the above equations, it results in:

ELF := L(x + u,y + v, t + 1) − L(x, y, t) = 0
ERF := R(x + d + p + u,y + v, t + 1)

− R(x + d, y, t) = 0
EDF := R(x + d + p + u,y + v, t + 1)

− L(x + u,y + v, t + 1) = 0

(5)

where the implicit dependency on (x, y, t) for u,v,p and d

has been omitted. Figure 4 shows an illustration of the above
equations in two real-world stereo pairs.

Fig. 2 Outline of our scene
flow algorithm, showing the
required data and information
flow. The information needed to
compute scene flow at frame t

are the stereo pairs at t and
t + 1, along with the disparity
map at t
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Fig. 4 The scene flow constraints (5) are illustrated for two sequential
stereo image pairs

2.3 Energy Equations for Scene Flow

Scene flow estimates according to the constraints formulated
in Sect. 2 are computed in a variational framework by min-
imising an energy functional consisting of a data term de-
rived from the constraints and a smoothness term that en-
forces smoothness in the flow field; allowing for dense esti-
mates in the image domain � despite sparse constraints:

E(u,v,p) =
∫

�

(
ED(u, v,p) + ES(u, v,p)

)
dx dy (6)

By using the constraints from (5) we obtain the following
data term:

ED = �
(
E2

LF

)
+ c(x, y, t) �

(
E2

RF

)

+ c(x, y, t) �
(
E2

DF

)
(7)

where �(s2) = √
s2 + ε2 denotes the L2 approximation for

total variation L1 that compensates for outliers (Brox et
al. 2004) (with ε = 0.01 for numerical stability), and the
function c(x, y, t) returns 0 if there is no disparity given
at [x, y]�, and 1 otherwise. This function deals with dis-
parity maps, where data is missing, either due to a sparse
stereo method or due to occlusion. Whenever c(x, y, t) = 0
the smoothness term defines the estimate at [x, y, t]� taking
into account the estimates of spatially neighbouring points.
Due to this fill-in effect, the formulation provides dense im-
age flow estimates [u,v,p]�, even if the disparity d is not
dense.

The smoothness term penalises local deviations in the
scene flow components and employs the same robust func-
tion as the data term in order to deal with discontinuities in
the scene flow field:

ES = λ�
(
|∇u|2 + |∇v|2

)
+ γ�

(
|∇p|2

)

where ∇ :=
(

∂

∂x
,

∂

∂y

)�
(8)

and the parameters λ and γ regulate the importance of the
smoothness constraint, with different weights assigned to
the optical flow and the disparity change, respectively.

2.4 Minimisation of the Energy

For minimising the energy in the previous section we com-
pute its Euler-Lagrange equations:

� ′ (E2
LF

)
ELF Lx + c� ′ (E2

RF

)
ERF Rx

+ c� ′ (E2
DF

)
EDF (Rx − Lx) − λ div

(∇u E′
S

) = 0 (9)

� ′ (E2
LF

)
ELF Ly + c� ′ (E2

RF

)
ERF Ry

+c� ′ (E2
DF

)
EDF

(
Ry − Ly

) − λ div
(∇v E′

S

) = 0 (10)

c� ′ (E2
RF

)
ERF Rx + c� ′ (E2

DF

)
EDF Rx

− γ div
(∇p E′

S

) = 0 (11)

with

E′
S := � ′ (λ|∇u|2 + λ|∇v|2 + γ |∇p|2

)

(12)

� ′ (s2
)

= 1√
s2 + ε2

where � ′(s2) is the derivative of �(s2) with respect to s2.
Partial derivatives of R and L are denoted by subscripts (see
Algorithm 2 for details of calculation of R∗ and L∗). Also
the implicit dependency on (x, y, t) has been omitted from
c(x, y, t).

These equations are non-linear in the unknowns
[u,v,p]�. We stick to the strategy of two nested fixed point
iteration loops as suggested in Brox et al. (2004). The outer
fixed point loop performs a linearisation of ELF , ERF , and
EDF . Starting with [u0, v0,p0]� = [0,0,0]�, in each itera-
tion k an increment [δuk, δvk, δpk]� of the unknowns is esti-
mated and the second image is then warped according to the
new estimate [uk+1, vk+1,pk+1]� = [uk + δuk, vk + δvk,

pk + δpk]�. The linearisation reads:

L(x + uk+1, y + vk+1, t)

≈ L(x + uk, y + vk, t) + δukLx + δvkLy (13)

R(x + d + pk+1 + uk+1, y + vk+1, t)

≈ R(x + d + pk + uk, y + vk, t)

+ δukRx + δpkRx + δvkRy (14)

From these expressions we can derive linearised versions
of ELF , ERF , and EDF . The warping is combined with a
pyramid (coarse-to-fine) strategy, i.e., iterations start with
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down-sampled versions of the image and the resolution is
successively refined.

The remaining non-linearity in the Euler-Lagrange equa-
tions is due to the robust function. In the inner fixed point
iteration loop the � ′ expressions are kept constant and
are recomputed after each iteration l. The resulting Euler-
Lagrange equations together with implementation details on
the implementation can be found in the Appendix.

2.5 Dealing with Intensity Consistency Assumption
Violations

When dealing with synthetic scenes, the intensity con-
sistency assumption (ICA) holds true. However, in “real-
world” images, the ICA is usually not satisfied (Vaudrey et
al. 2008). There have been several methods proposed to deal
with this issue. Brox et al. (2004) proposed using the in-
tensity gradients in the data terms of the energy equations.
Intensity gradients were shown to be approximately invari-
ant to the most common intensity changes.

Alternative invariant features can be derived from a
structure-texture image decomposition as introduced in Au-
jol et al. (2006). The basic idea is to consider the residual im-
age, which is the difference between the original image and
a smoothed version of itself, thus removing low frequency
illumination artifacts. The fact that this method works rea-
sonably well for both stereo and optical flow (Vaudrey et
al. 2010) makes it the perfect synergy for scene flow. Any
reasonable residual image can be used as shown in Vau-
drey et al. (2010). We use the TV-L2 residual images for
all real-world images (for synthetic data we use the original
images as the ICA holds true), which are normalised to the
range L,R ∈ [−1,1]. This is a computationally expensive
smoothing filter, but provides the most consistent results.
Full details of the TV-L2 residual image implementation
is found in Rudin et al. (1992). An example of a residual
processed image is shown in Fig. 5.

Comparing the residual image approach to adding gradi-
ent constancy constraints as in Brox et al. (2004), residual
images are favourable with regard to computational speed.
They induce a smaller number of constraint equations in the
energy and thus shorter Euler-Lagrange equations.

3 Uncertainty of Scene Flow

Understanding the uncertainty of an estimate is important
for follow on processes, such as filtering and Markov-
random field type segmentation. The uncertainty can be rep-
resented by variances. In the following subsections, we de-
rive the uncertainty for the disparity and scene flow esti-
mates for every pixel, by using the corresponding underlying
energy functional.

Fig. 6 Quality measure for the disparity estimate. The slope of the
disparity cost function serves as a quality measure for the disparity
estimate

3.1 Disparity Uncertainty

The scene flow algorithm presented above (primarily) uses
the semi-global matching algorithm (Hirschmüller 2006) for
the disparity estimation and a variational framework for the
scene flow estimates. The core semi-global matching algo-
rithm produces discrete pixel-accurate results, with a sub-
pixel interpolation performed afterward.

Let i be the disparity estimate of the core SGM (or any
pixel discrete algorithm using energy minimisation) method
for a certain pixel in the left image. The SGM method in
Hirschmüller (2006) is formulated as an energy minimisa-
tion problem. Hence, changing the disparity by ±1 yields an
increase in costs (yielding an increased energy). The mini-
mum, however, may be located in between pixels, motivat-
ing a subsequent sub-pixel estimation step. Sub-pixel accu-
racy is achieved by a subsequent fit of a symmetric equian-
gular function (see Shimizu and Okutomi 2001) in the cost
volume. Note, that this is different to standard linear interpo-
lation of the disparity values as the fit is done in the cost vol-
ume and is aimed at finding the minimum of a symmetric L1
cost function approximating the costs for the three disparity
assumptions i − 1, i, and i + 1. The basic idea of this step is
illustrated in Fig. 6 for an example of a typical d estimate.
This fit is unique and yields a specific sub-pixel minimum,
located at the minimum of the function. Note that this might
not be the exact minimum of the underlying energy but is a
close approximation, evaluating the energy only at pixel po-
sition and assuming that the underlying energy function is
smooth.

The slope of this fitting function (the larger of the two
relative cost differences between the current estimate and
neighbouring costs, 	j ) serves as a quality measure for the
goodness-of-fit. If the slope is low, the disparity estimate is
not accurate in the sense that other disparity values could
also be valid. If on the other hand the slope is large, the
sub-pixel position of the disparity is expected to be quite
accurate as deviation from this position increases the energy.
Hence, the larger the slope, the better is the expected quality
of the disparity estimate.
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Fig. 5 An example of the
residual images used as input to
the scene flow algorithm in this
paper. The original is on the left,
with the residual processed
image on the right

Fig. 7 Plots of the proposed
uncertainty measures and
corresponding variances for the
disparity. The left column shows
the density of actual error (using
ground truth) vs. the uncertainty
measure. The distribution at
each uncertainty level is
normalised to 1. The right
column shows the true variance
vs. the uncertainty measure
(basically a summary of the
density graph). VAR(d) vs. UD ,
is shown at the top. The scene
flow u-component VAR(u) vs.
USF is shown at the bottom

Based on this observation an uncertainty measure is de-
rived for the expected variance of the disparity estimate:

UD(x, y, d) = 1

	j
(15)

The disparity uncertainty could be calculated using the
underlying energy equations, as is done for the scene flow
below. However, the method using the slope of the interpo-
lated function (presented above) has been shown to provide
better results than when using the energy cost (outlined be-
low). Other stereo uncertainty measures can be used, such as
those presented in Hu and Mordohai (2010), and may pro-
vide better results with additional computational cost.

3.2 Scene Flow Uncertainty

For variational optical flow methods the idea of using the in-
cline of the cost function or energy function as uncertainty

measure becomes more complex than in the disparity set-
ting. This is due to the higher dimensionality of the input
and solution space. An alternative, energy-based confidence
measure was proposed in Bruhn and Weickert (2006). The
novel idea is that the uncertainty is proportional to the local
energy contribution in the energy functional, used to com-
pute the optical flow. A large contribution to the total energy
implies high uncertainty (thus low accuracy), while uncer-
tainty is expected low if the energy contribution is small.
The authors show that this energy-based measure yields a
better approximation of the optimal confidence for optical
flow estimates than an image-gradient-based measure.

The same idea is now applied to the scene flow case. The
three data terms in the energy functional are the left, right,
and disparity flow constraints. Additionally, the smoothness
of the scene flow variables u, v, and p also contribute to
the energy functional, thus the uncertainty. This yields an



Int J Comput Vis (2011) 95:29–51 37

expected uncertainty of the scene flow estimate:

USF (x, y, d,u, v,p) = ELF + ERF + EDF + ES (16)

The main advantage of this uncertainty measure is that it
is provided with out any additional computation. The cost
(including both the intensity data and smoothness term) at
each pixel is used in the algorithm, and the final value is
used as the final uncertainty measure.

3.3 Comparing Variances and Uncertainty Measures

To evaluate the uncertainty measures for the disparity and
scene flow estimates, we plot the derived uncertainty mea-
sures against the observed error in Fig. 7 (for the disparity
d and the u-component of the optical flow). To generate the
plots we used a 400 frame evaluation sequence (sequence
2 from set 2 on University of Auckland (2008)), which is
outlined in Sect. 5.3.

The plots illustrate that the proposed uncertainty mea-
sures are correlated to the true variance of the errors.
Furthermore, the variance σα for a scene flow compo-
nent (where α ∈ {d,u, v,p}) can be approximated by a
linear function of the uncertainty measure, denoted by
Uα , with fixed parameters gα and hα : σ 2

α (x, y, t) = gα +
hαUα(x, y, t).

4 From Image Scene Flow to 3D Scene Flow (World
Flow)

This section proposes methods for evaluating our scene flow
algorithm. This involves first taking our scene flow (image
coordinates) estimate, then estimating three-dimensional
scene flow/world flow (real-world coordinates). We also
propose two metrics for estimating confidence of moving
points within the scene.

We have now derived the image scene flow as a combined
estimation of optical flow and disparity change. Using this
information, we can compute two world points that define
the start and end point of the 3D scene flow. These equations
are derived from the inverse of (1) (fx , fy , and b are defined
there as well).

Xt = (x − x0)
b

d
, Yt = −(y − y0)

fy

fx

b

d
, Zt = fxb

d

(17)

and

Xt+1 = (x + u − x0)
b

d + p
,

Yt+1 = −(y + v − y0)
fy

fx

b

d + p
, (18)

Zt+1 = fxb

d + p

Obviously, the 3D scene flow [Ẋ, Ẏ , Ż]� is the differ-
ence between these two world points. For simplicity we will
assume that fy = fx . This yields:

⎛
⎝

Ẋ

Ẏ

Ż

⎞
⎠ =

⎛
⎝

Xt+1 − Xt

Yt+1 − Yt

Zt+1 − Zt

⎞
⎠ = b

⎛
⎜⎝

x+u−x0
d+p

− x−x0
d

y−y0
d

− y+v−y0
d+p

fx

d+p
− fx

d

⎞
⎟⎠ (19)

For follow-on calculations (e.g., speed, detection of mov-
ing objects, segmentation of objects, integration, etc.) we
need the accuracy of the scene flow vector. In the follow-
ing subsections, we will define two metrics that estimate the
likelihood that a pixel is moving, i.e., not stationary. The
metrics provided in this section are ideas for follow-on eval-
uations, such as segmentation and filtering. An example of
segmentation is shown in Sect. 5.5.

4.1 Residual Motion Likelihood

First, we define the uncertainty of our measurements. These
can be represented by standard deviations as σd , σu, σv ,
and σp (subscript denoting variable of standard deviation).
Discussion and results of what values to use for σα (where
α ∈ {d,u, v,p}) are found in Sect. 5.5. One would assume
that σu = σv ∝ σp and the disparity estimate to be less ac-
curate than the flow. We do not explicitly assume this and
derive the covariance matrix �SF for the 3D scene flow us-
ing error propagation:

�SF = J diag(σ 2
d , σ 2

u , σ 2
v , σ 2

p) J� (20)

where

J =

⎛
⎜⎜⎝

∂Ẋ
∂d

∂Ẋ
∂u

∂Ẋ
∂v

∂Ẋ
∂p

∂Ẏ
∂d

∂Ẏ
∂u

∂Ẏ
∂v

∂Ẏ
∂p

∂Ż
∂d

∂Ż
∂u

∂Ż
∂v

∂Ż
∂p

⎞
⎟⎟⎠

= b

⎛
⎜⎜⎝

(
(x+u−x0)

(d+p)2 − (x−x0)

d2 ) −1
d+p

0 (x+u−x0)

(d+p)2

(
(y+v−y0)

(d+p)2 − (y−y0)

d2 ) 0 −1
d+p

(y+v−y0)

(d+p)2

(
fx

(d+p)2 − fx

d2 ) 0 0 fx

(d+p)2

⎞
⎟⎟⎠

(21)

This error propagation holds true, as long as the distribu-
tion is zero-mean and scales by the standard deviation (e.g.,
Gaussian and Laplacian). We have also assumed that the
covariances are negligible, although the problem of scene
flow estimation is highly coupled. However, estimating co-
variances is not trivial and in our eyes even impossible. We
agree that errors in the flow x-component tends to impose
errors on the y-component and disparity change but we do
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Fig. 8 (Color online) Results
using the Manhalobis distance
likelihood ξM . (a) Shows a
pedestrian running from behind
a vehicle. (b) Shows a lead
vehicle driving forward. Colour
encoding is ξM , i.e., the
hypothesis that the point is
moving, green ↔ red ≡ low ↔
high

Fig. 9 (Color online) Two
examples, from a single
sequence, of the residual motion
likelihood defined in Sect. 4.1.
Left to right: original image,
optical flow result, the residual
motion metric results (green ↔
red represents low ↔ high
likelihood that point is moving)

not know of a way to determine whether this correlation is
positive or negative. From this model, one can see that the
disparity measurement has the highest influence on the co-
variance (as it is either by itself or quadratically weighted
in the equations). Furthermore, the larger the disparity, the
more precise the measurement; as d → ∞ all σα → 0.

The derivation above only holds true for stationary cam-
eras. Assume the motion of the camera (in our case a vehi-
cle) is given from either inertial sensors or an ego-motion
estimation method (e.g., Badino 2004). This motion is com-
posed of a rotation R (matrix composed by the combina-
tion of rotations about the X, Y and Z axis) about the
origin of the camera coordinate system and a translation
T = [TX,TY ,TZ]�. The total residual motion vector M is
calculated as:

M =
⎛
⎝

MX

MY

MZ

⎞
⎠ =

⎛
⎝

Xt+1

Yt+1

Zt+1

⎞
⎠ − R

⎛
⎝

Xt

Yt

Zt

⎞
⎠ + T (22)

Again the motion is known with a certain accuracy. For
simplicity we assume the rotational parts to be small, which
holds true for most vehicle applications. This approximates
the rotation matrix by a unary matrix for the error propa-
gation calculation. We denote the standard deviations of the
translations as a three-dimensional covariance matrix �T .
The total translation vector M now has the covariance ma-
trix �M = �SF + �T .

Now one can compute the likelihood of a flow vector to
be moving, hence belonging to a moving object. Assuming
a stationary world and a Gaussian error propagation, one ex-
pects a standard normal distribution with mean 0 and covari-
ance matrix �M . Deviations from this assumption are found
by testing this null hypothesis or the goodness of fit. This
can be done by evaluating the Mahalanobis distance (Maha-
lanobis 1936), giving us the residual motion likelihood:

ξM(x, y) =
√

M��−1
M M (23)

The squared Mahalanobis distance ξM is χ2 distributed
and outliers are found by thresholding, using the assumed
quantiles of the χ2 distribution. For example, the 95% quan-
tile of a distribution with three degrees of freedom is 7.81,
the 99% quantile lies at 11.34. Hence a point is moving with
a probability of 99% if the Mahalanobis distance is above
11.34. This again holds only if the measurement variances
are correct. Figure 8 demonstrates results using this metric.
In both images, it is easy to identify what parts of the scene
are static, and which parts are moving. The movement met-
ric ξM only identifies the probability of a point being sta-
tionary, it does not provide any speed estimates. Note that
this metric computes a value at every scene point. Another
two examples of results obtained using this metric can be
seen in Fig. 9.
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Fig. 10 (Color online) Results
using speed S and its standard
deviation σS . (a) Shows the
pedestrian running with a speed
of 3.75 m/s. (b) Shows a lead
vehicle driving forward with a
speed of 12.5 m/s. Colour
encoding is S, green ↔ red ≡
stationary ↔ moving. σS is
encoded using saturation, points
in the distance are therefore grey
or black

4.2 Speed Metrics

The residual motion likelihood metric ξM omitted any infor-
mation about speed. To estimate the speed S the L2-norm
(length) of the displacement vector is calculated.

S = ‖M‖ (24)

The problem is that points at large distances are al-
ways estimated as moving. This is because a small disparity
change yields large displacements in 3D (see (19)). If inac-
curacies are used in the residual motion computation one can
still not derive speed information. One way around the prob-
lem is to give a lenient variance of the speed measurement
σ 2

S . An approach to estimate this variance is to calculate the
spectral norm of the covariance matrix. This involves com-
puting the eigenvalues of the squared matrix, then taking the
square root of the maximum eigenvalue.

σ 2
S = ‖�M‖ =

√
λmax

(
��

M�M

)
(25)

Using this we now have a likely speed S and associ-
ated variance σ 2

S . Using these metrics leads to the examples
in Fig. 10. In this figure, it is easy to identify the speed of
moving targets, and also how confident we are of the speed
measurement. The pedestrian in Fig. 10(a) had a displace-
ment of 15 cm with a frame rate of 25 Hz, i.e., 3.75 m/s.
The vehicle in Fig. 10(b) had a displacement of 50 cm, i.e.,
12.5 m/s. In both examples only the information with high
confidence is taken into account, so moving objects are eas-
ily identified.

From the metrics provided in this section, we now have a
likelihood that the object is moving ξM , likely speed of the
object S and the uncertainty of the speed σ 2

S .

5 Evaluation and Experimental Results

The evaluation metrics used in this section are defined as
follows. First we define error metrics at each time frame.

The absolute angular error (AAE) as used in Huguet and
Devernay (2007):

AAEu,v = 1

|�|
∑
�

arctan

(
uṽ − ũv

uũ + vṽ

)
(26)

where an accent α̃ denotes the ground truth solution of α

(where α ∈ {d,u, v,p}) and |�| is the cardinality (number
of pixels) in �.

The root mean square (RMS) error:

RMSu,v,d,p =
√√√√ 1

|�|
∑

(x,y)∈�

‖[u,v, d,p]� − [ũ, ṽ, d̃, p̃]�‖2

(27)

If there is no disparity measure d (either by sparse algorithm
or occlusion) then the estimated value is set to 0 (therefore
still contributing to error). In our notation for RMS, if a sub-
script is omitted, then both the respective ground truth and
estimated value are set to zero.

The 3D angular error:

AAE3D = 1
|�|

∑
�

arccos
(

uũ+vṽ+pp̃+1√
(u2+v2+p2+1)

(
ũ2+ṽ2+p̃2+1

)
)

(28)

When evaluating errors over a time period, we use the
following mean and variance of the error:

μ(α) = 1

|�|
∑
�

|α − α̃| (29)

σ 2(α) = 1

|�|
(∑

�

(α − α̃)2
)

− (μ(α))2 (30)

Note, the implicit dependence on (x, y, t) for all α ∈
{d,u, v,p} is omitted from the above equations.

The first two subsections here present a summary of syn-
thetic data testing, parts of these results have been published
in Wedel et al. (2008b). The third subsection presents an
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Fig. 11 (Color online) Ground truth test: rotating sphere. Quantitative
results are shown in Table 2. Top: The left image shows the movement
of the sphere. Optical flow and disparity change are computed on the
basis of SGM stereo (Hirschmüller 2008). Colour encodes the direc-
tion of the optical flow (key in bottom right), intensity its magnitude.

Disparity change is encoded from black (increasing) to white (decreas-
ing). Bright parts of the RMS figure indicate high RMSu,v,p error val-
ues of the computed scene flow. Bottom: disparity images are colour
encoded green to orange (low to high). Black areas indicate missing
disparity estimates or occluded areas

Table 2 Root mean square (pixels) and average angular error (degrees) for scene flow of the rotating sphere sequence. Various stereo algorithms
are used as input for our scene flow estimation, generating varying results

Stereo RMSd Without occluded areas With occluded areas

algorithm (density) RMSu,v RMSu,v,p AAEu,v RMSu,v RMSu,v,p AAEu,v

Ground truth 0 (100%) 0.31 0.56 0.91 0.65 2.40 1.40

SGM (Hirschmüller 2008) 2.9 (87%) 0.34 0.63 1.04 0.66 2.45 1.50

Correlation (Franke and Joos 2000) 2.6 (43%) 0.33 0.73 1.02 0.65 2.50 1.52

Census based (Stein 2004) 7.8 (16%) 0.32 1.14 1.01 0.65 2.68 1.43

Hug.-Dev. (Huguet and Devernay 2007) 3.8 (100%) 0.37 0.83 1.24 0.69 2.51 1.75

Fill-SGM 10.9 (100%) 0.45 0.76 1.99 0.77 2.55 2.76

evaluation approach for long stereo sequences, along with
some sample results. Real-world results of the algorithm
are provided in the fourth subsection. Finally, segmenta-
tion using residual motion likelihoods from Sect. 4.1 is pre-
sented.

All input images are 12-bit per pixel except the rotating
sphere sequence. The finer quantisation helps increasing the
sub-pixel accuracy of the approach.

5.1 Rotating Sphere

To assess the quality of our scene flow algorithm, it was
tested on synthetic sequences, where the ground truth is
known. The first ground truth experiment is on the rotat-
ing sphere sequence from Huguet and Devernay (2007) de-
picted in Fig. 11. In this sequence the spotty sphere rotates
around its y-axis to the left, while the two hemispheres of
the sphere rotate in opposing vertical directions.3 The reso-
lution is 512 × 512 pixels.

3The authors thank Huguet and Devernay for providing their sphere
scene.

We tested the scene flow method together with four
different stereo algorithms: semi-global matching (SGM
(Hirschmüller 2008)), SGM with hole filling (favours smaller
disparities), correlation pyramid stereo (Franke and Joos
2000), and an integer accurate census-based stereo algo-
rithm (Stein 2004). The ground truth disparity was also used
for comparison, i.e., using the ground truth as the input dis-
parity for our algorithm.

The errors were calculated in two different ways: firstly,
calculating statistics over all non-occluded areas, and sec-
ondly calculating over the whole sphere. As in Huguet and
Devernay (2007), pixels from the background were not in-
cluded in the statistics.

The resulting summary can be seen in Table 2. We
achieve lower errors than the Huguet and Devernay method,
even when using sparse correlation stereo. The lower error
is even more due to the sparseness of the disparity since
problematic regions such as occlusions are not included in
the computation and can therefore not corrupt the estimates.
Thanks to the variational formulation of the scene flow, more
reliable information is filled in where the data terms are dis-
ables and a dense scene flow is obtained. Particularly, the
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Fig. 12 (Color online) Povray-rendered traffic scene (Frame 11). Top:
Colour encodes direction (border = direction key) and intensity the
magnitude of the optical flow vectors. Brighter areas in the error
images denote larger errors. For comparison, running the code from
Huguet and Devernay (2007) generates an RMS error of 0.91 px and

AAE of 6.83◦. Bottom right: 3D views of the scene flow vectors.
Colour encodes their direction and brightness their magnitude (black
= stationary). The results from the scene are clipped at a distance of
100 m. Accurate results are obtained even at greater distances

Fig. 13 (Color online) More
frames from the traffic scene in
Fig. 12. The top row highlights
the problems such as
transparency of the windshield,
reflectance, and moving
shadows. The bottom row
demonstrates that we still
maintain accuracy at distances
of 50 m

RMS error of the scene flow is much smaller and we are still
considerably faster (see Table 1). In this sense SGM seems
to do a good job at avoiding occluded regions.

The joint approach in Huguet and Devernay (2007) is
bound to the variational setting, which usually does not
perform well for disparity estimation. Moreover the table
shows that SGM with hole filling yields inferior results
to the other stereo methods. This is due to false disparity
measurements in the occluded area. It is better to feed the
sparse measurements of SGM to the variational framework,
which yields dense estimates as well, but with higher accu-
racy.

SGM was chosen as the best method and is used in the
remainder of the results section; it is available on dedicated
hardware without any extra computational cost.

5.2 Povray Traffic Scene 1

In a second ground truth example we use a Povray-rendered
traffic scene (Vaudrey et al. 2008), which is publicly avail-
able online for comparison (University of Auckland 2008).

The scene layout is shown in Fig. 12. We calculated the
RMSu,v,p error and the 3D angular error defined in (28).

Results are shown in Figs. 12 and 13. They compare
favourably to the results obtained when running the code
from (Huguet and Devernay 2007). The average RMSu,v,p

error for the whole sequence (subregion as in Fig. 12) was
0.64 pixels and the 3D angular error was 3.0◦. The area of
interest � is x ∈ [50,590] and y ∈ [50,400] with {x, y} ∈ N

(images are x × y = 640 × 480 px).

5.3 Evaluation Approach using Stereo Synthetic Data

In this subsection the Povray Traffic Scene 2 is used to
analyse the output from our scene flow approach. It is a more
complex driving scene, involving hills, trees, and realistic
physics; it consists of 400 sequential stereo image pairs. An
example picture is shown in Fig. 14. This scene is publicly
available with ground truth disparity, optical flow, disparity
change, and ego-motion (University of Auckland 2008).

An evaluation approach has been devised to handle such
a large dataset. For each image pair at time t , the following
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Fig. 14 (Color online)
Povray-rendered traffic scene 2
(Frame 215). RMS encoded low
to high as light to dark
brightness. Flow colour
encoded as in Fig. 11. Error
images encoded with brightness,
negative = dark, positive =
light, zero = mid-grey value
(e.g., infinite background).
Points at infinity and occlusions
in RMS and error images are
shown as a zero value in each
colour scale

quantities are computed:

– RMSu,v,p from the subsection above.
– Error at each pixel, i.e., difference between estimate and

ground truth.
– Absolute mean error for u,v,p, and d .
– Variance of the error for u,v,p, and d .

We have provided an example using our scene flow al-
gorithm in Fig. 14. From this figure it can be seen that the
major errors are on object boundaries, and the errors in p

are the lowest in magnitude.

The quantitative results for the entire image sequence are
shown in the graphs of Figs. 15 and 16. Comparing the er-
rors of all four scene flow components in Fig. 15, it can be
seen that the errors for u and v are consistently about the
same error as for d , except for a few frames (60, 210, 360,
and 380) where their error is dramatically higher. The er-
rors around frame 60, 360, and 380 all relate to the same
issue; when previously occluded areas become visible (e.g.,
the vehicle disappears off the image when it is very close
to the camera). This issue is one that is difficult to avoid
without flow occlusion detection, which is difficult to esti-
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Fig. 15 RMS error and mean
error evaluation over entire
sequence

Fig. 16 Graphs using the mean
error and variance from
Sect. 5.3. The graphs shows the
results for disparity d and the
flow estimates u,v, and p. The
mean error (e.g., μ(d)) is the
dark coloured line. The light
line is 1 standard deviation from
the mean (e.g., μ(d) + σ(d))

mate by itself. The second problem that is common is seen
at frame 210; the car turns left and has a lot of reflections on
the windscreen. The vision algorithm detects the flow to the
left (as the reflection goes this direction) but the true motion
is to the right. Again, this is a common issue with optical
flow and difficult to avoid.

The errors and standard deviation for the flow compo-
nents u,v,p (Fig. 16) are of similar shape, yet different
magnitude. This is as expected, since they are solved using
the same variational energy minimisation framework. The

sequences are provided for public use and will allow com-
parisons of scene flow algorithms in future works.

5.4 Real-World Scenes

Real-world scenes are generally more complex to handle
than synthetically generated images due to noise and arti-
facts that are not included in the model. We demonstrate the
ability of the approach to deal with real-world scenes on im-
ages from a driver assistance system.
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Fig. 17 (Color online) This figure shows the scene flow results when
on a stationary platform. From left to right: optical flow (top) and
original image (bottom), scene flow 3D vectors, zoomed in 3D flow

vectors, zoomed in 3D flow vectors when viewed from above. 3D vec-
tors are coloured green ↔ red as stationary ↔ moving

Fig. 18 (Color online) This figure shows the scene flow results when
following another vehicle. Top row: shows an original image with the
colour encoded scene flow. The bottom row shows different virtual
viewing points on the same 3D scene. Left to right: panning to left

with a tilt to the right, panning down to be in line with the road surface,
panning up and titling down to be about 45◦ off horizontal, looking
straight down from above the vehicle (birds-eye view)

Figure 17 shows an example of the simplest case, where
the camera is stationary. The scene flow reconstruction is
very good with almost no outliers.

Figures 1, 18, 19, and 20 show scene flow results with
a moving camera platform. Ego-motion of the camera is
known from ego-motion estimation (Badino 2004), using in-
ertial sensors for the initial guess, and compensated in the
depicted results.

Figure 1 shows results from a scene where a person runs
from behind a parked vehicle. The ego-vehicle is driving for-
ward at 30 km/h and turning to the left. The measurements
on the ground plane and in the background are not shown
to focus visual attention on the person. The results show
that points on the parked vehicle are estimated as station-
ary, whereas points on the person are registered as moving.
The accurate motion results can be well observed for the
person’s legs, where the different velocities of each leg are
well estimated.

Figure 18 shows multiple virtual views of a vehicle that
is followed by the ego-vehicle. This is to highlight that the
vectors are clustered together and that the scene flow vectors
are consistent.

Figure 19 shows an image from a sequence where the
ego-vehicle is driving past a bicyclist. The depicted scene
flow shows that most parts of the scene, including the ve-
hicle stopping at the traffic lights, are correctly estimated

as stationary. Only the bicyclist is moving and its motion is
accurately estimated. Compared to Fig. 17 there are more
outliers in these results. This highlights that the ego-motion
accuracy is vital when dealing with a moving platform, and
slight errors are very noticeable in the results.

Figure 20 shows a van driving past the car. This figure
demonstrates that the scene flow generates clustered vectors,
all pointing to the same right direction with similar magni-
tude even when viewing from different angles.

5.5 Segmentation using Uncertainties

Figure 21 shows an example of how the motion likelihood
from Sect. 4.1 can be used as input to separate stationary
from moving points in a segmentation task.

The segmentation is performed employing the graph
cut segmentation algorithm from Boykov and Kolmogorov
(2004). We consider individual uncertainty measures for the
flow vectors and the disparities at each image pixel.

The segmentation algorithm requires to set up the graph
G(n,ns, nt , e), consisting of nodes n(x, y) for every pixel
(x, y) in the reference image and two distinct nodes: the
source node ns and the target (sink) node nt (Kolmogorov
and Zabih 2002). The edges e in this graph connect each
node with the source, target, and its N4 neighbours (upper,
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Fig. 19 (Color online) Dense
scene flow in a traffic scene.The
colour in the scene flow image
shows vector lengths after
ego-motion compensation
(green to red = 0 to 0.4 m/s).
Only the cyclist is moving. The
original image is in the upper
right corner

Fig. 20 (Color online) A real-world example of our scene flow. The left image shows the original, the two other images show the scene flow
reconstruction when viewed from the front and side. Colour encoding is green ↔ red is stationary ↔ moving

Fig. 21 (Color online) From left to right: input image, difference
image between two consecutive frames, residual motion likelihood,
and segmentation result. With the residual motion likelihood derived

from the scene flow, the segmentation of the moving object becomes
possible although the camera itself is moving

lower, left, right). The individual edge costs are defined as
follows:

Edge e Edge cost

Source link: ns → n(x, y) −ξmotion(x, y)

Target link: n(x, y) → nt −ξstatic(x, y)

Neighbourhood: β 1
|L(x,y)−L(x̂,ŷ)|+α

n(x̂, ŷ) ↔ n(x, y) n(x̂, ŷ) ∈ N4

where ξstatic is a fixed value (globally equal likelihood of
a point to be static), α is a small value to prevent numeri-
cal instability, β is a neighbourhood weighting function, and
ξmotion is a motion likelihood. For these results, ξmotion = ξM

from (23). For a more detailed explanation of the algorithm
we refer to Wedel et al. (2009).

When using ξM for motion likelihood there are three pos-
sible ways that we can estimate the uncertainty. Using (20):

1. Assume that there is no error, i.e., �SF = I (identity ma-
trix).

2. Assume a spatially equal variance, i.e., σα = a, where a

is a constant.
3. Assume a pixel-wise local variance using uncertainty

measures, i.e.,
σd = UD (from 15)
σu = σv = σp = USF (from 16)

Figure 22 shows the difference in energy and segmen-
tation when using the formulations above. The top image
clearly shows that the approach using no error propagation
fails. Using spatially fixed variances gives slightly better
results (middle image). The best results are obtained with
pixel-wise local variances estimated using a reasonable un-
certainty model. This clearly shows that pixel-wise uncer-
tainty estimation is very important. The outcome can prob-
ably be improved further by elaborating on the way to esti-
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Fig. 22 (Color online) Results
for different error propagation
methods. The left images show
the residual motion likelihoods
and the right images the
segmentation results

Fig. 23 (Color online) The figure shows segmentation of indepen-
dently moving objects moving parallel to the camera movement. This
movement cannot be detected monocularly without additional con-
straints, such as a planar ground assumption. Using our motion likeli-

hood generates good segmentation results. Left to right: original image
with segmentation results (pink), the optical flow image, and the en-
ergy image (green = low, red = high)

mate the uncertainty. The rest of the results in this section are
using the uncertainty measures in (15) and (16) (assumption
3 above).

In a monocular setting, motion which is aligned with
the epipolar lines cannot be detected without prior knowl-
edge about the scene. Amongst other motion patterns, this

includes objects moving parallel to the camera motion.
For a camera moving in depth this includes all (directly)
preceding objects and (directly) approaching objects. Our
scene flow motion likelihood provides good segmentation
results, as seen in the PreceedingCar and HillSide sequences
in Fig. 23.
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Fig. 24 (Color online) The
figure shows the energy images
and the segmentation results for
objects that do not move parallel
to the camera motion. Note, that
the also non-rigid independently
moving objects are segmented.
Colour coding as in Fig. 23

Resolution Pixels Factor (px) Time [ms] Factor (Time)

320 × 240 76,800 1.0 48.2428 1.0
640 × 480 307,200 4.0 150.373 3.12
1280 × 960 1,228,800 16.0 572.911 11.88
1920 × 1440 2,764,800 36.0 1304.69 27.04

Fig. 25 The table indicates the real-time applicability of our algorithm if implemented on a modern GPU. The input images used (on different
resolution scales) are shown below the table

An example of non-rigid motion segmentation is shown
in the Running sequence in Fig. 24. This is to highlight the
versatility of the scene flow motion likelihood.

6 Conclusions and Outlook

We have presented an efficient methodology to exploit in-
formation from both motion and stereo. We showed that de-
coupling the disparity estimation from the remainder of the
estimation process is advantageous as it allows for selecting
the most suitable methods for both tasks. This way, we were
able to achieve higher accuracies at a lower computational
cost. Furthermore, we presented a process for removing il-
lumination differences between images, thus holding the in-
tensity consistency assumption true. Finally, we proposed
some uncertainty measures that worked well with movement
segmentation.

Motion and disparity information are currently only
rarely exploited for solving computer vision tasks. Research
usually focuses on either motion or stereo, and in most cases

neither motion or stereo is used. We believe that motion
and stereo provide vital low-level information that must be
taken into account to build reliable vision systems. In par-
ticular in the context of unsupervised techniques, depth and
motion boundaries are key to separate and learn the appear-
ance of independent objects. In this paper we showed some
promising results on the segmentation of independent ob-
jects directly from scene flow. There is still much potential
to exploit this information further.

Appendix

A.1 Detailed Euler-Lagrange Equations

The detailed Euler-Lagrange equations derived in Sect. 2.4
result in the following linear equations:

�
′k,l
LF · (Ek

LF + Lk
xδu

k,l+1 + Lk
yδv

k,l+1)Lk
x

+ c�
′k,l
RF · (Ek

RF + Rk
x

(
δuk,l+1 + δpk,l+1)
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+ Rk
yδv

k,l+1)Rk
x

− λ div
(
�

′k,l
S · ∇

(
uk + δuk,l+1

))
= 0 (31)

�
′k,l
LF · (Ek

LF + Lk
xδu

k,l+1 + Lk
yδv

k,l+1)Lk
y

+ c�
′k,l
RF · (Ek

RF + Rk
x

(
δuk,l+1 + δpk,l+1

)

+ Rk
yδv

k,l+1)Rk
y

− λ div
(
�

′k,l
S · ∇

(
vk + δvk,l+1

))
= 0 (32)

c�
′k,l
RF ·

(
Ek

RF + Rk
x

(
δuk,l+1 + δpk,l+1

)
+ Rk

yδv
k,l+1

)
Rk

x

+ c�
′k,l
DF ·

(
Ek

DF + Rk
xδp

k,l+1
)

Rk
x

− γ div
(
�

′k,l
S · ∇

(
pk + δpk,l+1

))
= 0 (33)

with

� ′k,l∗ := �
′ (

E∗
(
uk + δuk,l, vk + δvk,l, pk + δpk,l

))
(34)

Some terms from the original Euler-Lagrange equations
have vanished due to the use of R(x + d, y, t) = L(x, y, t)

from the linearised disparity flow constraint (4). After dis-
cretisation, the corresponding linear system is solved via
successive over-relaxation (SOR) (Young 1971).

A.2 Implementation of Scene Flow

The scene flow algorithm was implemented in C++, obtain-
ing a speed of 5 Hz on a 3.0 GHz Intel®Core™2 CPU for
QVGA images of 320 × 240 pixels. The implementation in
CUDA for the GPU (NVidia®GeForce GTX 480) allows for
a frame rate of 20 Hz as indicated in Fig. 25. The settings for
the computational times were 2 outer iterations (warps), 15
inner iterations, and 3 SOR iterations at each pyramid level.
The parameters used are λ = 0.06, γ = 0.6, and ω = 1.99
for the over-relaxation. Since we are interested in real-time

Fig. 26 Break down of computational time for our algorithm (3.0 GHz
Intel®Core™2 and NVidia®GeForce GTX 480) on 640 × 480 px im-
ages

Algorithm 1 Scene flow pseudo-code
1: for all levels do
2: for all outer iterations do
3: Compute Structure (Algorithm 2)
4: Compute Diffusivity (Algorithm 3)
5: utmp = u

6: vtmp = v

7: ptmp = p

8: for all inner iterations do
9: Build Equation System (Algorithm 4)

10: for all SOR iterations do
11: SOR Step (Algorithm 5)
12: end for
13: end for
14: Warp L(x, y, t) and R(x + d, y, t) using u,v

and p.
15: end for
16: Warp u,v and p to upper level (double size and inter-

polate).
17: end for

Algorithm 2 Compute structure
1: for all pixels do
2: [Lx Ly]� = 1

2 (∇L(x + u,y + v, t + 1)

+ ∇L(x, y, t))

3: Lt = L(x + u,y + v, t + 1) − L(x, y, t)

4: if Disparity d known then
5: [Rx Ry]� = 1

2 (∇R(x + u + d + p,y + v, t + 1)

+ ∇R(x + d, y, t))

6: Rt = R(x+u+d +p,y+v, t +1)−R(x+d, y, t)

7: Dx = 1
2

(
∂
∂x

R(x + u + d + p,y + v, t + 1)

+ ∂
∂x

L(x + u,y + v, t + 1)
)

8: Dt = R(x + u + d + p,y + v, t + 1) − L(x + u,

y + v, t + 1)

9: else
10: [Rx Ry]� = 0
11: Dx = 0
12: end if
13: end for

estimates, we use only 4 levels in the pyramid, with a down-
sampling rate of 0.5, i.e., each image is half the dimensions
in both the x and y directions so |�| is cut down by 75% at
each level. Although the energy on a smaller pyramid level
is not exactly the same, it is a close approximation of the
energy on the higher resolved images.

Figure 26 shows the break down of the computational
time for our scene flow algorithm. Note, that the CPU
processing includes memory management and the compu-
tation of the image pyramids, which offers some potential
for optimisation. The overview in pseudo-code for imple-
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Algorithm 3 Compute diffusivity
1: for all pixels do
2: for all α ∈ {u,v,p} do
3: Rα,north = (α(x, y) − α(x, y − 1))2

+ 1
16 (α(x + 1, y) − α(x − 1, y) + α(x + 1, y − 1)

− α(x − 1, y − 1))2

4: Rα,east = (α(x, y) − α(x − 1, y))2

+ 1
16 (α(x, y + 1) − α(x, y − 1) + α(x − 1, y + 1)

− α(x − 1, y − 1))2

5: Rα,south = (α(x, y + 1) − α(x, y))2

+ 1
16 (α(x + 1, y + 1) − α(x − 1, y+1)

+ α(x + 1, y) − α(x − 1, y))2

6: Rα,west = (α(x + 1, y) − α(x, y))2

+ 1
16 (α(x + 1, y + 1) − α(x + 1, y − 1)

+ α(x, y + 1) − α(x, y − 1))2

7: end for
8: for all dir ∈ {north, east, south,west} do
9: Rdir = λ√

Ru,dir+Rv,dir+ λ2

γ 2 Rp,dir

10: end for
11: end for

Algorithm 4 Build equation system
1: for all pixels do
2: ELF = Lt + (utmp − u)Lx + (vtmp − v)Ly

3: � ′
LF = 1√

E2
LF +ε2

4: ERF = Rt + (utmp +ptmp −u−p)Rx + (vtmp −v)Ry

5: � ′
RF = 1√

E2
RF +ε2

6: EDF = Dt + (ptmp − p)Dx

7: � ′
DF = 1√

E2
DF +ε2

8: Auu = � ′
LF LxLx + � ′

RF RxRx

9: Auv = � ′
LF LxLy + � ′

RF RxRy

10: Avv = � ′
LF LyLy + � ′

RF RyRy

11: Aup = � ′
RF RxRx

12: Avp = � ′
RF RxRy

13: App = � ′
RF RxRx + � ′

DF DxDx

14: bu = � ′
LF Lx(Lt + utmpLx + vtmpLy) + � ′

RF Rx(Rt

+ (utmp + ptmp)Rx + vtmpRy)

15: bv = � ′
LF Ly(Lt + utmpLx + vtmpLy) + � ′

RF Ry(Rt

+ (utmp + ptmp)Rx + vtmpRy)

16: bp = � ′
RF Rx(Rt + (utmp + ptmp)Rx + vtmpRy)

+ � ′
DF Dx(Dt + ptmpDx)

17: end for

menting the scene flow algorithm is shown in Algorithm 1.
It calls subroutines described in Algorithms 2 to 5.

Algorithm 2 computes the spatial and temporal deriva-
tives of the warped input images for the energy equations.
The spatial derivatives are the average of the two contribut-

Algorithm 5 SOR step
1: for all pixels do
2: Rsum = Rnorth + Rsouth + Rwest + Reast + ε2

3: uR = Rnorthu(x, y − 1) + Rsouthu(x, y + 1)

+ Rwestu(x − 1, y) + Reastu(x + 1, y)

4: u(x, y) = (1 − ω)u(x, y) + ω
Auu+Rsum

(uR − bu

− Auvv(x, y) − Aupp(x, y))

5: vR = Rnorthv(x, y − 1) + Rsouthv(x, y + 1)

+ Rwestv(x − 1, y) + Reastv(x + 1, y)

6: v(x, y) = (1 − ω)v(x, y) + ω
Avv+Rsum

(uR − bu

− Auvu(x, y) − Avpp(x, y))

7: pR = Rnorthp(x, y − 1) + Rsouthp(x, y + 1)

+ Rwestp(x − 1, y) + Reastp(x + 1, y)

8: p(x, y) = (1 − ω)p(x, y) + ω
App+Rsum

(uR

− bu − Aupu(x, y) − Avpv(x, y))

9: end for

ing images. ∇ is computed using central differences and any
reference outside � is clamped to the boundary (reflecting
boundary conditions for the central difference operator).

The second algorithm within the outer loops, Algo-
rithm 3, computes the diffusivities of the three-dimensional
scene flow field. It consists of a combination of forward dif-
ferences and central differences as proposed by Brox (2005).
All values outside � are clamped to the boundary (reflecting
boundary conditions for the central difference operator).

Note, that this is computed once per warp before the
current scene flow variables (u, v,p) are copied into tem-
poral variables (utmp, vtmp,ptmp) to solve for the updates
(δu, δv, δp).

However, instead of solving for the update and updating
the original flow variables, the temporary variables are used
inside Algorithm 4 to directly solve for the resulting flow
field. Note instances of utmp − u, where the delta-updates
are actually needed. We found that this trick speeds up the
implementation of the flow field considerably.

Last, Algorithm 5 executes the inner iterations of the suc-
cessive over-relaxation. On the GPU, this is implemented
using the over-relaxed red-black Gauss-Seidel approach;
see Stüben and Trottenberg (1982).
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