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B-Spline Modeling of Road Surfaces With an
Application to Free-Space Estimation

Andreas Wedel, Hernán Badino, Clemens Rabe, Heidi Loose, Uwe Franke, and Daniel Cremers, Member, IEEE

Abstract—We propose a general technique for modeling the
visible road surface in front of a vehicle. The common assumption
of a planar road surface is often violated in reality. A workaround
proposed in the literature is the use of a piecewise linear or
quadratic function to approximate the road surface. Our approach
is based on representing the road surface as a general parametric
B-spline curve. The surface parameters are tracked over time
using a Kalman filter. The surface parameters are estimated from
stereo measurements in the free space. To this end, we adopt a
recently proposed road-obstacle segmentation algorithm to in-
clude disparity measurements and the B-spline road-surface rep-
resentation. Experimental results in planar and undulating terrain
verify the increase in free-space availability and accuracy using a
flexible B-spline for road-surface modeling.

Index Terms—B-spline, free space, road surface, v-disparity.

I. INTRODUCTION

MODELING a vehicle’s environment is challenging but
absolutely essential in maneuvering autonomous vehi-

cles. It includes the localization of moving objects, as well as
the modeling of the stationary infrastructure. In an ideal world,
all the necessary information is available on demand from an
omniscient oracle. In reality, only a small portion of the infor-
mation is available on demand by making use of a database.
This may include the location of traffic signs, the information
about road curvature, or even a 3-D model of the complete
infrastructure.

In most environments with other traffic participants, such
information has to be generated online using environment-
perception techniques. The ideal environment-perception sen-
sor generates a 3-D model of the vehicle environment. In this
paper, we use rectified stereo camera images and focus on
modeling the free space in front of the vehicle. The free space is
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Fig. 1. Contributions in this paper. An example of a scene with undulating
terrain in a city environment is shown. The road course ahead is planar in the
vehicle vicinity; then, it drops down before it starts rising. The color encodes
the relative height of obstacles for the free space and the distance for the
disparities. (Top image) A planar ground assumption is invalid in the depicted
scene and yields errors in the free-space estimation. The better vertical road
approximation using the flexible spline representation and the correct free-
space estimation is demonstrated in the lower images.

the available space to maneuver a road vehicle to avoid collision
with any object. It is described by the ground surface and is
limited by other obstacles.

However, what defines an obstacle? In general, obstacle
refers to something that stands in the way. In vehicle environ-
ments, it refers to a structure that blocks the path by sticking out
of the ground surface. Common obstacle-detection algorithms
detect obstacles by evaluating the height above ground, where
the ground is modeled as a planar surface. In situations such as
that shown in Fig. 1, the assumption of a planar ground surface
is violated, and such a procedure fails.
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A robust free-space estimation approach requires modeling
the road surface to distinguish between obstacles and a free
driving corridor. Assuming a planar road surface, slope changes
in the road course ahead due to approaching a hill or a dip are
not modeled and cannot be used to restrict the free space. In
this paper, we develop an algorithm to model nonplanar road
surfaces, which we represent as B-splines. The approximation
via B-spline techniques, which are widely used in surface mod-
eling, yields accurate results for the vertical road profile, even in
large distances up to 100 m. Section II introduces B-splines and
describes the estimation of the spline parameters from stereo
disparity measurements. We describe how to track the spline
parameters over time using a Kalman filter to improve accuracy
and gain robustness in Section III.

In Section IV, we adopt a lately published free-space ap-
proach to use the obtained B-spline representation of the road
surface. The original algorithm uses image edges to calculate
a boundary between the road and the obstacle. In this paper,
we extend this algorithm to use the disparity values of a stereo
method as a second driving force for free-space estimation. We
fuse both approaches, i.e., edge directions and disparities, into
a single framework for free-space estimation, yielding better
results in the novel combined approach. An evaluation section
proving accurate free-space estimation in situations where the
planar ground estimation fails demonstrates the practicability
of ground surface modeling via B-splines.

II. ROAD SURFACE MODELING WITH B-SPLINES

In this section, we acquire the modeling of the road
surface based on B-splines. We first replicate the common
v-disparity approach for modeling planar road surfaces and give
an overview of existing approaches to extend this approach
toward modeling nonplanar surfaces. We will then discuss how
a subset of these approaches can be modeled using B-splines,
which are more general. The embedding into a Kalman filter
framework is discussed in Section III.

A. Review of the v-Disparity Approach

The v-disparity approach was first introduced as Helmholtz
shear in [1] and [2]. Under the assumption of a planar road
without bank angle, the key idea is to fit a plane through 3-D
measurements obtained by triangulating corresponding image
points in the left and right camera images. An image point
(u, v) in the left image corresponds to an image point (u − d, v)
in the right image. Disparity offset d is zero at the horizon and
linearly increases in v, yielding d(v) = a · v + b. v is the image
row, and a and b are the parameters that depend on the camera
height and tilt angle. A linear fit is computed in the image
space using the Hough transform on a row-disparity image,
which is commonly known as v-disparity space (see Fig. 2).
Labayrade et al. were the first to introduce the name v-disparity
approach and proposed a real-time accumulation strategy in [3].

We will review the idea of this robust v-disparity approach
(from [3]) in the simple case of fixed camera height h. Each
point on the ground plane is then described by Y (Z) = tan α ·
Z − h with camera tilt angle α and height Y and distance Z

Fig. 2. v-disparity space of measurements on the road course ahead. The
linear dependence between disparity and image row for the planar part of the
road is visible. The plot also shows that the resolution of the v-disparity space
(both v and d resolution) decreases with increasing distance.

of world points in the world coordinate system. Using the
projection formulas for the pinhole camera and solving for tilt
angle α, we get

tan α =
h

cbfx
· d +

1
fy

(cy − v) (1)

for each v-disparity point (v, d). Here, fx and fy are the focal
lengths (in pixels), cb is the baseline of the stereo camera
system, and cy is the y-coordinate of the principal point in the
image.

For a robust estimate of the tilt angle from a set of v-disparity
points, the histogram of the tan α values calculated by (1) is
analyzed, and the tilt angle is found as the maximum in the his-
togram. In addition, the variance and the number of v-disparity
points supporting the found tilt angle are used as a quality
measure.

B. Extending the v-Disparity Approach

In the literature on intelligent vehicles, some approaches
have been proposed to yield an approximation of nonplanar
road surfaces. We will describe the basic ideas of these ap-
proaches and exemplary point out their differences using an
artificial ramp in the road course ahead (shown in gray). The
camera is assumed on the left, and measurements are assumed
to be noise free. The hatched regions show the approximation
error for the different methods. As the focus is set on verti-
cal road modeling, approaches that model the lateral surface
change (such as [4] and [5]) are excluded from this review.

The Helmholtz shear approach, as described in [2], ap-
proximates the ground as a planar surface. It uses the Hough
transform to fit a planar surface (green) in the disparity space,
yielding accurate approximation if the planar vehicle vicinity
but failing if the surface is rising or falling:

The envelope of the surface approach described in [3] com-
putes the k main v-disparity surfaces in the region, where k has
to be chosen (3 in the example, shown in red). The resulting
surface (green) is represented as an inner or outer envelope
(depending on the slope direction of the road). Surfaces are
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modeled as piecewise planar; hence, slope changes are abrupt
and not continuous. The approach incorporates the robust
Hough transform techniques for the main surfaces but allows
only for slope changes in one direction:

A quadratic approximation of the ground surface is proposed
in [6]. It allows only slope changes in one direction and is not
as stable in the vehicle vicinity as a Hough-transform-based
approach. Using a B-spline of order two with one segment
would yield the same result:

In [7], the authors propose a clothoid approximation of the
ground surface. A clothoid is a higher order polynomial of
degree 3 (cubic) that is widely used for lane recognition in the
computer vision community. In their implementation, however,
the cubic parametrization is not evaluated. The authors use a
Hough transform for the vehicle vicinity and a quadratic fit in
large distances, yielding a better approximation than a quadratic
fit in total:

Using a B-spline of order two with two segments, where the
first segment is constrained by the camera height and pitch,
would yield similar results.

Due to its restricted parametrization, all aforementioned
techniques can only model slope changes into one direction;
hence, these approaches may fail to approximate the road sur-
face if the road is undulating. The last example shows a surface
approximation using a B-spline curve with three segments.
Note the piecewise definition of the spline shown in light and
dark colors and the good approximation of the surface ramp:

An example of undulating terrain in a real sequence with
a B-spline surface reconstruction can be seen in Fig. 15. As

we are interested in modeling the road course ahead (in large
distances), fitting the approximated ground surface into the
disparities, as done in the original a v-disparity approach, is
not necessarily the best solution. If the modeling is done in
image space, the resolution decreases with increasing distance
(shown in Fig. 2). To overcome this effect, we propose to fit
measurements in world coordinates, instead of image space,
to get a well-defined depth resolution. The drawback of such
an approach is that one has to account for the nonlinear error
propagation of the (noisy) disparity measurements.

In the next section, we will review B-splines as a function
vector space that embeds all polynomials, among which are the
piecewise linear and clothoid functions. Hence, our approach is
a generalization of known surface approximations in the litera-
ture and bridges the gap between these different approaches.

C. B-Splines

B-splines are a basis for the vector space of piecewise
polynomials of degree γ [8]. A B-spline curve B(Z) of degree
γ is defined by an n + 1-dimensional coefficient vector c, i.e.,

B(Z) =
n∑

i=0

ciNi,d(Z) = Nγ(Z)�c (2)

with

Nγ(Z) = [N0,γ(Z) · · · Nn,γ(Z)]�

and

c = [c0 · · · cn]�.

Polynomial basis functions Nγ(Z) = {Ni,γ(Z)}i with local
support are described by

Ni,j(Z) =
Z − Ti

Ti+j − Ti
Ni,j−1(Z) +

Ti+j+1− Z

Ti+j+1− Ti+1
Ni+1,j−1(Z)

with

Ni,0(Z) =
{

1, Ti ≤ Z < Ti+1

0, otherwise.

The number of nodes n defines the number of piecewise
intervals where 1 ≤ γ ≤ n. We use a node vector

T = {T0, . . . , Tn+d+1}

where Ti denotes distances in world coordinates and is in
ascending order. Note that the following conditions have to be
fulfilled:

T0 = T1 = · · · = Tγ , Tγ < Tγ+1 < · · · < Tn

and

Tn = Tn+1 = · · · = Tn+γ+1.

Fig. 3 shows basis functions N1(Z) for piecewise linear
splines and N2(Z) for piecewise quadratic splines.
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Fig. 3. Basis functions for an equidistant node vector. The linear basis
functions are plotted in green, and quadratic basis functions are plotted in blue.

Fig. 4. (Red) Surface fit through measurements with additive Gaussian noise
using (green) piecewise linear splines and (blue) piecewise quadratic splines.

To get the same parametrization as in the original v-disparity
approach, both d and n must be set to 1. Note that only the
parametrization is equivalent; the estimation technique via
Hough transform is different from the least-square approach
that we describe in the following. The quadratic and cubic
ground surface approximation techniques are represented by
setting γ = 2 and 3, respectively.

In our implementation, we use equidistant nodes within the
observed distance interval and cubic splines. Further details on
B-spline construction and evaluation can be found in [8].

Fig. 4 shows a surface fit with linear and quadratic splines
using the same node vector. Note the better approximation with
quadratic splines.

If a fixed node vector is used, the basis functions remain
constant, and the spline function is altered only by coefficient
vector c. This yields the common name control vector for the
vector of spline coefficients. Due to the fact that the basis func-
tions for the B-spline fit do not change, they can be calculated in
a precomputing step yielding real-time efficiency for the surface
approximation via B-splines.

For the road course ahead, the B-spline B(Z) encodes the
relative height of the ground surface. If we are given M
independent measurements

{distance, height}M
m=0 = {Zm, Ym}M

m=0

and associated standard deviations σm (see [6] for the stereo
triangulation error propagation), the goal is to find an optimal
control vector c∗ such that B(Z) best fits to the measurements.
The goodness of the fit can be expressed by a cost function
evaluating the sum of deviations from the measurements

c∗ = min
c

{∑
m

1
σ2

m

(B(Zm) − Ym)2
}

. (3)

Fig. 5. Camera parameters pitch angle α and height offset Hoff . The touch
and gradient constraints imposed on the B-spline can be seen as boundary
conditions, ensuring that the spline surface has height 0 and no slope at the
camera footprint.

This boils down to finding the coefficient vector c∗, which
minimizes the weighted sum, i.e.,

c∗ = min
c

{∑
m

1
σ2

m

(
Nγ(Zm)�c − Ym

)2}
(4)

⇔ c∗ = min
c

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎣

1
σ2
0
Nγ(Z0)�

...
1

σ2
m

Nγ(Zm)�

⎤
⎥⎦

︸ ︷︷ ︸
A

c −

⎡
⎣ Y0

...
Ym

⎤
⎦

︸ ︷︷ ︸
h

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(5)

and yields the familiar form of the least-squares problem

A�Ac∗ = A�h. (6)

Equation (6) can be solved either directly by matrix inver-
sion or iteratively using any matrix-vector solver. Due to the
embedding in a Kalman filter framework, these equations are
fed as measurements to the Kalman filter and are not directly
solved. The state vector of the Kalman filter is the coefficient
vector c. Each row of {Ac−h} is a Kalman filter measurement
equation.

D. Camera Parameters

Until now, the outer orientation of the camera is assumed to
remain unchanged; therefore, only changes in surface topology
are accounted for. In vehicle applications, because of vehicle
motion, one has to model changes in the camera pitch angle α
and an offset in the camera height Hoff (see Fig. 5). To account
for these parameters, the surface equation is extended by these
two parameters, i.e.,

Height(Z) = cos(α)Nγ(Z)�c + sin(α)Z + Hoff . (7)

Recall that distance Z and the height are given in the world
coordinate system of the moving observer. Because the camera
height and the camera pitch angle could be modeled by translat-
ing and rotating the ground surface, additional boundary condi-
tions have to be imposed. For moving platforms, these boundary
conditions are straightforward: The vehicle has to touch the
ground surface, and the surface gradient, where the vehicle
touches the ground, has to vanish. Mathematically, this can be
formulated as

Touch constraint: B(0) = 0 (8)

Gradient constraint: B′(0) = 0. (9)
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We include both equations in the Kalman filter framework as
measurements {mt = B(Z0) − 0} and {mg = B′(Z0) − 0}.
Because the B-spline equation is linear in the coefficient vector
c, the measurement equation mt for the Kalman filter is a linear
measurement equation. The same linearity of the coefficients
is true for the derivative measurement mg; the derivative of a
B-spline B′(Z) computes as

B′(Z) =
n∑

i=0

ciN
′
i,d(Z)

with (see [8])

N ′
i,d(Z) =

d

Zi+d−Zi
Ni,d−1(Z) − d

Zi+d+1 −Zi+1
Ni+1,d−1(Z).

(10)

E. Surface Smoothness

For measurements corrupted by noise, a best fitted curve ap-
proximation is not necessarily the best continuous approxima-
tion. Two problems may arise: The number of measurements is
too small to estimate all parameters, and/or outliers may influ-
ence the result. One way to solve for such problems is prior
knowledge in terms of smoothness. The curvature and the incli-
nation of road surfaces are usually small. This knowledge can
be introduced by penalizing high curvature and derivatives of
the resulting B-spline. Since integration and differentiation are
linear operators on the vector space of B-splines [compare (10)],
this can be formulated by additionally penalizing the quantities∫

(B′(Z))2 =
∫ (

N′
γ(Z)�c

)� (
N′

γ(Z)�c
)

(11)∫
(B′′(Z))2 =

∫ (
N′′

γ(Z)�c
)� (

N′′
γ(Z)�c

)
. (12)

The integrals over the basis functions are efficiently com-
puted using Gaussian quadrature. This step is computed offline,
because the basis functions remain constant.

The Gaussian quadrature, with ng being the number of (con-
trol) weights, is exact for polynomials with degree 2ng − 1. For
ng = 2, the corresponding weights become ω1,2 = 1 at posi-
tions x1 = −

√
1/3 and x2 =

√
1/3, and the approximation is

exact for polynomials of degree ≤ 3. The Gaussian quadrature
is defined on the interval [a, b] as

b∫
a

f(x)dx ≈ b − a

2

ng∑
i=1

ωif

(
b − a

2
xi +

a + b

2

)
. (13)

For computing the smoothness constraints in (11) and (12),
the function f(x) becomes the multiplication of two basis
functions, i.e.,

f(x) = N ′
j,d(x)N ′

j,d(x) and f(x) = N ′′
j,d(x)N ′′

j,d(x).

Because each of the first-derivative basis function has degree
d − 1, the Gaussian quadrature for the integral of derivatives is
exact for B-splines of degree d = ng . The Gaussian quadrature
for the integral of the second derivatives is exact for B-splines

of degree d = 2ng . Note that the local support of the basis
polynomials can be used to gain real-time processing.

III. ROAD SURFACE KALMAN FILTER

Since we work on image sequences, we impose regularity
over time by applying a Kalman filter. This section describes the
filter steps for the surface fit based on B-splines. Measurement
equations for 3-D world points are derived. A Kalman update
is formulated, and the Kalman prediction step is derived for
the B-spline coefficients, assuming a moving platform. For an
introduction on Kalman filters, see [9].

The Kalman filter state vector x consists of the current
parameter vector c describing the road profile, the camera pitch
angle α, and the camera height offset Hoff , i.e.,

x = [c α Hoff ]�. (14)

This includes the physical actual movement of the vehicle in
terms of height and pitch angle change and implies optimization
of the road surface in the coefficient space. In practice, this
is still acceptable, because a one-to-one mapping from the
coefficient space into world coordinates (height and distance)
exists.

A. Kalman Update Step

Given an initial estimate x′ = [c′, α′,H ′
off ]�, the goal is to

derive an equation for the update Δx = [Δc,Δα,ΔHoff ]� to
get a better (updated) solution

x∗ = x′ + Δx = [c∗, α∗,H∗
off ]� .

Recall that B-splines form a function vector space and are
linear in their coefficients. Assuming a small pitch angle, we
can set cos(α) ≈ 1 and sin(α) ≈ α and get⎡
⎣ Nγ(Z0)� Z0 1

...
Nγ(Zm)� Zm 1

⎤
⎦
� ⎡
⎣ c′ + Δc

α′ + Δα
H ′

off + ΔHoff

⎤
⎦ =

⎡
⎣ Y0...

Ym

⎤
⎦ .

The standard deviations for the single measurements are cal-
culated via error propagation from stereo triangulation [10]. We
assume a disparity standard deviation of 0.4 px. Our cameras
used in the experiments have a baseline of 35 cm and a focal
length of 840 px.

The touch and gradient constraint boundary conditions in (8)
and (9) need to be formulated as measurements for the Kalman
filter. This is done by introducing the deviation from zero for
the B-spline and its derivative as additional measurements, i.e.,[

Nγ(0)�

N′
γ(0)�

]
︸ ︷︷ ︸

PC

[c′ + Δc] =
[
0
0

]
. (15)

We choose the standard deviations for these measurements
on the order of 10−5, allowing only small deviations to the
constraints.

The smoothness constraints in (11) and (12) are quadratic in
the coefficients c. We linearize the equations around the given
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estimate c′ to solve for the update. Hence, we used lagged
feedback for the smoothness constraints, i.e.,[

c′�
∫

N′
γ(Z)N′

γ(Z)�dZ

c′�
∫

N′′
γ(Z)N′′

γ(Z)�dZ

]
︸ ︷︷ ︸

PS

[c′ + Δc] =
[
0
0

]
. (16)

The summarized Kalman filter update equations for the
measurement equations, the constraints, and the smoothness
equations read⎡
⎢⎢⎢⎢⎣

Nγ(Z0)� Z0 1
...

Nγ(Zm)� Zm 1
PC 0 0
PS 0 0

⎤
⎥⎥⎥⎥⎦
⎡
⎣ c′ + Δc

α′ + Δα
H ′

off + ΔHoff

⎤
⎦ =

⎡
⎢⎢⎢⎢⎣

Y0
...

Ym

0
0

⎤
⎥⎥⎥⎥⎦ .

Both matrices PC and PS can be precomputed for a fixed
node vector to save online computation time. Most of the mea-
surement equations can also be precomputed using a simple
trick (at the cost of some negligible inaccuracies): For each
measurement equation, the basis functions Nγ need to be eval-
uated at the given distance Zm. In our experiments, we sum up
all measurements within discrete equidistant distance intervals

{IZi
, IZi+} with Zi+1 = Zi + ΔZ.

The basis functions can be precomputed for the middle point
of every discrete interval, and the corresponding row of the
Kalman filter update equations is multiplied with the square
root of the number of measurements per interval (because the
solution is computed via least squares). For the sum of vari-
ances, we use error propagation to weigh the measurements of
the Kalman filter with the correct variances [10].

B. Kalman Prediction Step

The Kalman filter prediction step models the dynamics of the
system. For a moving vehicle, the translation and rotation of the
vehicle have to be modeled.

We model the road surface in the coordinate system of a
moving observer. The node vector is kept fixed in predefined
distances. Keeping the node vector fixed, old B-spline coeffi-
cients c′ have to be projected onto the current coefficients c.
Minimizing the quadratic difference between the last and cur-
rent surface parametrization under the translation T yields

min
c

∫ (
Nγ(Z)�c − Nγ(Z + T )�c′

)2
dZ. (17)

This can directly be formulated into∫
Nγ(Z)dZ

∫
Nγ(Z)�dZc = (18)∫

Nγ(Z)dZ
∫

Nγ(Z + T )�dZc′. (19)

Again, the integrals can be computed using Gaussian quadra-
ture. The Kalman filter hence acts as a low-pass filter on the

coefficients. As the ground is assumed to be static, we set a low
variance to the state coefficients and increase the variance with
increasing distance.

Instead of projecting onto a static node vector, one can also
shift the node vector with the ground plane. Then, however, one
has to deal with inserting new nodes and removing nodes at the
endpoints.

Prior knowledge about change in camera pitch and camera
height is also modeled in the prediction step. Such knowledge
can either be estimated using ego-motion or applying the robust
v-disparity approach in the vehicle vicinity. In our experiments,
we use the second approach and estimate the camera height
and the camera pitch angle in the vehicle vicinity using the
v-disparity approach. We update the state vector with the cal-
culated height and tilt angle and allow only low variance as we
assume these parameters to be accurate in the vehicle vicinity
(up to 15 m).

IV. FREE-SPACE COMPUTATION

In this section, we describe our approach for computing the
free space in front of a vehicle. The computation of the free-
space computation has two main goals.

1) Find the distances to the closest objects.
2) Find the road-surface segmentation.
While finding the distance to objects aims at navigating

the car or triggering safety systems, the second objective is
probably of the same importance. It is crucial for the road
surface estimation task described in the first part of this paper.
The reason for this is that measurements on vehicles and other
objects in crowded scenarios influence the B-spline curve and
that the resulting curve estimation may become unstable under
such scenarios. Therefore, only 3-D measurements in the free
space are used for the spline estimation, neglecting all stereo
measurements on objects.

First, we present a literature overview describing different
approaches to free-space computation and motivate our choice
of free-space computation in Section IV-A. We describe the
ideas presented in [11], on which our algorithm is based,
in more detail in Section IV-B. Simultaneously, we describe
how the nonplanar road-surface representation can be used
for the free-space computation and subsequently focus on our
proposed changes and extensions.

A. Review of Free-Space Algorithms

The computation of free space is an important issue in
the autonomous robot domain. The motion-planning problem
implies the autonomous displacement of a robot from one place
to another while avoiding collisions with obstacles on its way.
For this purpose, occupancy grids are built [12], and the free
space is obtained by analyzing the occupancy likelihood of the
grid cells (e.g., [13]). The literature on robot motion planning
and occupancy grids is quite extensive, and an overview of the
state of the art is given in [14].

Occupancy grids are also used in the automotive environ-
ment. The main difference is that robots usually maintain a
global grid, whereas vehicles only build a local grid from the
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current ego-position. In [15], stereo measurement is used to
build an occupancy grid. Free space is obtained by applying
a threshold to the occupancy likelihood of the cells.

In [16], free space is computed independently of evidence
grids by applying inverse perspective mapping.

In [17], stochastic occupancy grids are computed based on
stereo information. Stereo is integrated over time to reduce the
disparity uncertainty and improve the accuracy of the occu-
pancy grids. Free space is obtained by applying dynamic pro-
gramming to a polarlike representation of the occupancy grid.

The algorithm presented in [11] computes a globally optimal
solution to the road/obstacle boundary. The authors proposed
energy-combining measurements on objects, as well as mea-
surements on the road surface. The maximum of this energy
is found by dynamic programming. To our knowledge, this is
the first time that measurements on the road surface in the free
space directly contribute to the road/obstacle boundary estima-
tion. We use the basic idea of this approach and extend it to use a
B-spline representation of the road surface, instead of the
planar ground assumption. We also show how to integrate direct
disparity measurements next to edge directions, as originally
proposed in [11].

B. Free Space Using Dynamic Programming

The basic procedure to find the road-obstacle (free space)
boundary via dynamic programming (see [11] and [17]) is given
as follows:

1) Estimate the road surface orientation parameters.
2) Calculate a disparity-matching score.
3) Find a consistent road-obstacle boundary.

In our case, the road-surface orientation parameters are given
by the B-spline B(Z), where Z encodes distance, and B(Z)
encodes the height of the road surface in the coordinate system
of the moving observer. To distinguish between image pixels on
the road surface and pixels on obstacles, the expected disparity
of the road surface for an image pixel has to be known. Under
the common assumption of no road bank angle, the disparity
of the road surface for an image row v is constant and depends
on the relative height of the surface. We denote the disparity of
the road surface for an image row v by d(v), which is given by

d(v) = disparity of mapped road at image row v. (20)

This equation is linear if and only if the ground plane is
planar, yielding the v-disparity equation.

The first goal of a free-space algorithm is to find the distance
to the bounding obstacles. In image space, this results in finding
the disparity value d of the obstacles that bound the free space.
The disparity of the obstacle becomes the same as the disparity
value of the road surface in the image row, where the footprint
of an obstacle touches the ground surface. A free-space algo-
rithm needs to know in which image row obstacles of disparity
d touch the ground plane. We denote this image row v(d) as

v(d) = v-coordinate of the footprint

of objects with disparity d. (21)

Fig. 6. Example of free-space segmentation on the planar ground. The gray
value encodes disparity (white = near, black = far), and the free-space border
is shown in yellow. The linear dependence (v-disparity) between disparity d
and column v for the ground plane is depicted by the white triangle at the left.

Fig. 7. Shadowed area seen only by one camera. The upper draft shows the
distance encoded in world coordinates (X-axis versus Z-axis). The lower draft
shows the same top view with distances encoded in disparities (X versus image
disparity).

The free space can now be described by its boundary v(d, u),
the distance Z(u), or the disparity d(u) of bounding obstacles
for every image column u (see Fig. 6).

However, how is the correct free-space boundary found? The
key idea is to inspect every individual image column u (see
Fig. 6 for an example). A matching score is obtained, summing
up a score that evaluates the likelihood of pixels belonging to
the road surface from the bottom of the image up to the free-
space boundary v(d, u). A second matching score evaluates the
fit of pixels belonging to objects with disparity d from the free-
space boundary in Fig. 6. The total score for an image row u
and an obstacle at disparity d becomes

SCORE(u, d) = ROAD(u, d) + OBJECT(u, d). (22)

The best boundary match is given as the maximal score, i.e.,

v(d, u) = max
d

{SCORE(u, d)} .

If the maximal score for every image column is indepen-
dently calculated (winner takes all strategy), the results will be
noisy (differ from column to column). This is mainly due to
low texture and low information content in some image regions.
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Fig. 8. Idea of plane sweep stereo. The right image is translated according to a given disparity value, and the consistency of gray values in the left image and the
translated right image corresponds to the likelihood of a stereo match. The superposition of the right and left images for different disparity values results in sharp
structures in the background (for small disparities), midplane, or foreground (for large disparities).

Fig. 9. Comparison of free-space computation using the different cost functions described in this paper. The edge-based approach has problems in low-contrast
areas on the concrete wall. The disparity-based approach does not pick up enough of the measurements at large distances, yielding to smoothing between the
signposts. The combined approach looks most convincing. (a) Free space with edge-based score. (b) Free space with disparity-based score. (c) Free space using
the combined approach.

Another reason is stereo occlusion, as shown in Fig. 7: Obstacle
one is visible in both the left and right cameras; parts of obsta-
cle two are only visible in the left camera and occluded by
obstacle one in the right camera. A disparity measurement
for this region is not possible. Hence, for the image columns
within the occluded region, the free-space boundary will be
undefined.

This is where the idea of dynamic programming comes in
[11] and [17]: Deviations in the results between neighboring
image columns are penalized to reduce the influence of outliers
and to smooth the resulting free-space boundary.

Fig. 7 also shows why disparities are used, instead of world
distances, to describe the free-space boundary. If world dis-
tances were used, the shape of the shadowed area depends on
object distances and camera setting. If, on the other hand, the
distance is encoded in disparities, the incline always has an
angle of 45◦ (change in u: change in d = 1 : 1). Hence, penaliz-
ing disparity differences is preferred over penalizing world dis-
tances due to the simple handling of shadowed regions and the
direct inaccuracy treatment.

Algorithms that introduce smoothness in a global opti-
mum manner via dynamic programming make use of a d–u
(disparity–column) matching score table (see Fig. 10 in the
results section). It has the dimension image width by disparity
range and encodes, for every image column u and disparity d,
the likelihood that d is the disparity of the road-obstacle bound-
ary v(d). For details on finding the optimal boundary, given the
d–u table, see [11] or [17].

We will now describe two matching scores, i.e., image edges
and disparity values, to construct a d–u table. We will discuss
the advantages and disadvantages of both matching scores and

Fig. 10. (Top) Typical free-space segmentation in a challenging environment
due to the partly visible windshield wiper and bad illumination in rainy weather.
(Bottom) In the d–u table, brightness depicts the likelihood of the free-space
boundary; dynamic programming was used to find a smooth path from the left
to the right with the largest likelihood.

combine both scores by adding the table entries for both ap-
proaches. The better accuracy in free-space computation using
the combined approach is verified in the experiments.

C. Image-Based Matching Score Proposed in [11]

In [11], a direct-image-based disparity score is proposed to
find the free-space boundary using stereo vision. It is based on
the plane sweep idea [18]: For every disparity value d, the pixel
(u, v) in the left image is compared with the pixel (u+ d, v)
in the right image. This corresponds to shifting the right image
over the left image or, equivalently, projecting the left and right
images onto a plane, which is swept along the Z-axis of the
camera coordinate system. The principle is shown in Fig. 8
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Fig. 11. Due to (left) the free-space segmentation, (right) the height estimate is not influenced by the vehicle that is 16 m ahead. The free space between the
vehicle in front and the truck on the right allows for a B-spline estimate up to 30 m, but reliable height measurements are found only up to 15 m.

using plain gray values. Only obstacles with the correct dispar-
ity value are in focus, and the gray values in the right and left
images coincide. All other regions of the image seem to be out
of focus. Collins [18] took this principle and applied an edge
filter on the input images to provide a geometric reconstruction
of the scene.

The same idea of matching image edges is adopted by [11] to
construct the d–u table. Let EL,R(u, v) be the edge direction in
the left and right images, respectively, at image position (u, v).
The image-based disparity score is then computed as

ROAD(u, d)=
vmax∑

v=v(d)

w (EL(u, v)−ER (u, v+d(v))) (23)

OBJECT(u, d)=
v(d)∑

v=vmin

w (EL(u, v)−ER(u, v+d)) (24)

with w(arg) = 1 if | arg | < threshold and 0 otherwise. vmin

and vmax are the upper and lower bounds of the region of in-
terest in the images, respectively. The threshold for computing
w is set to an angle of 10◦. A too-large threshold yields an
oversmooth free-space boundary, whereas a too-small threshold
does not accumulate enough edges. Equation (23) counts the
number of matched edge directions on the road between the ob-
stacle and the camera. Considering the homography of the road
surface between the left and right images improves the results
(see [19]). Equation (24), on the other hand, counts the number
of matches for the image column u on any potential obstacle
with the disparity d.

D. Disparity-Based Matching Score

If disparity maps are computed for pixels in the left image
(we use the dense semiglobal matching method (SGM) [20]),
the plane sweep approach can be replaced by direct disparity
measurements. This has the advantage of implicit robustness,
because edge directions may be matched for more than one dis-
parity value. Furthermore, this speeds up the calculation of the
disparity score table, because no sweep step is necessary. (Here,
we assume that the disparity estimates are already available.)
Let (u, v) be an image position and du,v be the corresponding
disparity value. The height Y (v, d) and distance Z(d) of the
corresponding world point are computed by stereo triangula-

Fig. 12. Comparison of the pitch rate (in radians per frame) obtained using
(green) the algorithm described in this paper and (red) the v-disparity approach
on the scene shown at the top. Both plots show only small differences.

tion. We define the disparity-based score (with w as before and
a threshold of 20 cm and 3 px, respectively) as

ROAD(u, d) =
vmax∑

v=v(d)

w

⎛
⎜⎜⎝Y (v, du,v) − Y (v, d(v))︸ ︷︷ ︸

relative height

⎞
⎟⎟⎠ (25)

OBJECT(u, d) =
v(d)∑

v=vmin

w(du,v − d). (26)

Note that (25) is equivalent to thresholding the height of
measurements. Only measurements on the ground surface con-
tribute to the ROAD score. In (26), the distance to possible
objects is thresholded. Again, measurements are summed up
in the road area on obstacles where the boundary is defined by
the footprint of obstacles v(d).

E. Discussion and Combined Approach

The image-based approach yields dense measurements and
accurate boundaries. However, measurements may vote for
many different disparity values, which may yield unstable
results. An edge in the right image matches every edge with
the same direction in the corresponding row of the left image.
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Fig. 13. Examples of the vertical road surface estimation for different scenarios. The proposed approach is able to estimate the height of the road surface up to
75 m in uphill and downhill scenarios. (Right) Autobahn scene with road surface estimation up to 250 m.

Hence, one can be sure that every possible match is found at
the cost of many mismatches. One way to reduce the number of
mismatches is a coarse-to-fine approach (see [11]). Such a pro-
cedure, however, implies that one loses the global optimality of
the solution.

The disparity-based score relies on the disparity algorithm
to dissolve multiple hypotheses. This implies that the num-
ber of mismatches is reduced. However, if a false disparity
measurement is present, the correct match is not in the set of
disparity solutions. A disparity score is more robust (in terms
that matches are unique) but less dense (no disparity available
at some pixel positions) than the edge score.

We propose to combine both approaches, i.e., the edge-
based matching score and the disparity-based matching score,
by adding the single scores. This combines the robustness
of the direct disparity measurements and the density of edge
information. Experimental results showing the improved free-
space calculation are found in the next section.

V. EXPERIMENTAL RESULTS

In our experiments, we use stereo cameras with a baseline
of 35 cm and a focal length of 840 px. The image resolution is
640 × 480 px. Overall, the computation time (Intel CPU) is
below 25 ms, using the hardware version of SGM stereo [20].

Fig. 9 compares the proposed cost functions. The edge-
based approach has some problems in low-contrast areas of
the image; the high contrast on the coming van, for example,
influences the free-space estimation, and the free space is too
large. The disparity-based approach has not enough disparity
measurements at large distances, which yields to a smoothing
of the free-space boundary between objects (the signposts). In
the combined approach, the result looks most convincing.

In Fig. 10, the free-space segmentation for a challenging
scene under rainy conditions is shown. Note that, although
only part of the vehicle on the left is visible, the free space
is correctly determined using the combination of edges and
disparities. A smooth path from the left to the right with a large
energy (depicted in gray value) is found in the d–u score table
and describes the free space.

The following experiments evaluate the B-spline modeling
of the road surface. In our experiments, we use B-splines with
degree 3 and five control points (which are equally distributed
in the observed interval). The computational time is below
15 ms/frame on standard consumer hardware. Note that, for the
ground approximation, only the measurements within the free

Fig. 14. Comparison of free-space calculation using (top) a planar road
surface and (bottom) a B-spline representation of the road surface. The im-
provement compared with the flat ground assumption, where the uprising road
shows up as an obstacle becomes visible.

driving corridor are used. Using all stereo measurements would
result in an unstable estimation. This can be seen in Fig. 11,
where traffic blocks the view onto the road surface, such that a
reliable estimate is only possible up to 15 m.

Fig. 12 compares the pitch angle estimation using the pro-
posed B-spline fit and the original v-disparity approach. In the
scene, the road is mainly planar, and we may assume that the
v-disparity approach yields trustful results. The plot demon-
strates similar results obtained by our algorithm when solving
for the road surface parameters and the pitch angle within one
Kalman filter (for the experiment, we disabled the v-disparity
prediction in the Kalman filter). It can also be seen that the
Kalman filter acts as a low-pass filter as long as no dynamic for
the pitch angle is modeled. Experimentally, this demonstrates
that the road surface and vehicle dynamics can be modeled in a
Kalman filter.

Road surface approximations using the B-spline fit are shown
in Fig. 13. In the first two scenes, the road surface is modeled
up to 75 m in the Autobahn scene (the camera focal length
is 1400 px) up to 250 m. The qualitative experimental results
demonstrate that modeling the road surface with B-splines is
suitable and yields accurate results.
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Fig. 15. Height measurements and variances used in the Kalman filter estimation of the B-spline road model for the example in Fig. 1. The camera is at the left.
As one would expect, with increasing distance, the measurement variance and the variance of the spline increase.

Fig. 14 now shows the result for the combination of
B-spline road modeling and free-space estimation. It also shows
the result when modeling the road with a planar surface. This
assumption holds for the nearby environment. Then, the road
rises to above 1 m within the next 70 m. Using a planar
ground assumption, the image-based free-space computation
fails because the assumed displacement of the road surface
beyond 50 m has an offset of several pixels; the disparity-based
approach fails because the height of the road surface beyond
50 m is above any appropriate height threshold. Using the
B-spline representation of the road surface, the free space is
correctly determined.

An example of measurements and their approximating spline
surfaces for the example in Fig. 1 is shown in Fig. 15. The
road profile is correctly estimated, and as one expects, with
increasing distance, the measurement variance and the variance
of the spline increase. The road course ahead falls before it rises
again. In contrast to Fig. 14, the free space is estimated to be too
large if the ground plane is assumed to be planar.

VI. CONCLUSION AND OUTLOOK

We have introduced an algorithm to robustly track smooth
nonplanar road surfaces. In contrast to existing approaches,
which are based on a piecewise planar or quadratic ground as-
sumption, we allow for nonplanar ground planes represented by
a flexible B-spline curve. Thus, our approach is a generalization
of known surface approximations in the literature and bridges
the gap between these different approaches.

We have experimentally demonstrated the accuracy of the
B-spline representation for the application of free-space estima-
tion. To this end, we have modified a recently published free-
space algorithm to make use of the road surface approximation
technique and directly use disparity values. Experimental re-
sults in planar and undulating terrain have verified the gained
availability of free space in everyday traffic.

Some open issues to be addressed in future work are given as
follows:

1) evaluating the visibility of surfaces to more intelligently
accumulate stereo measurements;

2) integrating prior knowledge in terms of map data in the
B-spline estimation;

3) robust M-estimator techniques to reduce the influence of
outliers in the B-spline estimation;

4) quantitative evaluation of the B-spline modeling for the
road profile.

The presented generalization of the v-disparity approach
does not only offer more flexibility in road modeling from
image sequences but also enables road modeling using range
sensors, such as the Velodyne 3-D laser scanner. The topic of
sensor fusion is of broad interest. A possible research topic may
be the fusion of stereo and laser scanner distance values within
the presented approach for the road surface.
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