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ABSTRACT
In this paper we present a method for automatic video seg-
mentation of RGB-D video streams provided by combined
colour and depth sensors like the Microsoft Kinect. To this
end, we combine position and normal information from the
depth sensor with colour information to compute temporally
stable, depth-adaptive superpixels and combine them into a
graph of strand-like spatiotemporal, depth-adaptive supervox-
els. We use spectral graph clustering on the supervoxel graph
to partition it into spatiotemporal segments. Experimental
evaluation on several challenging scenarios demonstrates that
our two-layer RGB-D video segmentation technique produces
excellent video segmentation results.

Index Terms— Superpixels, Supervoxels, RGB-D, Video
Segmentation, Video Analysis

1. INTRODUCTION

Superpixel segmentation is an oversegmentation technique
that received increasing attention in the last years. Superpix-
els align well with object boundaries and are generally of a
compact shape. These properties allow using them as input
in other algorithms instead of pixels. Their main advantage is
the reduction of the input complexity from tens of thousands
of pixels to only a couple of hundred superpixels. There
exists a large variety of superpixel segmentation algorithms
with different properties [1, 2, 3, 4, 5, 6].

Supervoxels extend the planar superpixels into the third
dimension by not only clustering the pixels in each image,
but by segmenting a stack of images. The image stack can ei-
ther be composed by frames of volumetric scans (spatial im-
age stack, e.g. medical scans) or by stacking video frames
(temporal). Examples include Veksler et al. [7] and Lucchi
et al. [8]. A recent survey and evaluation of supervoxel seg-
mentations was given by Xu and Corso [9]. One advantage of
using supervoxels is similar to superpixels: reduction of the
number of primitives and grouping of similar pixels to one
compact representation primitive. The main application area
for temporal supervoxels is video segmentation [10].
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Fig. 1: Our method computes coherent, spatiotemporal depth-
adaptive supervoxels (lower left) and consistent temporal seg-
ments (lower right) for a RGB-D video stream (upper).

Recently, a method was proposed for computing homoge-
neous, depth-adaptive superpixels (DASP) [4] for RGB-D im-
ages which are uniformly distributed on the surface of the 3D
scene geometry. As it considers depth in addition to colour,
significantly better superpixels properties and image segmen-
tations can be achieved.

In this paper, we propose depth-adaptive supervoxels
(DASV) which are the extension of DASP to the temporal
domain. DASV are formed as coherent strands of temporally
stable depth-adaptive superpixels and build an oversegmen-
tation of the temporal image stack. We use spectral graph
segmentation to segment the DASV into coherent segments
to provide classic video segmentations. Our method is thus a
hierarchical video segmentation technique with only two lay-
ers: supervoxels and segments (see fig. 1). It is unsupervised,
model-free, runs in near realtime and shows very good results
compared to the state of the art.

This paper is outlined as follows: In §2, we introduce tem-
porally stable, depth-adaptive superpixels. They are used in
§3 to construct a spatiotemporal supervoxel graph which is
segmented using a spectral segmentation technique. The pa-
per will be concluded with an evaluation of our method in §4.



Fig. 2: From left to right: Colour and depth input, superpixel density, depth-adaptive superpixels, cluster density, target density
for new frame, difference between previous and new density (red resp. blue indicates that clusters have to be removed resp.
added) and result of delta density sampling (red: removed superpixel, blue: added superpixel, black: moved superpixel).

2. STABLE DEPTH-ADAPTIVE SUPERPIXELS

Depth-adaptive superpixels are computed frame by frame in
three steps (see fig. 2). First, the depth-adaptive superpixel
cluster density is computed from the depth input image. Sec-
ond, a Poisson disc sampling method (e.g. [11]) is used to
sample initial cluster centres. Third, sampled cluster centres
are used in an density-adaptive local iterative clustering algo-
rithm to assign pixels to cluster centres. For details see [4].

It turns out that the extension of superpixels to the tempo-
ral domain is by no means straight-forward. A naive frame-
by-frame processing, for example, will lead to a severe jitter-
ing of superpixels over time because samples and superpixels
are determined independently in each frame. For most ap-
plications this jittering is quite undesirable. The key idea of
our approach is to induce a stable superpixel distribution by
propagating density information over time.

Our method has two main advantages for RGB-D video
streams: On the one hand it is straightforward to establish
temporal superpixel connections between consecutive frames
and on the other hand the number of iterations of the nearest-
neighbour pixel assignment step can be reduced for higher
processing performance.

The key idea for our temporally stable sampling method is
the comparison between the superpixel density ρC provided
from superpixel centres C(t−1) from previous the frame t− 1
and the target superpixel density ρD computed from the depth
image D(t) of the current frame t (see fig. 2). ρC is approxi-
mated using a classical kernel density estimator of the form

ρC(x |C(t−1)) =

n∑
i=1

kσi (‖x− xi‖) (1)

with C(t−1) = {(xi, σi)}, xi cluster position and σi cluster
scale. In our case we use a two-dimensional gaussian kernel

kσ(d) =
1

σ2
e−π

d2

σ2 . (2)

The depth-adaptive superpixels target density ρD is

ρD(x |D(t)) ∝
(
D(t)(x)

)2√
‖∇D(t)(x)‖2 + 1 (3)

which corresponds to the area of an infinitesimal surface el-
ement in 3D space. ρD is normalized such that the integral

gives the desired number of superpixels. The difference be-
tween theses two density functions

∆ρ(t)(x) = ρD(x |D(t))− ρC(x |C(t−1)) . (4)

- a pseudo density function which can be both positive and
negative - is used in a hierarchical sampling process like in
[11]. The sampling process starts with all cluster centres
C(t−1) from the previous frame. During the sampling pro-
cess there may occur two cases. Either sample points are to
be added, this is carried out normally, or sample points are
to be removed. In this case the point nearest to the location
where a point shall be removed is found in the set of all points
currently sampled and removed. Fig. 2 exemplarily shows the
result of such a sampling process.

3. SUPERVOXEL GRAPH AND SEGMENTATION

Our video segmentation technique consists of two main steps:
construction of the weighted supervoxel graph and its seg-
mentation using spectral methods.

First, for each new frame at time t of the RGB-D video
stream, temporal-stable, depth-adaptive superpixels S(t) =

{s(t)i } are computed and combined to a graph G = (V,W )
of depth-adaptive supervoxels where each supervoxel v ∈ V
consists of a series of superpixels v = (s

(T−n+1)
j1

, . . . , s
(T )
jn

),
thus forms a supervoxel of strand-like shape (see fig. 3).

The last superpixels S(t−1) := {s(t−1)i } of active super-
voxels, i.e. supervoxels where T = t−1, are used to compute
the superpixel density ρC(x|S(t−1)). Supervoxels are contin-
ued by trying to attach each new superpixel s(t)j to the su-
pervoxel which provided the seed point for the sampling and
clustering process (see §2). We assure that

v = (. . . , s
(t−1)
i , s

(t)
j ) iff. ‖s(t−1)i − s(t)j ‖D ≤ θ (5)

where ‖ · ‖D is a metric on the superpixel features, i.e. colour,
spatial position and normal. If a supervoxel can not be contin-
ued, the superpixel starts a new supervoxel in the supervoxel
graph. If during the sampling process a superpixel seed is
deleted, the corresponding supervoxel in the supervoxel graph
is closed and if a new seed is created, a new supervoxel is
started (see fig. 3).
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Fig. 3: Left: Creation of strand-like supervoxels from frame superpixels. Red/green are superpixels removed/added during
sampling. Orange connections are to be tested. Middle: Colour and depth explained variation metric for our method (red:
supervoxels, blue: supervoxel segments) and StreamGBH (black). Right: Compactness metric for our method and StreamGBH.

The weight Wij of an edge connecting now active super-
voxels i, j is updated using an exponential decay model:

W
(t)
ij = (1− α)W

(t−1)
ij + αn

(t)
ij (6)

where nij is the corresponding superpixel similarity value
from the current superpixel neighbourhood graph (see [4]).

Second, a spectral graph segmentation technique [5, 12]
is used to segment the supervoxel graph. The segmentation
method is identical to the spectral graph technique for RGB-
D image segmentation using depth-adaptive superpixels in [4]
where the general eigenvalue problem

(D −W )x = λD x , Dii =
∑

j
Wij (7)

is solved, with W the symmetric adjacency matrix of the su-
pervoxel graph. We limit the maximum number of supervox-
els in the graph by excluding old supervoxels to assure a rea-
sonable runtime of the spectral graph segmentation process.

The eigensystem solution of eq. 7 is used as in [4] to com-
pute graph edge weights which form an ultrametric contour
map (UCM) [12]. The UCM is thresholded and processed
in an automatic semi-supervised label propagation step as in
[10] to compute supervoxel segment labels which are tempo-
rally stable relative to the labelling from previous timesteps.

4. EVALUATION

We compare our method against the state-of-the-art hierarchi-
cal streaming video segmentation method StreamGBH [10].
While StreamGBH generates a deep hierarchy of superpixels
of increasing size, our method only uses two layers: super-
voxels and supervoxel segments (see fig. 4).

We report results under two well-established metrics for
superpixels and segmentations: Explained variation and com-
pactness. The explained variation metric [9, 13] is

R2 =

∑
i ‖µi − µ‖

2∑
i ‖xi − µi‖

2 (8)

with xi pixel value for pixel i, µi mean value for correspond-
ing superpixel, µ mean value over all pixels. It can show a

correlation to human annotations in certain scenarios [14] and
is reported for colour and depth. Superpixel compactness is
computed using the isoperimetric quotient [6].

In fig. 3 we compare our two-layer method for varying
UCM edge thresholds (blue line) and varying superpixel num-
bers (red line) against the multi-layer method StreamGBH on
a dataset consisting of six video sequences. Our method gen-
erates segments which are both compact and have a high value
for explained colour variation, in contrast to StreamGBH
which overfits on colour information at the cost of compact-
ness. In addition, our method achieves significantly better
results for explained depth variation which is a strong indi-
cator for segmentations which respect geometry borders and
thus perform better overall. A close-up comparison in fig.
4 demonstrates the shortcomings of StreamGBH regarding
overfitted superpixels and unmet depth boundaries which our
method does not possess.

In fig. 5 we report segmentations for our method and
StreamGBH for three challenging scenarios and demon-
strate that our method can handle difficult situations with
fast motions, partial occlusions, textured objects and lighting
changes.

As the supervoxel graph is changing gradually over time,
it is not necessary to compute the graph segmentation step
for every frame. Computing segmentations every fourth
frame, our method has a near realtime performance of 0.38
seconds per frame compared to 71.4 seconds per frame for
StreamGBH.

More labelling results and the source code of our DASV
implementation can be found on the project homepage 1.

5. CONCLUSION

We proposed depth-adaptive supervoxels, a segmentation
technique for RGB-D video streams which respects both
temporal and spatial coherence and applied it to streaming
video segmentation. Our evaluation showed that we outper-
form the state of the art for explained depth variation and
compactness with significantly better runtimes.

1Project homepage: https://github.com/Danvil/dasv

https://github.com/Danvil/dasv


Fig. 4: Left: Colour and depth input. Middle left: Supervoxels (mean colour) and supervoxel neighbourhood graph (lighter
colour is higher similarity). Middle right: Supervoxels (random colour) and supervoxel segments generated by our two-layer
method. Right: Selected layers of the 21-layer hierarchy generated by StreamGBH. n is number of segments in the complete
image.

Fig. 5: Input colour images (first row), segmentation results from our method (second row) and from StreamGBH (third row).
First scenario: Hand and object movements with textured surfaces and cluttered background. Second scenario: Camera
movement and rotation. Third scenario: A challenging scenario with inter-object occlusions and changes in object lighting.
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