
Event-based 3D SLAM with a depth-augmented dynamic vision sensor

David Weikersdorfer1, David B. Adrian1, Daniel Cremers2 and Jörg Conradt1

Abstract— We present the D-eDVS– a combined event-based
3D sensor – and a novel event-based full-3D simultaneous lo-
calization and mapping algorithm which works exclusively with
the sparse stream of visual data provided by the D-eDVS. The
D-eDVS is a combination of the established PrimeSense RGB-
D sensor and a biologically inspired embedded dynamic vision
sensor. Dynamic vision sensors only react to dynamic contrast
changes and output data in form of a sparse stream of events
which represent individual pixel locations. We demonstrate how
an event-based dynamic vision sensor can be fused with a
classic frame-based RGB-D sensor to produce a sparse stream
of depth-augmented 3D points. The advantages of a sparse,
event-based stream are a much smaller amount of generated
data, thus more efficient resource usage, and a continuous
representation of motion allowing lag-free tracking. Our event-
based SLAM algorithm is highly efficient and runs 20 times
faster than realtime, provides localization updates at several
hundred Hertz, and produces excellent results. We compare
our method against ground truth from an external tracking
system and two state-of-the-art algorithms on a new dataset
which we release in combination with this paper.

I. INTRODUCTION
Simultaneous localization and mapping (SLAM) is one

of the central tasks in robotics and computer vision which
enables robots to explore and operate in unknown and
unconstrained environments. While 2D or 2.5D SLAM which
creates a bird-view map is an well-addressed problem [1],
[2], [3], the full-3D SLAM problem has been tackled in
recent years with the aid of combined color and depth (RGB-
D) sensors like the PrimeSense device [4]. An important
example for a 3D SLAM algorithm is KinectFusion [5], a
dense 3D SLAM algorithm which uses iterative closest point
to match depth images and a signed distance volume as a 3D
map. The method of Bylow et al. [6] improves on Kinect-
Fusion by using a more sophisticated representation of the
signed distance function and a better optimization scheme.
Kerl et al. [7] presented another dense visual SLAM method
which uses the photometric and depth error to optimize
the current position estimate. However many current dense
3D SLAM methods have the crucial disadvantage that they
are very resource intensive and algorithms require dedicated
GPU hardware which is expensive and has a high power
consumption.

We use the low-cost embedded dynamic vision sensor
(eDVS) [8] to intelligently reduce the amount of data which
needs to be processed for tracking and mapping. Each pixel
of the eDVS individually and asynchronously detects changes

*This work was not supported by any organization
1 Neuroscientific System Theory, Institute of Automatic Control Engi-

neering, Technische Universität München, Munich, Germany
2 Computer Vision Group, Computer Science Department, Technische

Universität München, Munich, Germany

Fig. 1. Our event-based SLAM method EB-SLAM-3D creates a sparse
3D map (gray) which captures salient features like edges. The map is
incrementally build using only 3D point events (green) provided by an
dynamic vision sensor where each pixel event is augmented with depth
information from an RGB-D camera. Due to properties of the dynamic
vision sensor, EB-SLAM-3D creates excellent results for self-localization
(red/orange).

in the perceived illumination and fires pixel location events
when the change exceeds a certain threshold. Thus events
are mainly generated at salient image features like edges
which are for example due to geometry or texture edges.
In this sense we choose a middle ground between using
only singular feature points and using all pixels. Depth
information is an important requirement for 3D SLAM and
as the eDVS is not a depth-sensor we will first augment pixel
events with depth information by combining the eDVS with
a separate, active depth-sensing camera like the PrimseSense
sensor. This results in a sparse stream of 3D point events in
camera coordinates which directly give the 3D position of
salient edges in the 3D scene.

The paradigm of event-based vision requires the develop-
ment of new methods and we propose a novel event-based
3D SLAM algorithm (EB-SLAM-3D) which works solely on
the sparse point event stream. Our algorithm uses a modified
particle filter for tracking the current position and orientation
of the camera while at the same time incrementally creating
a map of the previously unknown environment. We update
the internal belief state about location and map for every
event and are thus able to provide pose estimates with very
low latency. At the same time the computational task carried
out for every event has minimal complexity allowing very

2014 IEEE International Conference on Robotics & Automation (ICRA)
Hong Kong Convention and Exhibition Center
May 31 - June 7, 2014. Hong Kong, China

978-1-4799-3684-7/14/$31.00 ©2014 IEEE 359

Fig. 2. Top: The PrimeSense color data stream for references. Middle top: The depth stream of the PrimeSense device with depth encoded as color (red to
blue indicates near to far). Middle bottom: The event-stream provided by the eDVS sensor. Dark points indicate pixels which have fired an event. Bottom:
The fused depth and event stream produces a sparse event-stream with depth information.

fast event processing. Low latency and low computational
overhead are both important requirements for tight control
loops found in quad-copters, or for autonomous vehicles
which need to react quickly to changes in the environment.

This paper continues with a short introduction into event-
based vision in section II and in section III the concept and
calibration of the D-eDVS sensor is described. In section
IV the event-based 3D SLAM algorithm is presented and
tracking and map generation are explained in detail. The
paper is concluded with a thorough evaluation of the EB-
SLAM-3D algorithm in section V and a conclusion in section
VI.

II. EVENT-BASED VISION

Conventional camera sensors provide recorded data as en-
tire images at a fixed frequency, e.g. 30 or 60 Hz, regardless
if the image has changed since the last frame. This results
in a semi-continuous stream of highly redundant data which
requires very high bandwidth. Furthermore they suffer from
a fixed exposure time, resulting in a limited dynamic range
and increasing the difficulty for image processing in unsteady
light conditions.

Dynamic vision sensors [9] like the eDVS [8] are a novel
type of gray-scale image sensors that completely abandons
the concept of frame-based vision. All pixels of the eDVS op-
erate asynchronously and individually integrate the measured
light intensity over time. When the accumulated change for
one pixel is higher than a threshold a pixel event is generated
and inserted into the event stream. Such a pixel event consists
of the pixel location u ∈ R on the sensor, in our case it has a
resolution of 128× 128 pixel, and a timestamp with micro-
second accuracy indicating the time of occurrence of the
event. Additionally a parity bit is reported which indicates if
illumination has increased or decreased.

Typical image locations where events are generated are
edges or other salient features with a high local contrast.
Events only occur for moving entities in the scene or upon

ego-motion of the sensor and for a static scene and mo-
tionless sensor no events, except noise events, are generated
and no data will be transmitted. An important property
of dynamic vision sensors is the fact that the number of
generated events only depends on the moved distance and not
on the velocity, but faster motions generate a higher number
of events per seconds as the same distance is traversed
in a smaller time. This counteracts problematic blurring
in classic frame-based sensors, as all events necessary to
understand a motion are detected and reported. This is
a very beneficial property for example for accurate high-
speed tracking as dynamic vision sensors are capable of
producing up to one million events per second which is
enough for very fast motions. A conventional frame-based
sensor would need to operate with several hundred frames
per second to produce similar results. As a summary, the
eDVS directly creates a sparse stream of dynamic changes
in hardware requiring no further software preprocessing to
remove redundant information.

Fig. 2 shows an example of a stream of events generated
by an eDVS in comparison to a classic frame-based camera
like the PrimeSense RGB-D sensor. For visualization and
printing several events are displayed together in one frame
as if they have occurred at the same time, while in reality
they occur one after the other and form a continuous stream
of pixel events.

III. THE D-EDVS SENSOR

Raw events from an eDVS are only projected pixel lo-
cations which lack information about the exact world co-
ordinate of the point which generated the event. The task
of augmenting events with their respective depth is a non-
trivial problem. One approach to acquire depth information
is a fully event-based stereo vision set-up consisting of two
eDVS sensors. While such a solution has been demonstrated
[10], the capabilities are currently rather limited and not yet
sufficient for deploying a 3D SLAM method. In this work we

360

Fig. 3. The D-eDVS sensor (left) is a combination of an Asus Xtion RGB-
D sensor (black casing) and a eDVS (white casing). The eDVS (right) is
displayed with various accessories like WiFi module and lens mount, and
a coin for size comparison.

chose to provide depth information by a dedicated depth sen-
sor like the PrimeSense RGB-D sensor. Our implementation
combines an eDVS with an Asus Xtion Pro Live (see fig. 3)
running at a resolution of 320x240 pixels at 60 Hz. This
implies a compromise between a frame-based and an event-
based approach as depth information is not available between
depth frames at the very moment events are generated. Depth
values could be interpolated or extrapolated, but this would
require additional computation power and special care to
handle edges correctly. We chose a simpler approach by
using the smallest depth value from the latest frame in a one-
pixel neighborhood which works quite well for most cases.
Thus events have high temporal resolution but low spatial
resolution for motions parallel to the camera plane, and the
opposite is true for motions orthogonal to the camera plane.

The main task of fusing the information of the eDVS and
PrimeSense is the calibration of pixel correspondences, as
we need to find the correct depth value for each event pixel
location. In the following both cameras will be modeled
as regular pinhole cameras K(f, c) where f is the focal
length and c ∈ R2 the center of projection. The mapping
of world points x ∈ R3 to image points u ∈ R2 is defined as
u = K Tx where T is a transformation matrix representing
a rotation and a translation. For real lenses it is necessary to
also account for radial distortion. A simple distortion model
like

L(u) = u (1 + κ1r + κ2r
2) , r = ‖u‖ (1)

with κ1, κ2 distortion parameters is sufficient for the eDVS
and in case of the PrimeSense sensor the distortion is already
compensated well enough in hardware.

Normally it is only possible to back-project image points
to rays, but if depth information is available the inverse of the
projection is well-defined. Thus in case of the depth sensor,
we can compute x = T−1K−1

d ud of depth image points ud
to world points where Kd resp. Ke is the calibration matrix
for the depth resp. event-based sensor. Subsequently we can
compute corresponding eDVS image coordinates ue as

ue = L−1(Ke T K−1
d ud) . (2)

This allows to establish a relation between the depth sensor
and corresponding pixel locations on the event-based sensor.

To compute the internal camera parameters for Ke and Kd

and the relative transformation matrix T, we record a set of
corresponding pixel locations on both sensors and find the

minimum of the least-square problem

argmin
N∑
i=1

∥∥ue,i − L−1(Ke T K−1
d uk,i)

∥∥2 (3)

for the parameters fe, ce, κ1, κ2 and rotation and translation
of T. The internal parameters of the PrimeSense device are
known and do not need to be optimized. For our problem
we solve eq. 3 by using local optimization as good initial
values are available.

To find the necessary pixel correspondences we use a
diode which emits pulses of light with a fixed and known
frequency. This allows easy detection of the position of the
diode in the event-based data stream by using frequency
filtering. We reject all events at pixel locations where the time
since the last event does not match the pulsing frequency
(see fig. 4). On the other hand, the position of the diode
needs to be detected in the depth image. Here we use built-
in registration between color and depth images to be able to
work with the color image instead of the depth image. We
use the OpenCV library to detect a checkerboard in which
the diode has been placed in the middle of the board (see
fig. 4).

With the calibrated camera model it is possible to trans-
form every pixel of the depth image to the corresponding
pixel location in the event-based image. However to aug-
ment events with depth information the inverse operation is
required which is a conceptually more difficult problem. We
solve it by updating a 128× 128 pixel depth-map for every
new depth-frame which represents the current mapped depth
values of the scene as seen by the eDVS sensor. For each new
event we perform a look-up in the depth map and search a
one pixel neighborhood for the smallest depth value which
is is then used as event depth.

The bottom row in fig. 2 shows an example of a depth
augmented event stream. This stream will be the only input
used for the proposed event-based 3D SLAM – the dense
depth or color image is not used any further.

IV. EVENT-BASED 3D SLAM

As the mathematical foundation for event-based 3D SLAM
we use a dynamic Bayesian network and the Condensa-
tion particle filter algorithm [11]. In the dynamic Bayesian
network used by the Condensation algorithm the current
system state is modeled as a temporal random variable Xk

Fig. 4. To get corresponding points for camera calibration we track the
position of a pulsed diode in both data streams by detecting a checkerboard
in the color image (left) and by using a frequency filter on events (right).
Only events which occur with the pulsing frequency of 100 Hz of our diode
are used for the position estimate (blue) and other events (red) are rejected.

361

Fig. 5. Left: The event-based 3D map M used by our algorithm for tracking. Black color indicates a high probability for event-generation and thus a
high score for particle evaluation. Middle: A mesh generated from the voxel-based map used by KinFu for comparison. Right: Color image for reference.

which is inferred using only the current measurement Zk.
The probabilistic density is realized by a set of N particles
(pi, si) where each represents a possible system state pi
together with a ”score” si ∈ R+ indicating how well it
represents the latest observed measurement. Particles for the
next frame are selected based on this score, this step is called
”resampling”, and the procedure is iterated. In our case the
system state is the special Euclidean group representing the
current pose pi = (ti, qi) ∈ SE(3) of the camera, i.e. its
position ti ∈ R3 and its orientation qi ∈ SO(3). Normally
the Markov assumption is used which states that only the last
measurement Zk has to be considered instead of the whole
history of measurements Zk = (Z1, . . . , Zk). This leads to:

P (Xk|Zk) ∝ P (Zk|Xk)

∫
P (Xk|Xt�1)P (Xt�1|Zt�1) dXt�1

(4)
Here the sensor model P (Zk|Xk) defines the probability that
a given state explains the current measurement. The motion
model P (Xk|Xt−1) describes the dynamic change in the
system and for this work no additional sensors are used, thus
the motion model is simply a random diffusion process:

P (Xk |Xt−1 = pi) := N (pi,Σ) (5)

The Markov assumption is reasonable for frame-based
cameras as normally a complete image provides enough
evidence to give good scores to particles. For the event-
based case individual events are highly ambiguous and do
not carry enough information to rate particles. Addition-
ally the resampling operation is computationally expensive
when executed several thousand times per second. For these
reasons an incremental model is chosen where the Markov
assumption is released and the score of particles does not
only depend on the current measurement but also on the
recent past of measurements [12], [13]. For each new event
ek particle scores are updated using an exponential decay
model:

si = (1− α) si + αP (Zk = ek|Xk = pi) (6)

where the decay constant α defines the influence of the
current event compared to past events. An intuitive derivation
of α is found with α = 1 − (1 − β)

1/K which gives a
decay constant where the last K events have an influence
of β ∈ [0, 1] percent on the total score si. This change

with respect to a classical particle filter matches the event-
based nature of the data stream and adds only minimal
computational overhead.

As an additional measure to reduce the runtime of the
algorithm the resampling step is not executed for every
event but only after every K-th event. This is reasonable as
individual events carry only little information and thus the
probability density changes only little for only one event.

The map M : Z3 → R+ is modeled as a discretized
probabilistic sparse voxel grid. It is updated alternately with
the path, a concept known as Rao-Blackwellization [1], [2].
For event-based 3D SLAM each voxel in the map should
indicate the probability with which this point would generate
an event if the camera moves over it. This allows the
formulation of the sensor model as

P (Zk = ek |Xk = pi) ∝M(b 1λ (ti + qi ek)e) (7)

where bxe indicates the components of x rounded towards
the nearest integer. The constant λ ∈ R+ is the size of voxel
in world coordinates and a standard value is 0.01 m. The
number of events generated at a specific spot depends on
various factors like the amount of contrast towards the back-
ground for geometry edges, the relative change in intensity
for planar image features or the orientation of a feature
relative to the motion direction of the camera. However
a model where each voxel counts the number of events
observed at this location has proved to be sufficient. This
gives a strikingly simple iterative map update rule for every
new event:

M(b 1λ p
∗ eke) += 1 (8)

where p∗ ∈ SO(3) is the pose of the current best particle and
b·e indicates rounding to the nearest integer. Other modes to
update the map are possible, like using the best particles
weighted by their score or even using all particles. Fig. 5
shows an example of the event-based map generated by our
algorithm. It can be seen how our map only captures salient
features like geometry edges or texture features and ignores
uniform solid surfaces compared to a solid mesh generated
by other algorithms which represents all surface information.

A closer analysis of the runtime of our algorithm shows
that a large share of the computation time is spent with
particle diffusion in the motion model. Especially the ro-
tation diffusion process requires the sampling of a uniformly

362

0.0

0.1

0.2

0.3

0.4

R
M
S
E
@m
D

10 25 40 50 65 75 100 150 300

0

5

10

15

20

Particle count

R
el
at
iv
e
S
p
ee
d

0.0

0.1

0.2

0.3

0.4

R
M
S
E
@m
D

10 20 30 40 50 60 70 80 90 100

0

5

10

15

20

Percentage of events @%D
R
el
at
iv
e
S
p
ee
d

0.0

0.1

0.2

0.3

0.4

R
M
S
E
@m
D

0.005 0.01 0.015 0.02 0.035 0.05

0

1

2

3

4

5

6

7

Map voxel size @mD

R
el
at
iv
e
S
p
ee
d

0.0

0.1

0.2

0.3

0.4

R
M
S
E
@m
D

1 3 10 100 1000

0

1

2

3

4

5

Resample K

R
el
at
iv
e
S
p
ee
d

Fig. 6. Variation of parameters for our method: Number of particles (left), percentage of used events (middle left), voxel size (middle right) and number
of events until resampling (right). The top row shows the RMSE and the lower row the runtime as a factor of realtime processing speed – a factor of 2
indicates our method runs two times faster than realtime. Boxes show the range of values for the mid two quartiles of takes in the dataset, the black bar
shows the median value, whiskers have an interquartile range of 1 and individual dots show outliers.

distributed point on a sphere for the rotation axis and a
normally distributed rotation angle. For higher performance
we use the well known fact that two normal distributions
can be added by adding their variances. Thus we collect
events in mini-batches of B events, e.g. B = 3, and treat
them as one package of information. This allows to execute
normal diffusion only once per mini-batch with a standard
deviation multiplied by

√
B. Additionally a modification of

the score update rule from eq. 6 is required as the score
update processes B events at once:

si = (1− α)B si +
1− (1− α)B

B

B−1∑
j=0

P (ek+j | pi) (9)

V. EVALUATION
For evaluation we compare our algorithm against ground

truth and against two state-of-the-art algorithms: Kinect
Fusion [5] and Kerl et al. [7]. As we require event-based
data we recorded a new dataset consisting of five different
scenarios and a total of 26 takes, where each take is one
recording of length 20 to 40 seconds. Ground truth data for
our dataset is provided by the marker-based motion tracking
system OptiTrack V100:R2. Our dataset 1 is released to the
public as part of this paper and consists of the event stream,
ground truth data and full color and depth streams from
the PrimeSense device for evaluation with other algorithms.
For a comparison against KinectFusion we use the open
source KinFu implementation of the Point Cloud Library
(PCL) [14] and for Kerl et al. we use their publicly available
open source implementation. A comparison of the absolute
trajectory root-mean-square error (RMSE) of EB-SLAM-3D,
KinectFusion and Kerl et al. compared to ground truth is
shown in table I. We attribute a crucial contribution of our
low RMSE to the event-based representation of motion which
does not, like KinFu or Kerl et al., suffer from motion blur or
too fast or non-constant velocities. In scenario 4 the sensor
was moved around a large room which is a setting prone to

1http://ci.nst.ei.tum.de/EBSLAM3D/dataset/

loop-closure issues. The relatively high RMSE in scenario
4 shows that our algorithm can not fully handle this as no
global path optimizer is used.

We report results for our algorithm with two parameter
sets: A ”quality” configuration which provides a low RMSE
and is running faster than realtime, and a ”speed” configu-
ration which yields a slightly higher RMSE but runs more
than 20 times faster than required for realtime processing. We
evaluate runtime in form of a ”realtime runtime factor” which
is the quotient of the total time duration of the corresponding
take and the time required for processing all occurred events.
This is necessary as the event-rate is not constant and the
computation time thus depends on the velocity of the sensor.
All runtime durations for EB-SLAM-3D and Kerl et al. are
measured on a single-core Intel i7 1.9 GHz CPU which
consumes only 17 Watts of power and the GPU required
by KinFu is a Nvidia GTX 670. Even in the ”speed” setting
our algorithm gives very good results which demonstrates
the excellent performance of EB-SLAM-3D.

Additionally one can consider a comparison of power
consumption: The graphics card used for KinFu requires 170
Watts of power and can barely process the data in realtime,
while our algorithm runs 20 times faster than realtime with
only 17 Watts of power, effectively consuming only about
1 Watt. In terms of memory requirements, the map has by
far the biggest influence and requires around 12 to 30 MB
of RAM depending on scenario and path. Thus, our sparse
voxel grid requires significantly less memory than a dense
voxelgrid which would require 64 MB for volume with side
length 256 voxels and 512 MB for 5123 voxels. Low memory
requirements, high computational efficiency and low power
consumption make EB-SLAM-3D an excellent candidate for
autonomous robots or even embedded systems.

Additionally we analyze the influence of several param-
eters of EB-SLAM-3D on quality and runtime performance.
Fig. 6 shows the RMSE and the realtime runtime factor for
the following parameters: Number of particles N , percentage
of events used, voxel size λ and number of events until

363

TABLE I
EVALUATION OF EB-SLAM-3D, KINFU AND KERL ET AL.

Scenario Takes EB-SLAM-3D EB-SLAM-3D (quality) EB-SLAM-3D (speed) KinFu [14] Kerl et al. [7]
RAM RMSE Speed RMSE Speed RMSE Failures RMSE Speed

1: ”Table 1” 2 25 MB 3.1 cm 2.0 x 4.0 cm 20 x N/A 2 7.7 cm 0.23 x
2: ”Sideboard” 4 14 MB 4.0 cm 2.2 x 5.2 cm 23 x 4.3 cm 1 7.2 cm 0.23 x
3: ”Table 2” 8 27 MB 4.9 cm 1.4 x 9.1 cm 16 x 16.5 cm 3 8.9 cm 0.28 x
4: ”Room” 8 21 MB 13.4 cm 2.5 x 13.3 cm 27 x 28.8 cm 6 12.2 cm 0.23 x
5: ”People” 4 15 MB 6.1 cm 2.2 x 7.0 cm 24 x 12.4 cm 3 4.5 cm 0.24 x

resampling K. The number of particles used in the particle
filter have a direct linear influence on the runtime of the
algorithm and our algorithm operates reliable even with low
numbers of up to 40 particles. By varying the percentage
of events a certain share of events is completely ignored
and theses events are neither used for score update nor for
map update. Reducing the number of used events makes
the algorithm more unstable, but at the same time faster
as no processing is required for ignored events. Evaluation
shows that our algorithm works reliable with up to only
50% of events which inturn results in half the processing
time. The voxel size defines the coarseness of our voxel grid
and indicates the size length of a cubic voxel. The voxel
size has mainly an influence on the memory requirements
and reported memory values in table I are for λ = 0.02,
the default value used in the ”fast” parameter set. The last
analyzed parameter in fig. 6 is K, the number of events
until resampling. A value of 1 corresponds to a classical
particle filter and evaluation shows that this is not a good
choice for event-based sensors. This justifies the usage of the
exponential decay model in eq. 6. Particle selection needs to
consider at least several events for successful tracking and
low runtime.

VI. CONCLUSIONS

The combination of dynamic vision sensors and RGB-D
sensors is a promising opportunity for a new type of visual
processing. The pre-processing provided by the hardware
generates a continuous, sparse stream of 3D points events
which captures only dynamic and salient information. The
proposed event-based 3D SLAM algorithm is a strikingly
simple algorithm which can produce excellent results twenty
times faster than realtime without using special hardware
like a GPU. Our algorithm is therefore especially suitable
for small robots, flying robots and high-speed applications.
As possible for future work we see the usage of a global
optimizer to handle loop closure problems, and the augmen-
tation of our map with sparse pieces of surface information
to better predict possible collisions with scene geometry.

REFERENCES

[1] A. Doucet, J. de Freitas, K. Murphy, and S. Russel, “Rao-
blackwellized partcile filtering for dynamic bayesian networks,” in
Proc. of the Conference on Uncertainty in Artificial Intelligence (UAI),
2000, pp. 176–183.

[2] G. Grisetti, C. Stachniss, and B. Wolfgang, “Improved techniques for
grid mapping with rao-blackwellized particle filters,” IEEE Transac-
tions on Robotics (T-RO), vol. 23, pp. 34–46, 2007.

[3] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “Fastslam:
A factored solution to the simultaneous localization and mapping
problem,” in AAAI/IAAI, 2002, pp. 593–598.

[4] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore,
A. Kipman, and A. Blake, “Real-time human pose recognition in
parts from single depth images,” IEEE Conference on Computer
Vision and Pattern Recognition, 2011. [Online]. Available: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5995316

[5] R. A. Newcombe, D. Molyneaux, D. Kim, A. J. Davison, J. Shotton,
S. Hodges, and A. Fitzgibbon, “Kinectfusion: Real-time dense surface
mapping and tracking,” in Mixed and Augmented Reality (ISMAR),
2011 10th IEEE International Symposium on. IEEE, 2011, pp. 127–
136.

[6] E. Bylow, J. Sturm, C. Kerl, F. Kahl, and D. Cremers, “Real-
time camera tracking and 3d reconstruction using signed distance
functions,” in Robotics: Science and Systems Conference (RSS), June
2013.

[7] C. Kerl, J. Sturm, and D. Cremers, “Dense visual slam for rgb-
d cameras,” in Proc. of the Int. Conf. on Intelligent Robot Systems
(IROS), 2013.

[8] J. Conradt, R. Berner, M. Cook, and T. Delbruck, “An embedded
aer dynamic vision sensor for low-latency pole balancing,” in IEEE
Workshop on Embedded Computer Vision, 2009.

[9] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128x128 120db 15us
latency asynchronous temporal contrast vision sensor,” IEEE Journal
of Solid State Circuits, vol. 43, no. 2, pp. 566–576, 2007.

[10] P. Rogister, R. Benosman, S.-H. Ieng, P. Lichtsteiner, and T. Delbruck,
“Asynchronous event-based binocular stereo matching,” Neural Net-
works and Learning Systems, IEEE Transactions on, vol. 23, no. 2,
pp. 347–353, 2012.

[11] M. Isard and A. Blake, “Condensation conditional density propagation
for visual tracking,” International journal of computer vision,
vol. 29, no. 1, pp. 5–28, 1998. [Online]. Available: http:
//scholar.google.de/scholar?hl=en\&q=Condensation+isard

[12] D. Weikersdorfer and J. Conradt, “Event-based particle filtering for
robot self-localization,” in IEEE International Conference on Robotics
and Biomimetics, 2012, pp. 866 – 870.

[13] D. Weikersdorfer, R. Hoffmann, and J. Conradt, “Simultaneous local-
ization and mapping for event-based vision systems,” in International
Conference on Computer Vision Systems, 2013.

[14] Kinectfusion implementation in the point cloud library (pcl). [Online].
Available: http://svn.pointclouds.org/pcl/trunk/.

364

