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Abstract

We propose a polynomial-time algorithm for segmenta-
tion and (open) boundary estimation which takes into ac-
count a series of user-specified attraction points. In con-
trast to existing algorithms which impose that the segment-
ing boundary passes through these points, our algorithm al-
lows an imprecision in the user input. An energy minimiza-
tion approach imposes that the segmenting boundary opti-
mally passes along high-contrast edges in such a way that
at least one point along the computed boundary is as close
as possible to any given attraction point. In this sense, the
user input can be seen as a soft constraint. We prove that the
resulting optimization problem is NP-hard. We prove that in
the case that the user attraction points are ordered, then op-
timal solutions can be computed in polynomial time using a
shortest path formulation in an appropriately constructed
four-dimensional graph spanned by the image pixels, a set
of tangent angles and the user attraction points. Experi-
mental results on a variety of images demonstrate that good
quality segmentations can be obtained with a few imprecise
user clicks.

1. Introduction
1.1. Interactive Image Segmentation

Despite numerous advances on purely low-level image
segmentation, there is a consensus among researchers that
purely low-level segmentation schemes are often of little
practical use. Without a user specifying what objects in a
given scene he is interested in, a computer has little chance
of distinguishing a good from a bad segmentation. Most
of the commonly used segmentation schemes therefore in-
clude some kind of user input biasing the respective low-
level algorithm in some way toward the desired solution.
Among the more popular examples are interactive graph cut
algorithms [2, 9] or the Random Walker [7, 11] which al-
low the user to click points which are then labeled object or
background. Similar interactive segmentation schemes us-
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Figure 1. Segmentation with soft user input: Given an input
image and a user-specified set of attraction points, the proposed
polynomial-time algorithm determines a boundary which opti-
mally passes through areas of strong intensity gradient while pre-
serving a minimal distance to each of the attraction points.

ing regional user labels have been proposed in the context
of level set methods [4] or convex relaxation schemes [12].

In this paper we focus on a different user input where the
user specifies points which are likely to be on the desired
boundary. In contrast to the above region-based approaches,
such boundary-based methods can also be used to identify
open boundaries. To date researchers have proposed algo-
rithms which allow to find segmenting boundaries that pass
through the user-specified points [3, 5]. The main limitation
of such approaches and the reason why they have recently
been replaced by the mentioned region-labeling approaches
is that respective user points need to be placed on the bound-
ary very precisely. Any imprecision in the user labeling of
the boundary will invariably degrade the segmentation re-
sult. To alleviate this, researchers have proposed to first
move the user points to areas of high intensity gradient be-
fore computing the segmentation [8]. Such strategies are
clearly suboptimal in the sense that the optimal placement
of the user labels cannot be solved independently from the
segmentation problem.

1.2. From Hard to Soft User Input

In this work we revisit the problem of interactive image
segmentation and consider a user input which is by defini-
tion imprecise. Instead of imposing the segmenting curve to



pass through the user-specified points or heuristically mov-
ing the user points before computing a segmentation, we
formulate the interactive segmentation as a problem of en-
ergy minimization where the distance of each user-point to
the closest point on the segmenting contour is penalized.
We refer to this user input as attraction points, because each
point induces an attraction on the closest boundary point.

First we show that the resulting optimization problem is
NP-hard. Secondly, we consider the simpler case that the
user-specified points are ordered. We show that in that case
optimal segmentations can be computed in polynomial time
as minimal paths in the three-dimensional graph spanned
by the image pixels and the user-specified attraction points.
Lastly we propose a generalization of this approach to im-
pose optimal curvature regularity of the computed segmen-
tations by computing shortest paths through respective four-
dimensional graphs spanned by the attraction points, the im-
age pixels and the local tangent angle.

Figure 1 provides an example of the proposed method:
Given an input image and a user-specified list of attraction
points, the algorithm determines a contour in the image,
which optimally passes through areas of high intensity gra-
dient while maintaining a minimal distance to the attraction
points.

2. Curve Estimation with Imprecise User Input

Given an image and a set of attraction points from the
user, we want to fit a curve into the image that follows the
edges of the image, has a small curvature and simultane-
ously passes through the vicinity of the given points.

Let I : Ω → R be the image defined on some domain
Ω ⊂ R2, let X1, . . . ,XK ∈ Ω be a set of K attraction
points, and let C be the set of all closed curves in Ω. Then
we search for a curve C ∈ C,C : [0,L(C)] → Ω (param-
eterized by arc-length) of length L(C) that minimizes an
energy function E : C → R consisting of three terms: The
first is an attraction to image edges, realized by some edge
detector g : Ω → R

+ which assigns low cost to high image
gradients. The second term penalizes the curvature of the
curve and hence favors smooth curves.

The third term is devoted to the attraction points. Unlike
previous works, where the curve must pass directly through
the input points as a hard constraint, we allow the curve to
pass in some distance to the input points. We define the
distance as the minimal L2 -distance of the curve C ∈ C to
a point Xi, i ∈ {1, . . . ,K}:

d(C,Xi) = min
s∈[0,L(C)]

‖Xi −C(s)‖. (1)

Because long distances are penalized in the energy func-
tion, the curve is pulled to each of the attraction points as if
a rubber band connected the curve and the respective point.

Adding weighting factors α, λ ∈ R+
0 and denoting the cur-

vature at C(s) as κC(s) the energy function is defined as

E(C)=α

K∑
i=1

d(C,Xi)+

L(C)∫
0

[
g(C(s))+λ|κC(s)|2

]
ds. (2)

Unfortunately, in its current form the problem cannot be
solved efficiently.

Proposition 1. The discrete optimization problem corre-
sponding to functional (2) is NP-hard.

Proof. For the specific case of λ = 0 and g(y) = 1 and
α → ∞ (i.e. α sufficiently large), the problem amounts
to finding the shortest path connecting all attractor points.
This problem is known as the Euclidean Traveling Salesman
Problem and was shown to be NP-hard [6].

Fortunately it turns out that the problem becomes solv-
able if we impose the set of attraction points to be ordered.

Before we formalize the order constraint, we first note
that minimizing (2) can be rewritten as minimizing an
equivalent functional over the contour C and real numbers
s1, . . . , sK ∈ [0,L(C)]:

E(C, s1, . . . , sK) = (3)

α

K∑
i=1

‖C(si)−Xi‖+

L(C)∫
0

[
g(C(s)) + λ|κC(s)|2

]
ds

The order is now imposed by enforcing the constraints

si < sj , ∀i < j . (4)

Proposition 2. The minimum of function (3) subject to con-
straint (4) can be found in polynomial time.

Proof: In Sections 3, 4 and 5 we will show that this
problem reduces indeed to a search for a shortest path in a
4D graph. With Dijkstra’s algorithm this path can be found
in polynomial time. �

3. The Discrete Problem: The Search for a
Shortest Path in a Layered Graph

We will globally solve the arising problem in a discrete
setting, i.e. we only consider polygonal curves that are com-
posed out of a given set of line segments. In the discretiza-
tion we embed the image I and the user points X1, . . . ,XK

into a directed graph G = (V, E). We add two special nodes
r, t to this graph and add weights w : E → R

+ onto the
edges. To solve problem (3) subject to the constraint (4) we
compute a shortest path from the root node r to target node t
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Figure 2. The proposed algorithm determines shortest paths
through a 3D graph made of several copies of the image plane.
The graph includes two types of edges: (left) Edges within each
copy of the image plane favoring paths along strong gradient
edges. Weights are set according to the edge detector function g.
(right) Edges between copies of the image favor transitions in the
vicinity of the attraction points. Edge weights are set according
to the distance between input point X and pixel v. The attraction
point defines circles on the plane where the transition edges have
equal costs.

in the weighted graph (G, w). The shortest path corresponds
to the minimum curve we are looking for.

To illustrate the principle of the graph construction, for
the present we make two simplifications. First, we simplify
the energy function by removing the curvature term. We
will deal with the curvature term in Section 4. Second, we
search only for open curves, starting and ending at two ar-
bitrary points in the image. We will close the curves in Sec-
tion 5. The minimization problem now is

min
C∈C,s1,...,sK∈[0,L(C)]

E(C, s1, . . . , sK) =

α
K∑

i=1

‖C(si)−Xi‖ +
L(C)∫
0

g(C(s))ds

s.t. si < sj , ∀i < j . (5)

We embed the image and input points into a 3D graph.
The graph consists of K + 1 two-dimensional layers each
representing a copy of the image. Inside the layers the graph
mirrors the pixels, their neighborhood and the costs of the
edge detector g. Between two layers there are transition
edges which indicate distance costs of a path and an input
point.

In each layer the pixels of the image correspond one-to-
one to nodes. In order to add edges between nodes, we first
have to define a connectivity between pixels. A pixel is con-
nected to all pixels in a certain neighborhood. For example
we choose the popular 8- and 16-neighborhood in our ex-
periments. If two pixels p and q are neighbors, we write
(p,q) ∈ N and add a directed edge e = (vp,vq) between
its corresponding nodes vp and vq. This is illustrated on the

Figure 3. The Optimal Curve as a shortest path in a layered
graph. For each attraction point a copy of the image is added to the
graph. The part of the shortest path that belongs to the copy gives
the part of the optimal contour between the respective attraction
point and the next one. In this example start and end points are
fixed.

left in Figure 2. Because the curve is represented by a path
through this graph we define the weight of e = (vp,vq) as
w((vp,vq)) := 1

2‖p− q‖(g(p) + g(q)).
For each input point Xi we add an additional layer as

a copy of the image to the graph. Thus we have K +
1 layers and each pixel p corresponds to K + 1 nodes
vp,1, . . . ,vp,K+1. Directed connections between layers i
and i+ 1 are made. So for each node vp,i, 1 ≤ i ≤ K there
is an edge e = (vp,i,vp,i+1) with weightw(e) = ‖p−Xi‖
in the graph. This defines circle-shaped iso lines around Xi

of equal weight on the transition edges. This is illustrated
in Figure 2 on the right.

A path from vp,i to vq,i+1 crosses the border between
the layers i and i + 1 exactly once. Furthermore a short-
est path chooses the transition between layers exactly at the
point where the distance from the path to input point Xi is
minimum.

Edges of zero weight are added from the start node r to
each node in layer 1 and from each node in layer K + 1 to
target node t. If P is the set of pixels the set of nodes can
be specified by

V = {r, t} ∪ {vp,i | p ∈ P ∧ 1 ≤ i ≤ K + 1} , (6)

and the set of edges by

E = {(r,vp,1) | p ∈ P} (7)
∪{(vp,K+1, t) | p ∈ P}
∪{(vp,i,vq,i) | (p,q) ∈ N ∧ 1 ≤ i ≤ K + 1}
∪ {(vp,i,vp,i+1) | p ∈ P ∧ 1 ≤ i ≤ K} .
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Figure 4. Curvature regularity keeps the curve smooth.

It is easy to see that a path from r to t passes all layers
and makes exactly K transitions. Furthermore a shortest
path from r to t directly corresponds to a minimum solution
of (5).

4. Including Curvature Regularity
The presentation so far assumed that there is no curvature

term. However, as Figure 4 demonstrates curvature terms
are important to get smooth curves. Without curvature the
curves get peaked to reduce the distance to the input points.

To include dependences on curvature, the graph has to
be altered. The problem is that the weights are defined on
edges, but so far edges corresponded to line segments. And
straight line segments always have curvature 0.

To accurately reflect the curvature of the contour, one
needs to consider pairs of line segments as proposed in [1,
10]. The arising graph is again composed of layers. Now a
layer contains a node for each line segment. Edges (within
a layer) then correspond to pairs of line segments. Hence,
their weights can now reflect curvature cost.

Formally, the node set of the graph is now given as

V = {r, t} ∪ {vp,q,i | (p,q) ∈ N ∧ 1 ≤ i ≤ K + 1}

Edges that represent a part of the contour now connect a
pair (p,q) ∈ N of neighboring pixels with an adjacent pair
(q, s) ∈ N . Again, such an edge is present in all layers i.
The set of all edges is now

E = {(r,vp,q,1) | (p,q) ∈ N} (8)
∪{(vp,q,K+1, t) | (p,q) ∈ N}
∪{(vp,q,i,vq,s,i) | (p,q) ∈ N ∧ (q, s) ∈ N

∧1 ≤ i ≤ K + 1}
∪ {(vp,q,i,vp,q,i+1) | (p,q) ∈ N ∧ 1 ≤ i ≤ K}.

The edge weights on inter-layer edges do not change, but
we have to add the curvature term to the intra-layer edge
weights. We set the weight of edge (vp,q,i,vq,s,i) to

w(vp,q,i,vq,s,i) := 1
2‖p−q‖(g(p)+g(q))+λ|κ(p, q, s)|2,

where κ(p, q, s) is the curvature between line segments
(p, q) and (q, s).

The arising graphs can get quite big. To reduce the mem-
ory consumption we revert to an implicit graph representa-
tion. This is possible since in Dijkstra’s method one evolves
the distance labels of nodes. The edges of the graph, to-
gether with their weights, can hence be computed on-the-fly
whenever they are needed.

5. Handling Closed Curves
The described formalism is easily extended to handle the

case of closed contours: closed contours can be represented
as open contours where the start point equals the end point:

C(0) = C(L(C)) .

To ensure this constraint, the above procedure needs to be
modified. Here we assume that we know the start and end
point and call it p = C(0) ∈ P . The arising optimization
problem can be handled by removing some edges from the
above described graph. These are edges that either leave the
node r or enter the node t.

The only edges that now leave node r end in nodes of
the form vq,p,1,q ∈ P, (q,p) ∈ N . Likewise, the only
edges that enter t start in nodes of the form vq,p,K+1,q ∈
P, (q,p) ∈ N . Using this construction it is indeed assured
that the curve starts and ends in p.

6. Experiments
We now demonstrate a number of interesting properties

of the proposed method on images from the well-known
Berkeley Image Database. For better visibility of segmen-
tation results, the image intensities have been slightly re-
duced.

In all experiments we use the edge detector function

g(x) =
1

1 + |∇R(x)|+ |∇G(x)|+ |∇B(x)|
,

where R,G,B denote the color channels of the images.
Figure 7 demonstrates that the attraction points need not

lie on the boundary, since they only impose a soft constraint
to bias the curve in a certain direction.

Finally Figure 8 provides a comparison of popular meth-
ods for interactive segmentation showing that we can obtain
comparable results to graph cuts [2] and TVSeg [12] with
very few user clicks.



Figure 7. The proposed method reliably extracts objects despite the imprecision of the user input.

proposed shortest path approach graph cut [2] TV Seg [12]

Figure 8. Even with very few input points the proposed method outperforms region-based methods.

The improvement over region-based approaches be-
comes more apparent if objects are not characterized by
their color histograms. Figure 5 shows that with very few
clicks we can compute high-quality segmentations. In con-
trast to segmentation approaches like graph cuts the pro-
posed algorithm supports both open and closed curves.

Lastly, Figure 6 demonstrates how important the han-
dling of imprecise input points is: If one connects the points
in a strict manner the results are far from satisfactory.

7. Conclusion

We proposed an efficient algorithm to optimally integrate
imprecise user input in tasks of boundary estimation and
image segmentation. The key idea is to introduce a func-
tional that contains a distance term penalizing the minimal
distance of each of the input points to the curve. We showed
that the general problem is NP-hard, but that when an order
of the points is given, the functional can be optimized glob-
ally in polynomial time. This is achieved by computing the
shortest path in a layered graph, where each layer represents
a part of the optimal contour.

Experimental results on numerous real-world images
demonstrate that this soft user input substantially outper-
forms hard user input. With very few user clicks, we can

generate segmentation results which are competitive with
state-of-the-art segmentation schemes like graph cuts or
TVSeg.
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