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Abstract

We propose a novel method for computing a geometri-
cally consistent and spatially dense matching between two
3D shapes. Rather than mapping points to points we match
infinitesimal surface patches while preserving the geomet-
ric structures. In this spirit we consider matchings as dif-
feomorphisms between the objects’ surfaces which are by
definition geometrically consistent. Based on the observa-
tion that such diffeomorphisms can be represented as closed
and continuous surfaces in the product space of the two
shapes we are led to a minimal surface problem in this prod-
uct space. The proposed discrete formulation describes the
search space with linear constraints. Computationally, our
approach leads to a binary linear program whose relaxed
version can be solved efficiently in a globally optimal man-
ner. As cost function for matching, we consider a thin shell
energy, measuring the physical energy necessary to deform
one shape into the other. Experimental results demonstrate
that the proposed LP relaxation allows to compute high-
quality matchings which reliably put into correspondence
articulated 3D shapes. Moreover a quantitative evaluation
shows improvements over existing works.

1. Introduction

An increasing number of digitized three-dimensional
objects has become available over the last years due to
the technical progress in acquisition hardware like laser
scanners or medical imaging devices. Such objects origi-
nate from a variety of different domains including biology,
medicine, industrial design or computer animation. This
rapid growth in stored data brings about the need for re-
liable algorithms to organize this data. One of the cor-
nerstone problems in this context is the matching problem:
Given two three-dimensional objects, find a meaningful cor-
respondence between the object’s surfaces. To date there is
no efficient and optimal algorithm for this problem.

In this work, we propose a novel framework for finding

Figure 1. We propose to cast the dense elastic matching of surfaces
in 3D as a codimension-two minimal surface problem which aims
at minimizing the distortion when transforming one shape into the
other. We show that a consistent discretization of this minimal
surface problem gives rise to an integer linear program. By means
of LP relaxation we can compute near-optimal matchings such as
the one shown above. These matchings are dense triangle-wise
matchings. (For visualization we combined triangles to patches
and colored them consistently with their corresponding patch.)

an optimal geometrically consistent matching between two
surfaces. We formulate shape matching as a minimal sur-
face problem which allows for a linear programming dis-
cretization. This model comes with a sound physical in-
terpretation and allows to compute high-quality matching
without need for initialization.

1.1. Related Work

Interestingly, in one less dimension the matching of pla-
nar shapes can be solved by means of dynamic program-
ming in runtimes which are subcubic in the number of
points on each shape [18]. Unfortunately the concepts of
dynamic programming and Dijkstra’s algorithm do not ex-
tend to the third dimenstion where the solution is no longer
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a shortest path but a minimal closed surface in a higher-
dimensional space. Therefore existing approaches for three-
dimensional shape matching typically rely on local opti-
mization techniques. Our approach tries to overcome this
limitation by describing these closed surfaces with linear
constraints involving the boundary operator. Inspired by
Sullivan [20], the boundary operator was previously intro-
duced in the context of image segmentation by Grady [9]
and Schoenemann et al. [19].

The paradigm of the Gromov–Hausdorff framework,
proposed by Mémoli and Sapiro in [16], is to find the corre-
spondence which minimizes the geodesic distortion. Bron-
stein et al. [2] proposed an efficient method for computing
such correspondences in a coarse-to-fine strategy much akin
to optical flow algorithms.

Other approaches to shape matching employ techniques
from conformal geometry [24, 15] or Riemannian geometry
[12]. The physically motivated energy model we use in this
work is related to the works of Litke et al. [14] and of Rumpf
and Wirth [25].

All the above-mentioned methods have in common that
they use a local optimization technique to minimize a non-
convex energy. As a consequence, the quality of solutions
depends heavily on a good initialization and an appropri-
ately designed coarse-to-fine strategy. In addition, solutions
do not come with any optimality guarantees, which implies
that in principle they can be arbitrarily bad.

Recently, two methods with a more global flavor have
been proposed. On the one hand, Zeng and coworkers [27]
formulate shape matching as a graph matching problem of
third order and apply the QPBO algorithm [22]. Although
the overall approach does not guarantee globally optimal so-
lutions, it is able to detect when a proposed matching pair is
globally optimal. Two major drawbacks of this approach
are that firstly it suffers from a very high computational
complexity, considering all triples of possible matchings. In
practice it allows only the matching of a few feature points
which is then postprocessed with a local method. Secondly,
this approach lacks a continuous counterpart, as it merely
matches discrete points rather than surface elements.

On the other hand, Lipman and Daubechies [13] recently
proposed to compare surfaces of genus zero and open sur-
faces using optimal mass transport and conformal geometry.
Computationally, this amounts to solving a linear program
in n2 variables where n is the number of vertices used in
the discretization of the surfaces. The problem with this ap-
proach is that no spatial regularity is imposed on the match-
ings.

1.2. Contribution

We propose a novel formulation for the shape matching
problem based on finding an optimal surface of codimen-
sion 2 in the product of the two shape surfaces. This sur-

face minimizes the physical deformation energy needed for
deforming one shape into the other. We derive a consistent
discretization of the continuous framework and show that
the discrete minimal surface problem amounts to a linear
program. Compared to existing approaches the proposed
framework has the following advantages:

• The LP formulation is a global approach allowing to
compute matchings which are independent of initial-
ization with no postprocessing.

• The proposed method guarantees a geometrically con-
sistent matching in the sense that the surfaces are
mapped into one another in a continuous and orien-
tation preserving manner.

• We provide a discretization of the set of surface dif-
feomorphisms by means of linear constraints. This
is quite remarkable because in previous formulations
the diffeomorphism constraint is highly non-linear and
computationally very difficult [26].

• The algorithmic formulation is independent of the par-
ticular choice of deformation energy and can be ap-
plied universally. As an example, we show that one
can also incorporate local feature similarity in order to
improve performance.

• Experiments demonstrate that reliable and dense
matchings are obtained even for larger problem in-
stances with no need for postprocessing.

2. From Shape Matching to Minimal Surfaces:
The Continuous Setting

In this section we outline a shape matching model which
is based on minimizing physically motivated energies. We
then show how this problem can be translated into an equiv-
alent problem of finding a minimal codimension-two sur-
face in a four-dimensional space.

2.1. Shape Matching based on Minimizing Defor-
mation Energies

In the following, we assume that the two shapes X,Y ⊂
R3 are differentiable, oriented, closed surfaces. While most
3D shape matching approaches like to interpret a matching
just as a bijective mapping between the surface points of
these shapes, we pursue a fundamentally different approach.
The main reason is that in general, bijections do not respect
the underlying two-dimensional structure of surfaces. In
fact, there are even continuous bijections between a line and
a two-dimensional patch like the continuous Hilbert space-
filling curve [10]. Therefore, we propose to search for dif-
feomorphisms instead of bijections.

Diffeomorphisms f : X → Y are bijections for which
both, f and f−1 are differentiable. This does not only cope



with the dimensionality problem presented above, but it also
helps us to propose an energy function that is symmetric
in f and its inverse. As a result, the optimal matching f
between X and Y , also gives rise to the optimal matching
between Y and X , namely f−1 : Y → X .

In the following, we formulate the shape matching prob-
lem as an optimization problem over the set of orientation
preserving diffeomorphisms between X and Y

inff∈Diff+(X,Y )E(f) + E(f−1) (1)

where E is a suitable energy on the class of all diffeo-
morphisms between surfaces and Diff+(X,Y ) is the set of
orientation preserving diffeomorphisms between X and Y .
Note that we choose a symmetric problem formulation, pe-
nalizing at the same time deformation energy of X into Y
and of Y into X . This is necessary because usually E takes
different values on f and on f−1.

The energy functional we use is borrowed from elasticity
theory in physics [3]. Interpret the surfaces X and Y as
“thin shells”. Now we try to find the deformation of X into
Y which requires the least stretching and bending energy.
Such models usually consist of a membrane energy Emem

and a bending energy Ebend penalizing deformations in the
first and in the second fundamental forms of the surfaces.
In this work we use the following formulation:

E(f) =

∫
X

(trgX E)2 + µ trgX (E2)︸ ︷︷ ︸
Emem

+ λ

∫
X

(HX(x)−HY (f(x))2︸ ︷︷ ︸
Ebend

(2)

where E = f∗gY − gX is the difference between the metric
tensors of X and Y , typically called the Lagrange strain
tensor, trgX (E) is the norm of this tensor (see [6]), HX and
HY denote the mean curvatures and µ and λ are parameters
which determine the elasticity and the bending property of
the material. This energy is a slightly simplified version of
Koiter’s thin shell energy [11].

2.2. Diffeomorphisms and their Graph Surfaces

Given an orientation preserving diffeomorphism f :
X → Y we obtain a surface Γ ⊂ X × Y in the Euclidean
product of X and Y by passing to the graph

Γ = {(x, f(x)) | x ∈ X} ⊂ X × Y. (3)

The surface Γ comes with two natural projections πX : Γ→
X, (x, f(x)) 7→ x and πY : Γ → Y, (x, f(x)) 7→ f(x). A
diffeomorphism is completely characterized by its graph:

Proposition 1 (graph surfaces). Let Γ be the graph of a
diffeomorphism f : X → Y . Then

(i) Γ is a differentiable, connected, closed surface in the
product space X × Y .

(ii) The projections πX and πY are both diffeomorphisms.

(iii) The two orientations which Γ naturally inherits from
X and Y coincide.

Vice versa, any surface Γ ⊂ X×Y which satisfies (i),(ii)
and (iii) is the graph of an orientation-preserving diffeo-
morphism between X and Y . We call such surfaces graph
surfaces.

The energy E(f) can be expressed as

E(f) = Ẽ(Γ) (4)

where Ẽ(Γ) = E(πY ◦ (πX)−1) + E(πX ◦ (πY )−1).
The outcome of the above discussion is that the optimiza-

tion problem (1) can be phrased as an optimization problem
over the set of surfaces in X × Y which then reads

inf Ẽ(Γ)

subject to Γ ⊂ X × Y is a graph surface
(5)

We remark that the idea of casting optimal diffeomor-
phism problems as minimal surface problems has been ap-
plied previously in the theory of nonlinear elasticity [8]. In
the setup of shape matching, it is related to the approach that
Tagare [21] proposed for the matching of 2D shapes. It was
reformulated as an orientation preserving diffeomorphism
approach in [18].

3. The Discrete Setting
In this section we develop a discrete counterpart of the

notion of graph surfaces in X × Y introduced in Section
2.2. We start in 3.1 with the definition of discrete surface
patches inX×Y . These patches will be the building blocks
for discrete graph surfaces introduced in 3.2. Finally in 3.3
we give a discrete version of the energy.

3.1. Discrete Surface Patches

Let X = (VX , EX , FX) be a triangulated oriented sur-
face mesh, consisting of a set of vertices VX , of directed
edges EX and of oriented triangles FX .

A priori, edges onX do not have a preferable orientation.
Therefore, we fix an orientation for each edge on X . Thus,
whenever two vertices a1 and a2 of X are connected by an
edge, either ( a1a2 ) ∈ EX or ( a2a1 ) = − ( a1a2 ) ∈ EX . We
extend the set of edges by degenerate edges

EX = EX ∪ {( aa ) | a ∈ VX}. (6)

By assumption, the triangular faces of X are oriented. If
the vertices a1, a2, a3 build an oriented triangle on X , then
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Figure 2. To assure a geometrically consistent, elastic matching from mesh X to mesh Y , we define a space of feasible solutions which
is spanned by a set of 45 basic matchings among triangles, edges and vertices on either mesh. Two representative matchings and their
corresponding representation in the product space X × Y are shown. Left image: The triangle (a1, a2, a3)T on surface X is matched to
triangle (b1, b2, b3)T on Y by assigning vertex ai to vertex bi. This directly corresponds to the triangle with vertices (ai, bi) in the product
graph. Right image: The triangle (a1, a2, a3)T is matched to the edge (b1, b3)T , represented here as degenerate triangle (b1, b1, b3)T .

(
a1
a2
a3

)
=
(
a2
a3
a1

)
=
(
a3
a1
a2

)
∈ FX . As for the edges, we extend

the set of triangles by degenerate triangles

FX = FX ∪
{(

a1
a2
a2

) ∣∣ a1, a2 ∈ VX , ± ( a1a2 ) ∈ EX
}
.

(7)
Notice that degenerate triangles can consist of only one or
of two vertices. The existence of these degenerate triangles
will allow stretching or compression of parts of the surface
as becomes apparent below (see also Figure 7 ).

Next, we introduce product surface triangles for two tri-
angular meshes X and Y . Define the product of X and
Y by the set of vertices V = VX × VY , the set of edges
E = EX × EY and the set of product triangles

F :=


a1, b1
a2, b2
a3, b3


∣∣∣∣∣∣∣∣∣∣

f1 =
(
a1
a2
a3

)
∈ FX ,

f2 =

(
b1
b2
b3

)
∈ FY ,

f1 or f2 non-degenerate

 (8)

The product triangles in F are the basic pieces which are
later glued to discrete graph surfaces. For shape matching,
a product triangle a1, b1

a2, b2
a3, b3

 ∈ F (9)

is interpreted as setting vertex ai ∈ VX in correspondence
with vertex bi ∈ VY .

Given two non-degenerate triangles a =
(
a1
a2
a3

)
∈ FX

and b =

(
b1
b2
b3

)
∈ FY we allow for 45 different matchings

between them: 3 orientation-preserving bijective match-
ings, 36 triangle-to-edge matchings and 6 triangle-to-vertex
matchings. These degenerate matchings allow us to han-
dle infinitesimal stretching and compression in the proposed
framework. A visualization of two of the 45 possibilities is
given in Figure 2.

3.2. Discrete Surfaces

Following Section 2 a diffeomorphism can be repre-
sented as a surface Γ ⊂ X × Y satisfying conditions (i),
(ii) and (iii). In this section we derive discrete versions of
these properties.

Definition 2. A discrete surface in X × Y is a subset Γ ⊂
F . The set of all discrete surfaces is denoted by surf(X ×
Y ).

As we have seen above, a product triangle in F can be
interpreted as matching a triangle on X to a triangle on Y .
Thus, the intuitive meaning of a discrete surface Γ ⊂ F is a
set of correspondences between triangles on X and Y . Im-
posing the discrete counterparts of (i), (ii) and (iii) on such
a discrete surface will result in a geometrically consistent,
bijective matching.

Discrete version of (i): In the following we will find a con-
dition which guarantees the continuity of our matching.

Recall that the boundary operator for triangle meshes [5]
maps triangles to their oriented boundary. We extend this
definition to the product graph G.

As for the sets EX and EY we choose arbitrary orien-
tations for each product edge e ∈ E. By means of these
orientations we define for any edge ( v1v2 ) connecting two
vertices v1, v2 ∈ V a vector in O ( v1v2 ) ∈ Z|E| whose e-th
entry is given by

O ( v1v2 )e =


1 if e = ( v1v2 )

−1 if e = ( v2v1 )

0 else.
(10)

The triangles in F naturally inherit orientations from the
triangles in FX and FY . This allows us to define the bound-
ary operator as follows.

Definition 3. The boundary operator ∂ : F → Z|E| is de-
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Figure 3. To ensure that neighboring triangles on X are matched with neighboring triangles on Y , we impose the closeness condition.
Left image (general case): The triangles (a1, a2, a3)T and (b1, b2, b3)T are matched resulting in activating f2. The boundary condition
∂Γ = 0 ensures that the matching continues with a correspondence whose triangles in X and Y are positively incident to (a1, a3)T and
(b1, b3)T respectively. This constraint is satisfied for example by triangle f1 which is visualized here. Right image (stretching): The
stretching is achieved by matching triangle (a1, a2, a3)T to edge (b3, b1)T . Again, the geometric consistency is granted by the boundary
condition evaluated on the product edges ((a2, b1), (a3, b3))T and ((a3, b3), (a1, b1))T .

fined by

∂

a1, b1
a2, b2
a3, b3

 := O

(
a1, b1
a2, b2

)
+O

(
a2, b2
a3, b3

)
+O

(
a3, b3
a1, b1

)
,

(11)
where the ai ∈ VX and bi ∈ VY form triangles on X resp.
on Y and

(
ai,bi
aj ,bj

)
is the product edge connecting the prod-

uct vertices (ai, bi) and (aj , bj).
The boundary operator is linearly extended to a map

∂ : surf(X × Y )→ Z|E|. (12)

A discrete surface Γ in X × Y is closed if ∂Γ = 0.

The closeness condition ensures that adjacent triangles
on X are in correspondence with adjacent triangles on Y
and therefore guarantees the geometric consistency (see
Figure 3).

The natural discrete version of (i) is a closed, connected
discrete surface in X × Y .

Discrete version of (ii): As in the continuous setting we can
project product triangles to the surfaces X and Y .

Definition 4. The projection πX : F → Z|FX | is defined by

πX(f) :=

{
ea if a =

(
a1
a2
a3

)
is non-deg.

(0, . . . , 0) else
(13)

for each face f =

(
a1,b1
a2,b2
a3,b3

)
∈ F . Here, ea is the vector

with 1 in the a-entry and 0 in all other entries.

We extend the projection πX linearly to a map πX :
surf(X × Y ) → Z|FX |. The projection πY : F → Z|FY |

and its linear extension πY : surf(X × Y ) → Z|FY | are
defined similarly.

Let now Γ be a discrete surface in X × Y . Then we say
that the projections of Γ to X and Y are discrete diffeomor-
phisms if and only if

πX(Γ) = (1, . . . , 1) ∈ Z|FX | and

πY (Γ) = (1, . . . , 1) ∈ Z|FY |.
(14)

This gives a discrete version of (ii).
Note that in this definition we do not ask for injectiv-

ity on the vertices set. This is necessary for modelling dis-
cretely strong compressions. However, conditions (14) en-
sure a global bijectivity property which is sufficient in our
context.

Discrete version of (iii): By definition, the set of surfaces in
X×Y only contains surface patches which are consistently
oriented. Therefore any surface in surf(X × Y ) satisfies
condition (iii).

Definition 5. Let Γ ∈ {0, 1}|F | be a discrete surface in
X × Y , represented by its indicator vector. Then Γ is a
discrete graph surface in X × Y if ∂

πX
πY

 · Γ =

0
1
1

 . (15)

3.3. Discrete Surface Energy

Now we introduce a discrete energy on the set of prod-
uct triangles in X × Y . For the membrane energy in (2)
we adopt the term proposed by Delingette [4]. Given two
triangles T1, T2 ⊂ R3, Delingette computes the stretch en-
ergy Emem(T1 → T2) necessary for deforming T1 in T2.
In our framework we associate with each product triangle

(a, b) =

(
a1,b1
a2,b2
a3,b3

)
∈ F the membrane cost

Emem(a, b) :=Emem

((
a1
a2
a3

)
→
(
b1
b2
b3

))
+

Emem

((
b1
b2
b3

)
→
(
a1
a2
a3

))
.

(16)



Figure 4. Matching two articulated shapes. The correspondences
are visualized both by connecting lines and by patch coloring.

Figure 5. The image illustrates the performance of the proposed
method on the SHREC 2011 [1] dataset.

For the bending term we proceed similarly associating with
each product triangle (a, b) the cost

Ebend(a, b) =

∫
a

(HX −HY )2 +

∫
b

(HY −HX)2. (17)

In practice we discretize the mean curvature following [17].
Next, we extend the energy linearly from discrete surface

patches to discrete surfaces in X × Y . Identify a discrete
surface with its indicator vector Γ ∈ {0, 1}|F |. Define the
vector E ∈ R|F | whose f -th entry is

Ef = Emem(f) + Ebend(f). (18)

Then the discrete energy of Γ is given by the vector product

Et · Γ. (19)

4. Linear Programming Solution
In the previous section we have introduced a discrete no-

tion of graph surfaces (15) and a discrete deformation en-

Figure 6. Matching of two different objects. While it is not well
defined what a good matching between a skirt and trousers is, it is
really remarkable how well the proposed algorithm finds a match-
ing that apparently minimizes the deformation energy.

ergy (19) for such graph surfaces. This enables us to state
the discrete version of (5) in the form of a binary linear pro-
gram:

min
Γ∈{0,1}|F |

Et · Γ

subject to
(

∂
πX
πY

)
· Γ =

(
0
1
1

)
.

(20)

For solving (20), we relax the binary constraints to Γ ∈
[0, 1]|F |. This relaxed version can be solved globally op-
timally in polynomial time. We employed an alternating
direction method developed by Eckstein et al. [7]. This al-
gorithm is paralelizable which allowed us an efficient im-
plementation on the GPU.

Since the constraint matrix of the relaxed problem is not
totally unimodular, we are not guaranteed an integral so-
lution. A simple thresholding scheme would destroy the
geometric consistency of the solution. Therefore, for ob-
taining an integral solution we successively fix the variable
with maximum value to 1.

5. Experimental Results

We have introduced a framework for computing geomet-
rically consistent elastic matchings between 3D shapes us-
ing LP relaxation. We evaluated the proposed method on
several shapes taken from the SHREC 2011 benchmark [1]
and a dataset by Vlasic et al. [23].

5.1. Matching of Articulated Shapes

A common problem in shape matching is that the same
shape may undergo substantial deformation and articula-
tion. Nevertheless, one would like to reliably identify cor-
responding structures. Figures 4 and 8 show the matchings
computed for models of different articulations. Although



Elastic matching of planar shapes [18] Proposed elastic matching of 3D shapes

Figure 7. While the elastic matching of planar shapes can be solved in polynomial time as a minimal cyclic path on a torus [18], the
framework developed in this paper allows to compute an elastic matching of 3D shapes via linear programming relaxation. In both cases,
missing parts can be accounted for due to the elasticity.

Figure 8. The images show a matching between the leftmost and rightmost models taken from the SHREC 2011 benchmark [1] by linearly
interpolating between the triangle correspondences. This transition illustrates the geometric consistency property of the proposed method:
At any time during the interpolation the model is a closed triangle mesh.

the movement of arms and legs deform the shapes drasti-
cally the proposed method identifies the correct matchings.
Since the proposed framework enforces geometric consis-
tency matching errors occur only on a small spatial scale.
In contrast to methods without spatial regularization strong
outliers such as single points matched to the wrong leg do
not arise.

5.2. Partial Matching

The ability of the proposed method to model stretching
and shrinking also allows to match shapes where large parts
of the geometry are missing. The right image of Figure 7
demonstrates this ability experimentally. The proposed al-
gorithm matches the remaining parts of a human body miss-
ing a hand, a leg and the head to its original shape.

5.3. Quantitative Evaluation

We quantitatively evaluated the proposed method on 30
pairs of models from Vlasic et al. [23] by computing the
mean geodesic error. One of the matchings is visualized in
Figure 1. Computating each of the matchings took about 2

hours. The results were compared to matchings generated
by the GMDS method of Bronstein et al. [2] using their
code.

Given two meshes X,Y and the available ground truth
correspondences (xi, yi) we defined the mean geodesic er-
ror of a matching ϕ : X → Y by 1

N

∑
i d(ϕ(xi), yi), where

d is the normalized geodesic distance on the manifold of
mesh Y .

The mean geodesic error produced by GMDS (using
their code) was 0.079 while the proposed method had a
mean geodesic error of 0.03.

Of course, this experiment does not pretend to be an ex-
haustive comparison against all methods in the literature.
Nonetheless it shows, that the proposed method can com-
pete with state-of-art matching algorithms in terms of accu-
racy while guaranteeing geometrically consistent solutions.

6. Conclusion

We proposed a new framework for finding a geometri-
cally consistent matching of 3D shapes which minimizes an



elastic deformation energy. The approach is based on find-
ing discrete minimal surfaces which set infinitesimal sur-
face patches on both shapes into correspondence. In that
sense the framework manages to generalize the planar shape
matching to the more complex 3D shape matching. While
the planar shape matching finds correspondences between
infinitesimal line elements of two contours, the 3D shape
matching sets infinitesimal surface elements in correspon-
dence. We showed that a consistent discretization leads to
an integer linear program. As a consequence, we can com-
pute high-quality solutions to the matching problem which
are independent of initialization by means of LP relaxation.
Experimental results confirm that the proposed method gen-
erates reliable dense correspondences for a variety of artic-
ulated real-world shapes.
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processing approach to surface matching. In Symposium on
Geometry Processing, pages 207–216, 2005. 2

[15] L. Lui, T. Wong, P. Thompson, T. Chan, X. Gu, and S. Yau.
Shape-based diffeomorphic registration on hippocampal sur-
faces using beltrami holomorphic flow. In MICCAI (2),
pages 323–330, 2010. 2

[16] F. Mémoli and G. Sapiro. A theoretical and computational
framework for isometry invariant recognition of point cloud
data. Foundations of Computational Mathematics, 5(3):313–
347, 2005. 2

[17] M. Meyer, M. Desbrun, P. Schröder, and A. Barr. Discrete
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