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1 Introduction

In this supplementary material, we provide additional technical detail and results
for our paper. Firstly, we give details on the architecture of StackNet. In Sec-
tion 2, we provide additional results of our monocular depth estimation network
on the test split [3] of KITTI Raw [6]. We also give depth estimation results on
the Cityscapes dataset [2] as well as the Make3D dataset [10] using our model
trained on KITTI to demonstrate generalization abilities of our model. In Sec-
tion 3, we provide more results of DVSO on the KITTI odometry benchmark.
Finally, we demonstrate generalization abilities of DVSO trained on KITTI to
the Cityscapes Frankfurt sequence.

2 Monocular Depth Estimation

2.1 Detailed Architecture of StackNet

The detailed architecture of StackNet is shown in Figure 1. The upper part
of Figure 1 describes the architecture of SimpleNet and the lower part describes
ResidualNet. The cubes are feature maps and they are independent between
SimpleNet and ResidualNet. The colorized cubes indicate feature maps that are
concatenated in skip connections from encoder with corresponding maps in the
decoder layers. The symbols above the arrows represent the operations on the
input layer such as convolution, residual block, max-pooling, up-sampling and
activation function. Note that multiple operations are performed from top to
bottom. Two kinds of residual blocks with bottleneck design are used in our
architecture. One performs an additional convolution on the shortcut due to the
feature map expansion or down-sampling with stride-2 convolution, whereas the
other block maps the shortcut directly (identity mapping).
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Fig. 1: Detailed network architecture of StackNet.
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2.2 KITTI

Dataset Schedule and Parameter Tuning The dataset schedule is inspired
by [8] where the authors propose that training the network firstly on the rela-
tively easier dataset and then the difficult dataset delivers better performance
than the other schedules. The two splits of our training set, Ko and Kr also have
similar property. The images in Ko are from KITTI odometry benchmark which
contains the scenarios where less objects, e.g., pedestrians and cars, appear,
whereas the images in Kr are from more complicated scenarios. Therefore, we
firstly train our network on Ko and then Kr. As shown in Table 1 from the main
paper, the other dataset schedule delivers worse performance. Furthermore, since
only self-supervised training can be applied on Kr, the results of the network
contain many outliers in the reflectance and occlusion area. Therefore, we again
train the network on Ko without LU using less epochs to smoothen the outliers
and increase the precision with supervised learning. For the parameters to be
tuned in Equation (1) from the main paper, αu, αlr and αsmooth are referred
to [7]. For the weight αs, we tested 1, 5, 10, 20, 50 and 100 on the validation
set for which 10 performed the best. In fact, when αs is set to 10 or 20, the
scales of LU and LS are consistent when the total loss tends to converge. After-
wards, we fixed all the weights except αocc. The values 0.1, 0.01, and 0.001 are
tested for αocc and 0.01 showed the best performance. Using a hyper-parameter
optimization framework like hyperopt [1] could further improve the parameter
tuning.

Ablation Study In Table 1 we give an ablation study which demonstrates the
effectiveness of the different loss terms in Equation (1) from the main paper.

Further Results In Figure 2, we show more qualitative results of our model on
the test split on KITTI Raw proposed by Eigen et al. [3]. In comparison, we also
demonstrate the results predicted by the model of Godard et al. [7]. Note that
our model is semi-supervisedly trained on KITTI, while the model of Godard et
al [7] is self-supervisedly trained on the Cityscapes dataset as well as the KITTI
dataset. The ground truth is interpolated for better visualization. In the results
shown in Figure 2, our method provides better predictions on thin structures and
predicts less shadow effects around object contours than the other approach. On
the bottom right, our method is not able to recover the round traffic sign on
the upper right part of the image. In Figure 3, we also show the error maps
(on sparse LIDAR points) of the images in Figure 4 from the main paper to
compare between [7] and ours.
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Fig. 2: Qualitative results and comparison on KITTI Raw test set (split of Eigen
et al. [3]). Our method provides better predictions on thin structures and predicts
less shadow effects around object contours. On the bottom right, our method
cannot recover the round traffic sign.
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RMSE RMSE (log) ARD SRD δ < 1.25 δ < 1.252 δ < 1.253

Approach lower is better higher is better

LS + Lsmooth + Locc 4.718 0.194 0.106 0.919 0.869 0.946 0.975
LU + Llr + LS 4.517 0.189 0.098 0.735 0.878 0.950 0.978
LU + Llr + LS + Lsmooth 4.529 0.190 0.100 0.746 0.879 0.950 0.977
LU + Llr + LS + Locc 4.473 0.186 0.098 0.744 0.880 0.952 0.979
Full 4.442 0.187 0.097 0.734 0.888 0.958 0.980

Table 1: Ablation study on the loss terms in Equation (1) form the main paper.
Surprisingly, we found that the smoothness term Lsmooth does not improve the
performance unless it is combined with the occlusion term Locc .

Fig. 3: Error maps for the images in Figure 4 from the main paper. The values
of the errors are rescaled with log10 and colorized with ’jet’ colormap.
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2.3 Generalization to Other Datasets

To show the generalization ability of our approach, we compare the results of our
method and other state-of-the-art methods on the Cityscapes and the Make3D
datasets in Figure 4. All methods have been trained on the KITTI Dataset. For
the Make3D dataset, we show predictions on the original images as well as on
a central crop as in Godard et al. [7]. Qualitatively, our method makes similar
well predictions than Godard et al. [7] but can recover thin structures better.

M
ak
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D

C
ity

sc
ap

es

Kuznietsov et al.[13]Input Godard et al.[6] Ours Input Godard et al.[6] Ours

Fig. 4: Generalization results on Cityscapes and Make3D. On Make3D we show
results for original images and the central crop as in [7]. On both datasets our
approach appears to capture the contours of objects well.

In Figure 5, we give further qualitative results for generalization on the
Cityscapes dataset. We also compare our method to Godard et al. [7]. Note
that again both models are trained on KITTI only. From the results in Figure 5
it can be observed that our model better predicts the contours of objects like
the traffic signs. The last row shows failure cases where both methods are not
able to accurately recover the depth of the van, the train and some pedestrians.
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Fig. 5: Qualitative results demonstrating generalization to Cityscapes of mod-
els trained on KITTI. Our model better predicts the contours of objects like
the traffic signs. The last row shows failure cases where both methods cannot
accurately recover the depth of some objects.
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3 Monocular Visual Odometry

3.1 KITTI

In Figures 6 to 8 , we show all the estimated trajectories by DVSO in the training
set (sequences 00-10) of the KITTI odometry benchmark compared with other
state-of-the-art monocular [4,9] and stereo [5,11] visual odometry methods. We
also show the full evaluation results on the test set in Figure 9 (accuracy plots)
and Figure 10 (trajectory plots)1.

On the training set sequences, we observe that both monocular ORB-SLAM2
and DSO suffer from strong scale drift, while DVSO barely drifts in scale (see Fig-
ures 6 to 8). DVSO furthermore achieves comparable results to stereo methods
despite using only monocular images.

Quantitatively, on the test set sequences, DVSO shows lower translational er-
ror with higher driving speed in average (see Figure 9). We suspect two reasons:
1) Depth initialization of points becomes more difficult for geometry-based meth-
ods with high driving speed due to the relatively low frame rate of the KITTI
dataset. 2) The highway scenes contain only few image regions with stable fea-
tures for tracking forward driving motion. This also makes depth initialization
challenging for geometry-based methods.

3.2 Generalization to Cityscapes

We demonstrate generalization capabilities of DVSO on the Cityscapes Frank-
furt sequence from frame 0 to 32000, which covers around 10 kilometers path in
a dynamic urban environment. Estimated trajectories for different length frag-
ments are shown in Figure 11. Since the camera parameters between KITTI and
Cityscapes dataset are different, we Sim(3)-align the estimated trajectories to
the GPS ground truth for qualitative comparison. As can be seen, DVSO works
well in frames 0-20000. Afterwards, the drift becomes larger.

3.3 Runtime

For measuring and evaluating the computational complexity of the optimization
procedure, we ran DVSO, monocular DSO and Stereo DSO on KITTI 00 for 5
times and measured the average execution time of the total optimization pro-
cedure. The same parameters are applied for the three methods, i.e., 7 active
keyframes, 2000 active points and max. 6 iterations for Gauss-Newton. With
resolution 512× 256, monocular DSO took 24.66ms, DVSO 35.73ms and Stereo
DSO 43.18ms on CPU. The inference step of the deep network of DVSO re-
quired about 40ms on GPU. As a consequence, the overall processing frame-rate
of DVSO remains roughly the same when parallelizing CPU- and GPU process-
ing.

1 http://www.cvlibs.net/datasets/kitti/eval_odometry.php

http://www.cvlibs.net/datasets/kitti/eval_odometry.php
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Fig. 6: Results of DVSO and state-of-the-art monocular and stereo methods on
KITTI odometry seq. 00-03. Mono ORB-SLAM2 and DSO suffer from strong
scale drift, while DVSO barely drifts in scale. DVSO (monocular) achieves com-
parable results to stereo methods. Note that for sequence 01, the result of Mono
ORB is not shown due to its very large scale drift.
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Fig. 7: Results of DVSO and state-of-the-art monocular and stereo methods on
KITTI odometry seq. 04-07. Mono ORB-SLAM2 and DSO suffer from strong
scale drift, while DVSO barely drifts in scale. DVSO (monocular) achieves com-
parable results to stereo methods.
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Fig. 8: Results of DVSO and state-of-the-art monocular and stereo methods on
KITTI odometry seq. 08-10. Mono ORB-SLAM2 and DSO suffer from strong
scale drift, while DVSO barely drifts in scale. DVSO (monocular) achieves com-
parable results to stereo methods.
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Fig. 9: Evaluation results of DVSO and other state-of-the-art methods on the
KITTI odometry test set. Top: translational and rotational errors wrt. driving
intervals. Bottom: translational and rotational errors wrt. driving speed. DVSO
shows lower translational error with higher driving speed.
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Fig. 10: Results of DVSO on KITTI odometry seq. 11-21. Note that for seq. 11-
15, we downloaded the evaluation results from the KITTI website. Seq. 16-21
are not provided on the website and ground-truth is not available.
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Fig. 11: Generalization result of DVSO on the Cityscapes Frankfurt sequence.
The estimated trajectories are Sim(3) aligned to GPS ground truth. DVSO works
well in frames 0-20000, while the drift becomes larger afterwards.
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