
Sublabel-Accurate Multilabeling Meets
Product Label Spaces

Zhenzhang Ye1, Bjoern Haefner1, Yvain Quéau2,
Thomas Möllenhoff3, and Daniel Cremers1

1 TU Munich, Garching, Germany
2 GREYC, UMR CNRS 6072, Caen, France

3 RIKEN Center for AI Project, Tokyo, Japan

Abstract. Functional lifting methods are a promising approach to deter-
mine optimal or near-optimal solutions to difficult nonconvex variational
problems. Yet, they come with increased memory demands, limiting
their practicability. To overcome this drawback, this paper presents a
combination of two approaches designed to make liftings more scalable,
namely product-space relaxations and sublabel-accurate discretizations.
Our main contribution is a simple way to solve the resulting semi-infinite
optimization problem with a sampling strategy. We show that despite its
simplicity, our approach significantly outperforms baseline methods, in
the sense that it finds solutions with lower energies given the same amount
of memory. We demonstrate our empirical findings on the nonconvex
optical flow and manifold-valued denoising problems.
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1 Introduction

Many tasks in imaging and low-level computer vision can be transparently
modeled as a variational problem. In practice, the resulting energy functionals
are often nonconvex, for example due to data terms based on image-matching
costs or manifold-valued constraints. The goal of this work is to develop a convex
optimization approach to total variation-regularized problems of the form

inf
u:Ω→Γ

∫
Ω

c(x, u1(x), . . . , uk(x)) dx+

k∑
i=1

λiTV(ui). (1)

Here, Γ = {(γ1, . . . , γk) ∈ RN : γi ∈ Γi, i = 1 . . . k} is based on compact,
embedded manifolds Γi ⊂ RNi with N = N1 + . . .+Nk. Throughout this paper
we only consider imaging applications and pick Ω ⊂ R2 to be a rectangular image
domain. The cost function c : Ω × Γ → R≥0 in (1) can be a general nonconvex
function. Notably, we only assume that we can evaluate the cost function c(x, u(x))
but no gradient information or projection operators are available. This allows us
to consider degenerate costs that are out of reach for gradient-based approaches.
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As a regularization term in (1) we consider a simple separable total variation
regularization TV(ui) on the individual components ui : Ω → RNi weighted by a
tunable hyper-parameter λi > 0. The total variation (TV) encourages a spatially
smooth but edge-preserving solution. It is defined as

TV(ui) := sup
p:Ω→RNi×2

‖p(x)‖∗≤1

∫
Ω

〈Divx p(x), ui(x)〉dx =

∫
Ω

‖∇ui(x)‖ dx, (2)

where the last equality holds for sufficiently smooth ui. We denote by ∇ui(x) ∈
RNi×2 the Jacobian matrix in the Euclidean sense and by ‖ · ‖∗ the dual norm.
Since our focus is on the data cost c, we consider only this separable TV case.

Problems of the form (1) find applications in low-level vision and signal
processing. An example is the optical flow estimation between two RGB images
I1, I2 : Ω → R3, where Γ1 = Γ2 = [a, b] ⊂ R are intervals and the cost function is
given by c(x, u1(x), u2(x)) = |I1(x+(u1(x), u2(x)))−I2(x)|. In many applications,
Γi is a curved manifold, see [24,37]. Examples include Γi = S2 in the case of
normal field processing [24], SO(3) in the case of motion estimation [16] or the
circle S1 for processing of cyclic data [11,33].

As one often wishes to estimate multiple quantities in a joint fashion, one
naturally arrives at the product space formulation as considered in (1). A popular
approach to address such joint optimization problems are expectation maximiza-
tion procedures [12] or block-coordinate descent and alternating direction-type
methods [6], where one estimates a single quantity while holding the other ones
fixed. Sometimes, such approaches depend on a good initialization and can be
prone to getting stuck in bad local minima. Our goal is to devise a convex
relaxation of Problem (1) that can be directly solved to global optimality with
standard proximal methods (possibly implemented on GPUs) such as the primal
dual algorithm [29]. To achieve this, we offer the following contributions:

◦ To tackle relaxations of (1) in a memory-efficient manner, we propose a
sublabel-accurate implementation of the product-space lifting [15]. This
implementation is enabled by building on ideas from [26], which views sublabel-
accurate multilabeling as a finite-element discretization.

◦ Our main contribution presented in Sec. 4 is a simple way to implement the
resulting optimization problem with a sampling strategy. Unlike previous
liftings [25,26,36], our approach does not require epigraphical projections and
can therefore be applied in a black-box fashion to any cost c(x, u(x)).

◦ We show that our sublabel-accurate implementation attains a lower energy
than the product-space lifting [15] on optical flow estimation and manifold-
valued denoising problems.

The following Section 2 is aimed to provide an introduction to relaxation methods
for (1) while also reviewing existing works and our contributions relative to them.
We present the relaxation for (1) and its discretization in Section 3. In Section 4,
we show how to implement the discretized relaxation with the proposed sampling
strategy. Section 5 presents numerical results on optical flow and manifold-valued
denoising and our conclusions are drawn in Section 6.
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2 Related work: convex relaxation methods

Let us first consider a simplified version of problem (1) where Ω consists only of
a single point, i.e., the nonconvex minimization of one data term:

min
γ∈Γ

c(γ1, . . . , γk). (3)

A well-known approach to the global optimization of (3) is a lifting or stochastic
relaxation procedure, which has been considered in diverse fields such as polyno-
mial optimization [19], continuous Markov random fields [13,28,3], variational
methods [30], and black-box optimization [5,27,32]. The idea is to relax the search
space in (3) from γ ∈ Γ to probability distributions4 u ∈ P(Γ ) and solve

min
u∈P(Γ )

∫
Γ

c(γ1, . . . , γk) du(γ1, . . . , γk). (4)

Due to linearity of the integral wrt. u and convexity of the relaxed search space,
this is a convex problem for any c. Moreover, the minimizers of (4) concentrate
at the optima of c and can hence be identified with solutions to (3). If Γ is a
continuum, this problem is infinite-dimensional and therefore challenging.

Discrete/traditional multilabeling. In the context of Markov random fields [17,18]
and multilabel optimization [9,22,21,39] one typically discretizes Γ into a finite
set of points (called the labels) Γ = {v1, . . . ,v`}. This turns (4) into a finite-
dimensional linear program minu∈∆` 〈c′,u〉 where c′ ∈ R` denotes the label cost
and ∆` ⊂ R` is the (`− 1)-dimensional unit simplex.. If we evaluate the cost at
the labels, this program upper bounds the continuous problem (3), since instead
of all possible solutions, one considers a restricted subset determined by the labels.
Since the solution will be attained at one of the labels, typically a fine meshing is
needed. Similar to black-box and zero-order optimization methods, this strategy
suffers from the curse of dimensionality. When each Γi is discretized into ` labels,
the overall number is `k which quickly becomes intractable since many labels are
required for a smooth solution. Additionally, for pairwise or regularizing terms,
often a large number of dual constraints has to be implemented. In that context,
the work [23] considers a constraint pruning strategy as an offline-preprocessing.

Sublabel-accurate multilabeling. The discrete-continuous MRF [13,38,40] and
lifting methods [20,25,26] attempt to find a more label-efficient convex formulation.
These approaches can be understood through duality [13,26]. Applied to (3), the
idea is to replace the cost c : Γ → R with a dual variable q : Γ → R:

min
u∈P(Γ )

sup
q:Γ→R

∫
Γ

q(γ1, . . . , γk) du(γ1, . . . , γk), s.t. q(γ) ≤ c(γ) ∀γ ∈ Γ. (5)

The inner supremum in the formulation (5) maximizes the lower-bound q and if
the dual variable is sufficiently expressive, this problem is equivalent to (4).
4 P(Γ ) is the set of nonnegative Radon measures on Γ with total mass u(Γ ) = 1.
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Approximating q, for example with piecewise linear functions on Γ , one
arrives at a lower-bound to the nonconvex problem (3). It has been observed in
a recent series of works [20,25,26,36,40] that piecewise linear dual variables can
lead to smooth solutions even when q (and therefore also u) is defined on a rather
coarse mesh. As remarked in [13,20,25], for an affine dual variable this strategy
corresponds to minimizing the convex envelope of the cost, minγ∈Γ c

∗∗(γ), where
c∗∗ denotes the Fenchel biconjugate of c.

The implementation of the constraints in (5) can be challenging even in the
case of piecewise-linear q. This is partly due to the fact that the problem (5)
is a semi-infinite optimization problem [4], i.e., an optimization problem with
infinitely many constraints. The works [25,40] implement the constraints via
projections onto the epigraph of the (restricted) conjugate function of the cost
within a proximal optimization framework. Such projections are only available in
closed form for some choices of c and expensive to compute if the dimension is
larger than one [20]. This limits the applicability in a “plug-and-play” fashion.

Product-space liftings. The product-space lifting approach [15] attempts to over-
come the aforementioned exponential memory requirements of labeling methods
in an orthogonal way to the sublabel-based methods. The main idea is to exploit
the product-space structure in (1) and optimize over k marginal distributions of
the probability measure u ∈ P(Γ ), which we denote by ui ∈ P(Γi). Applying [15]
to the single data term (3) one arrives at the following relaxation:

min
{ui∈P(Γi)}

sup
{qi:Γi→R}

k∑
i=1

∫
Γi

qi(γ) dui(γ) s.t.
k∑
i=1

qi(γ) ≤ c(γ) ∀γ ∈ Γ. (6)

Since one only has to discretize the individual Γi this substantially reduces the
memory requirements from O(`N ) to O(

∑k
i=1 `

Ni). While at first glance it seems
that the curse of dimensionality is lifted, the difficulties are moved to the dual,
where we still have a large (or even infinite) number of constraints. A global
implementation of the constraints with Lagrange multipliers as proposed in [15]
again leads to the same exponential dependancy on the dimension.

As a side note, readers familiar with optimal transport may notice that
the supremum in (6) is a multi-marginal transportation problem [8,35] with
transportation cost c. This view is mentioned in [1] where relaxations of form (6)
are analyzed under submodularity assumptions.

In summary, the sublabel-accurate lifting methods, discrete-continuous MRFs
[40,25] and product-space liftings [15] all share a common difficulty: implementa-
tion of an exponential or even infinite number of constraints on the dual variables.

Summary of contribution. Our main contribution is a simple way to implement
the dual constraints in an online fashion with a random sampling strategy which
we present in Section 4. This allows a black-box implementation, which only
requires an evaluation of the cost c and no epigraphical projection operations as
in [25,40]. Moreover, the sampling approach allows us to propose and implement
a sublabel-accurate variant of the product-space relaxation [15] which we describe
in the following section.
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3 Product-space relaxation

Our starting point is the convex relaxation of (1) presented in [15,34]. In these
works, Γi ⊂ R is chosen to be an interval. Following [36] we consider a general-
ization to manifolds Γi ⊂ RNi which leads us to the following relaxation:

min
{ui:Ω→P(Γi)}

sup
{qi:Ω×Γi→R}
{pi:Ω×Γi→R2}

k∑
i=1

∫
Ω

∫
Γi

qi(x, γi)−Divx pi(x, γi) du
x
i (γ) dx, (7)

s.t. ‖PTγi∇γipi(x, γi)‖∗ ≤ λi, for all 1 ≤ i ≤ k, (x, γi) ∈ Ω × Γi, (8)
k∑
i=1

qi(x, γi) ≤ c(x, γ), for all (x, γ) ∈ Ω × Γ. (9)

This cost function appears similar to (6) explained in the previous section, but
with two differences. First, we now have marginal distributions ui(x) for every
x ∈ Ω since we do not consider only a single data term anymore. The notation
duxi in (7) denotes the integration against the probability measure ui(x) ∈ P(Γi).
The variables qi play the same role as in (6) and lower-bound the cost under
constraint (9). The second difference is the introduction of additional dual vari-
ables pi and the term −Divx pi in (7). Together with the constraint (8), this can
be shown to implement the total variation regularization [24,36]. Following [36],
the derivative ∇γipi(x, γi) in (8) denotes the (Ni × 2)-dimensional Jacobian
considered in the Euclidean sense and PTγi the projection onto the tangent space
of Γi at the point γi. Next, we describe a finite-element discretization of (7).

3.1 Finite-element discretization

We approximate the infinite-dimensional problem (7) by restricting ui, pi and
qi to be piecewise functions on a discrete meshing of Ω × Γi. The considered
discretization is a standard finite-element approach and largely follows [36]. Unlike
the forward-differences considered in [36] we use lowest-order Raviart-Thomas
elements (see, e.g., [7, Section 5]) in Ω, which are specifically tailored towards
the considered total variation regularization.

Discrete mesh. We approximate each di-dimensional manifold Γi ⊂ RNi with
a simplicial manifold Γhi , given by the union of a collection of di-dimensional
simplices Ti. We denote the number of vertices (“labels”) in the triangulation
of Γi as `i. The set of labels is denoted by Li = {vi,1, . . . ,vi,`i}. As assumed,
Ω ⊂ R2 is a rectangle which we split into a set of faces F of edge-length hx with
edge set E . The number of faces and edges are denoted by F = |F|, E = |E|.

Data term and the ui, qi variables. We assume the cost c : Ω × Γ → R≥0 is
constant in x ∈ Ω on each face and denote its value as c(x(f), γ) for f ∈ F ,
where x(f) ∈ Ω denotes the midpoint of the face f . Similarly, we also assume
the variables ui and qi to be constant in x ∈ Ω on each face but continuous
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piecewise linear functions in γi. They are represented by coefficient functions
uhi ,q

h
i ∈ RF ·`i , i.e., we specify the values on the labels and linearly interpolate

inbetween. This is done by the interpolation operator Wi,f,γi : R
F ·`i → R which

given an index 1 ≤ i ≤ k, face f , and (continuous) label position γi ∈ Γi computes
the function value: Wi,f,γiu

h
i = ui(x(f), γi). Note that after discretization, ui is

only defined on Γhi but we can uniquely associate to each γi ∈ Γhi a point on Γi.

Divergence and pi variables. Our variable pi is represented by coefficients
phi ∈ RE·`i which live on the edges in Ω and the labels in Γi. The vector
pi(x, γi) ∈ R2 is obtained by linearly interpolating the coefficients on the ver-
tical and horizontal edges of the face and using the interpolated coefficients
to evaluate the piecewise-linear function on Γhi . Under this approximation,
the discrete divergence Divhx : RE·`i → RF ·`i is given by (Divhx p

h
i )(f) =(

phi (er) + phi (et)− phi (el)− phi (eb)
)
/hx where er, et, el, eb are the right, top, left

and bottom edges of f , respectively.

Total variation constraint. Computing the operator PTγi∇γi is largely inspired
by [36, Section 2.2]. It is implemented by a linear map Di,f,α,t : R

E·`i → Rdi×2.
Here, f ∈ F and α ∈ [0, 1]2 correspond to a point x ∈ Ω while t ∈ Ti is
the simplex containing the point corresponding to γi ∈ Γi. First, the operator
computes coefficients in R`i of two piecewise-linear functions on the manifold
by linearly interpolating the values on the edges based on the face index f ∈ F
and α ∈ [0, 1]2. For each function, the derivative in simplex t ∈ Ti on the
triangulated manifold is given by the gradient of an affine extension. Projecting
the resulting vector into the di-dimensional tangent space for both functions
leads to a di × 2-matrix which approximates PTγi∇γipi(x, γi).

Final discretized problem. Plugging our discretized ui, qi, pi into (7), we arrive
at the following finite-dimensional optimization problem:

min
{uhi ∈RF ·`i}

max
{phi ∈R

E·`i},
{qhi ∈R

F ·`i}

h2x ·
k∑
i=1

〈uhi ,qhi −Divhx p
h
i 〉+

∑
f∈F

i{uhi (f) ∈ ∆`i}, (10)

s.t. ‖Di,f,α,tp
h
i ‖∗ ≤ λi, ∀1 ≤ i ≤ k, f ∈ F , α ∈ {0, 1}2, t ∈ Ti, (11)

k∑
i=1

Wi,f,γiq
h
i ≤ c (x(f), γ) , ∀f ∈ F , γ ∈ Γ, (12)

where i{·} is the indicator function. In our applications, we found it sufficient
to enforce the constraint (11) at the corners of each face which corresponds to
choosing α ∈ {0, 1}2. Apart from the infinitely many constraints in (12), this is a
finite-dimensional convex-concave saddle-point problem.
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3.2 Solution recovery

Before presenting in the next section our proposed way to implement the con-
straints (12), we briefly discuss how a primal solution {uhi } of the above problem
is turned into an approximate solution to (1). To that end, we follow [24,36] and
compute the Riemannian center of mass via an iteration τ = 1, . . . , T :

V τj = loguτi (vi,j), vτ =

`i∑
j=1

uhi (f, j)V
τ
j , uτ+1

i = expuτi (v
τ ). (13)

Here, u0i ∈ Γi is initialized by the label with the highest probability according
to uhi (f, ·). loguτi and expuτi denote the logarithmic and exponential mapping
between Γhi and it’s tangent space at uτi ∈ Γi, which are both available in closed-
form for the manifolds we consider here. In our case T = 20 was enough to reach
convergence. For flat manifolds, T = 1 is enough, as both mappings boil down to
the identity and (13) computes a weighted Euclidean mean.

In general, there is no theory which shows that uT (x) = (uT1 (x), . . . , u
T
k (x))

from (13) is a global minimizer of (1). Tightness of the relaxation in the special
case k = 1 and Γ ⊂ R is shown in [31]. For higher dimensional Γ , the tightness
of related relaxations is ongoing research; see [14] for results on the Dirichlet
energy. By computing a-posteriori optimality gaps, solutions of (7) were shown
to be typically near the global optimum of the problem (1); see, e.g., [15].

4 Implementation of the constraints

Though the optimization variables in (10) are finite-dimensional, the energy is
still difficult to optimize because of the infinite constraints in (12).

Before we present our approach, let us first describe what we refer to as the
baseline method in the rest of this paper. For the baseline approach, we consider
the direct solution of (10) where we implemented the constraints only at the
label/discretization points L1 × . . .× Lk via Lagrange multipliers. This strategy
is also employed by the (global variant) of the product-space approach [15].

We aim for a framework that allows for solving a better approximation of (12)
than the above baseline while being of similar memory complexity. To achieve
this, our algorithm alternates the following two steps in an iterative way.

1) Sampling. Based on the current solution we prune previously considered
but feasible constraints and sample a new subset of the infinite constraints in (12).
From all current sampled constraints, we consider the most violated constraints
for each face, add one sample at the current solution and discard the rest.

2) Solving the subsampled problem. Considering the current finite subset
of constraints, we solve problem (10) using a primal-dual algorithm.

These two phases are performed alternatingly, with the aim to eventually
approach the solution of the continuous problem (10). The details of our constraint
sampling strategy are shown in Alg. 1. For each face in F , the algorithm generates
a finite set of “sublabels” Sf ⊂ Γ at which we implement the constraints (12). In
the following, we provide the motivation behind each line in the algorithm.



8 Zhenzhang Ye et al.

Algorithm 1: Sampling strategy at face f ∈ F .
Inputs : Solution u = (u1, . . . , uk) at face f , sublabel-set Sf , n, δ, r

1 S ′f ← uniformSample(Γ , n) /* global exploration */
2 S ′f ← S ′f ∪ localPerturb(u, δ, n) /* local exploration around sol. */
3 Sf ←

{
γ ∈ Sf :

∑k
i=1 qi(f, γ) > c(f, γ)

}
/* remove feas. cons. */

4 Sf ← top-k(S ′f , r) ∪ Sf /* add the most violated r samples */
5 Sf ← Sf ∪ {u}. /* have one sample at cur. sol. */
6 return Sf

Algorithm 2: Proposed algorithm for problem (1).
Inputs : c : Ω × Γ → R, λi > 0, Nit > 0, Mit > 0, n > 0, δ > 0, r > 0

1 uh,0
i = 1/`i, qh,0

i = 0, ph,0
i = 0, S0

f = L1 × . . .× Lk.
2 for it = 0 to Nit do
3 Obtain uh,it+1

i ,qh,it+1
i ,ph,it+1

i by running Mit iterations of the primal-dual
method [29] on (10), with constraints (12) implemented at Sit

f for each
f ∈ F via Lagrange multipliers; warmstart at uh,it

i ,qh,it
i ,ph,it

i . Compute
current approximate solution uit+1 to (1) via (13).

4 Get Sit+1
f by calling Alg. 1 with (uit+1(f), Sit

f , n, δ, r) for each f ∈ F .
5 end

Random uniform sampling (Line 1). To have a global view of the cost function,
we consider a uniform sampling on the label space Γ . The parameter n > 0
determines the number of the samples for each face.

Local perturbation around the mean (Line 2). Besides the global information,
we apply local perturbation around the current solution u. In case the current
solution is close to the optimal one, this strategy allows us to refine it with these
samples. The parameter δ > 0 determines the size of the local neighbourhood. In
experiments, we always used a Gaussian perturbation with δ = 0.1.

Pruning strategy (Lines 3-4). Most samples from previous iterations are discarded
because the corresponding constraints are already satisfied. We prune all current
feasible constraints as in [4]. Similarly, the two random sampling strategies
(Lines 1 and 2) might return some samples for which the constraints are already
fulfilled. Therefore, we only consider the samples with violated constraints and
pick the r most violated from them. This pruning strategy is essential for a
memory efficient implementation as shown later.

Sampling at u (Line 5). Finally, we add one sample which is exactly at the
current solution u ∈ Γ to have at least one guaranteed sample per face.
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Cost q Considered Proposed Feasible

Fig. 1. Illustration of sampling strategies. (a) Two samples (red dots) are considered
leading to the shown optimal dual variable q after running primal-dual iterations.
(b) The two samples are pruned because the constraints are feasible. Several random
samples are proposed (gray dots) and only one of them is picked (red dot). (c) One
more sample on uit is added and the q is refined.

Overall algorithm. After implementing the constraints at the finite set determined
by Alg. 1, we apply a primal-dual method [10] with diagonal preconditioning [29]
to solve (10). Both constraints (11) and (12) are implemented using Lagrange
multipliers. Based on the obtained solution, a new set of samples is determined.

This scheme is alternated for a fixed number of outer iterations Nit and
we have summarized the overall algorithm in Alg. 2. While we do not prove
convergence of the overall algorithm, convergence results for related procedures
exist; see, e.g., [4, Theorem 2.4].

Finally, let us note that a single outer iteration of Alg. 2 with large number
of Mit corresponds to the baseline method.

5 Numerical validation

Our approach and the baseline are implemented in PyTorch. Code for reproducing
the following experiments can be found here: https://github.com/zhenzhangye/
sublabel_meets_product_space. Note that a specialized implementation as in
[15] will allow the method to scale by factor 10− 100×.

5.1 Illustration of our sampling idea

To illustrate the effect of the sampling strategies, we consider the minimization
of a single nonconvex data term. The cost c and the corresponding dual variable
q are plotted in Fig. 1. As shown in (a), the primal-dual method can obtain
the optimal qh for the sampled subproblem only. Our sampling strategy can
provide necessary samples and prune the feasible ones as, cp. (b). These few but
necessary samples lead the qh to achieve global optimality, cp. (c). If one more
iteration is performed, the sampling at uit can stabilize the optimal q.

https://github.com/zhenzhangye/sublabel_meets_product_space
https://github.com/zhenzhangye/sublabel_meets_product_space
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Labels Baseline +Line 1&4 +Line 2 +Line 3 +Line 5
Energy 4589 (±0.00) 2305 (±3.73) 2291 (±3.6) 8585 (±130.4) 2051 (±10.7)
Time [s] 3 8.98 22.77 23.22 23.22 23.33

Mem. [Mb] 11.21 13.94 15.53 11.65 12.05
Energy 2582 (±0.00) 2020 (±2.68) 2012 (±1.3) 7209 (±116.7) 1969 (±3.6)
Time [s] 7 74.13 16.02 16.61 15.56 18.38

Mem. [Mb] 28.35 32.96 33.49 28.356 28.68
Energy 2029 (±0.00) 1935 (±1.14) 1926 (±0.7) 5976 (±75.7) 1901 (±3.7)
Time [s] 13 183.80 37.65 38.84 38.29 38.22

Mem. [Mb] 52.85 60.55 60.94 54.35 54.73

Table 1. Ablation study indicating the effect of individual lines in Alg. 1. Numbers in
parentheses indicate the standard deviation across 20 runs.

5.2 Ablation study

Next, we study the effect of each line in Alg. 1. We evaluate our method on the
truncated quadratic energy c(x, u(x)) = min{(u(x)−f(x))2, ν}. where f : Ω → R
is the input data. For this specific experiment, the parameters are chosen as
ν = 0.025, λ = 0.25, Nit = 10, Mit = 200, n = 10 and r = 1. To reduce the effect
of randomness, we run each algorithm 20 times and report mean and standard
deviation of the final energy for different number of labels in Table 1.

Adding uniform sampling and picking the most violated constraint per face
already decreases the final energy significantly, i.e. Line 1 and Line 4 of Alg. 1.
We also consider local exploration around the current solution, cf. Line 2, which
helps to find better energies at the expense of higher memory requirements.

To circumvent that, we introduce our pruning strategy in Line 3 of Alg. 1.
However, the energy deteriorates dramatically because some faces could end up
having no samples after pruning. Therefore, keeping the current solution as a
sample (Line 5) per face prevents the energy from degrading.

Including all the sampling strategies, the proposed method can achieve the
best energy and run-time, at comparable memory usage to the baseline method.
We further illustrate the comparison on the number of iterations and time between
the baseline and our proposed method in Fig. 2. Due to the replacement on the
samples, we have a peak right after each sampling phase. The energy however
converges immediately, leading to an overall decreasing trend.

5.3 Optical flow

Given two input images I1, I2, we compute the optical flow u : Ω → R2. The
label space Γ = [a, b]2 in our case is chosen as a = −2.5 and b = 7.5. We use
a simple `2-norm for the data term, i.e. c(x, u(x)) = ||I2(x) − I1(x + u(x))||
and set the regularization weight as λ = 0.04. The baseline approach runs for
50K iterations, while we set Nit = 50 and Mit = 1000 for a fair comparison.
Additionally, we choose n = 20 and r = 1 in Alg. 1.

The results are shown in Fig. 3. Our method outperforms the baseline approach
regarding energy under the same number of labels and requires the same amount
of memory. We can achieve lower energy with about half number of labels.
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Fig. 2. Comparison between the baseline and our approach on a 64×64 image, degraded
with Gaussian and salt-and-papper noise. Our approach finds lower energies in fewer
iterations and time, which implements the constraints only at the label points.

5.4 Denoising in HSV color space

In our final application, we evaluate on a manifold-valued denoising problem
in HSV color space. The hue component of this space is a circle, i.e., Γ1 = S1,
Γ2, Γ3 = [0, 1]. The data term of this experiment is a truncated quadratic distance,
where for the hue component the distance is taken on the circle S1.

Both the baseline and our method are implemented with 7 labels. 30K
iterations are performed on the baseline and Nit = 100 outer iterations for our
method with 300 inner primal-dual steps are used to get an equal number of
total iterations. Other parameters are chosen as λ = 0.015, n = 30 and r = 5.
As shown in Fig. 4, our method can achieve a lower energy than the baseline.
Qualitatively, since our method implements the constraints not only at the labels
but also inbetween, there is less bias compared to the baseline.

6 Conclusion

In this paper we made functional lifting methods more scalable by combining
two advances, namely product-space relaxations [15] and sublabel-accurate dis-
cretizations [26,36]. This combination is enabled by adapting a cutting-plane
method from semi-infinite programming [4]. This allows an implementation of
sublabel-accurate methods without difficult epigraphical projections.
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Moreover, our approach makes sublabel-accurate functional-lifting methods
applicable to any cost function in a simple black-box fashion. In experiments, we
demonstrate the effectiveness of the approach over a baseline based on the product-
space relaxation [15] and provided a proof-of-concept experiment showcasing the
method in the manifold-valued setting.

Baseline

#Labels 3 7 11 15 19 23
Energy 56730.6 35902.5 25943.1 18923.1 16402.7 15297.1
Memory
[Mb] 334.9 1166.6 2427.3 4111.3 6220.6 8748.51

aep [px] 3.08 2.43 2.19 2.10 2.09 2.07
aae [◦] 0.79 0.51 0.37 0.32 0.31 0.30

Ours

#Labels 3 7 11 15 19 23
Energy 31917.5 18843.4 12891.6 11238.0 10451.8 9867.4
Memory
[Mb] 334.9 1167.3 2427.3 4111.2 6213.1 8748.51

aep [px] 2.58 2.32 2.09 2.08 2.07 2.07
aae [◦] 0.65 0.44 0.31 0.30 0.30 0.29

Fig. 3. We compute the optical flow on Grove3 [2] using our method and our baseline
for a varying amount of labels. Given an equal number of labels/memory, our sampling
strategy performs favorably to an implementation of the constraints at the labels.

Input Baseline Ours

Energy = 10260 Energy = 9580

H
ue

0 50 100 150

0

π

2π

0 50 100 150 0 50 100 150

Fig. 4. Denoising of an image in HSV color space (Γ1 = S1) using our method and
the baseline. Since our approach implements the constraints adaptively inbetween the
labels it reaches a lower energy with less label bias.
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