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Abstract
Many problems in imaging and low-level vision can be formulated as nonconvex variational problems. A
promising class of approach to tackle such problems is convex relaxation methods, which consider a lifting
of the energy functional to a higher-dimensional space. However, they come with increased memory
requirements due to the lifting. The present paper is an extended version of the earlier conference paper
by Ye, Haefner, Quéau, Möllenhoff, and Cremers (2021) which combined two recent approaches to make
lifting more scalable: product-space relaxation and sublabel-accurate discretization. Furthermore, it is
shown that a simple cutting-plane method can be used to solve the resulting semi-infinite optimization
problem. This journal version extends the previous conference work with additional experiments, a more
detailed outline of the complete algorithm and a user-friendly introduction to functional lifting methods.
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1 Introduction
In this paper, we present a convex optimization
framework for total-variation regularized problems
of the following form:

inf
u:Ω→Γ

∫
Ω

c(x, u1(x), . . . , uk(x)) dx

+

k∑
i=1

λiTV(ui).

(1)

The set Γ = {(γ1, . . . , γk) ∈ RN : γi ∈ Γi, i =
1 . . . k} is defined by k individual submanifolds

Γi ⊂ RNi with N = N1 + . . .+Nk. The individual
Γi are required to be bounded subsets of RNi .

Since the focus of this paper are imaging appli-
cations we assume Ω ⊂ R2 to be a rectangular
domain but the approach is easily generalized to
higher dimensional or non-rectangular domains.

We make no special assumptions on the cost c :
Ω×Γ→ R≥0 in (1) and allow it to be a general non-
negative nonconvex function. This turns (1) into
an overall nonconvex optimization problem, which
can be challenging to solve using standard gradient-
based methods. Moreover, we do not assume that
we are able to compute gradients, projections or
proximal operators of the cost function c(x, u(x)).
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Our approach only requires function evaluations.
This allows us to consider degenerate costs that
are out of reach for gradient-based approaches.

The regularizer in (1) is a separable total
variation regularization TV(ui) on the individual
components ui : Ω→ RNi weighted by a parame-
ter λi > 0. The total variation (TV) (Chambolle,
Caselles, Cremers, Novaga, & Pock, 2010; Rudin,
Osher, & Fatemi, 1992) encourages a spatially
smooth but edge-preserving solution. It is defined
as

TV(ui) := sup
p:Ω→RNi×2

‖p(x)‖∗≤1

∫
Ω

〈Divx p(x), ui(x)〉dx

(2)

=

∫
Ω

‖∇ui(x)‖ dx,

where by ∇ui(x) ∈ RNi×2 we denote the Jacobian
matrix and by ‖ · ‖∗ the dual norm of ‖ · ‖. The last
equality in (2) holds for sufficiently smooth ui.

The convex relaxation approach we use in this
paper works for general convex and nonconvex
regularizers which depend on the Jacobian ∇ui,
see Möllenhoff and Cremers (2019); Pock, Cre-
mers, Bischof, and Chambolle (2009, 2010); Vogt,
Strekalovskiy, Cremers, and Lellmann (2020). How-
ever, the main focus of this paper is an efficient
implementation of the data cost c, and therefore
we consider only the separable total variation (2).

Motivation and Applications.
To motivate Problem (1), let us consider some prac-
tical applications in low-level vision and imaging.
One example is the variational estimation of opti-
cal flow between two RGB images I1, I2 : Ω→ R3,
see Horn and Schunck (1981). In that case, Γ1 =
Γ2 = [a, b] ⊂ R models the displacement between
the two images and the cost function is given by a
photometric error.

Often, Γi is a curved manifold, see, e.g., the
applications presented by Lellmann, Strekalovskiy,
Koetter, and Cremers (2013); Weinmann, Demaret,
and Storath (2014). Examples include Γi = S2 for
normal field processing (Lellmann, Strekalovskiy,
et al., 2013), SO(3) for motion estimation (Görlitz,
Geiping, & Kolb, 2019) or the circle S1 for process-
ing of cyclic data (Cremers & Strekalovskiy, 2013;
Steinke, Hein, & Schölkopf, 2010).

In many applications the goal is to estimate
multiple quantities in a joint fashion. This natu-
rally leads to the product space formulation as
considered in (1), where Γ = Γ1 × . . .× Γk. Each
Γi models one quantity of interest that one aims
to estimate.

A promiment approach to address joint opti-
mization problems of this form are alternating pro-
cedures such as expectation maximization (Demp-
ster, Laird, & Rubin, 1977), block-coordinate
descent and alternating direction-type methods
(Boyd, Parikh, Chu, Peleato, & Eckstein, 2011).
There, the idea is to estimates a single quan-
tity while holding the other ones fixed. These
approaches may depend on a good initialization
and can get stuck in poor local optima. The goal
of this paper is to instead consider a convex relax-
ation of Problem (1). The relaxed problem can
then be solved to global optimality with standard
proximal methods such as the primal dual algo-
rithm (Pock & Chambolle, 2011). These methods
can be efficiently implemented on GPUs, allowing
to solve large-scale problems.

Contributions.
The main difficulty with convex approaches to (1) is
the large memory requirements which are inherent
to a lifted problem formulation which renders the
problem convex. In order to improve the memory-
efficiency of relaxations, two disparate ideas have
been considered: sublabel-accurate liftings (Möl-
lenhoff, Laude, Moeller, Lellmann, & Cremers,
2016) and product-space relaxations (Goldluecke,
Strekalovskiy, & Cremers, 2013). In this paper, we
combine both approaches and present a sublabel-
accurate implementation of Goldluecke et al.
(2013). Unlike previous liftings (Möllenhoff et al.,
2016; Möllenhoff & Cremers, 2017; Vogt et al.,
2020), our approach does not require epigraphi-
cal projections and can therefore be applied in a
black-box fashion, requiring only evaluations of the
cost c.

Our main contribution is a simple way to
implement the resulting semi-infinite optimization
problem with a cutting-plane method. Moreover,
we show that using this method, we can achieve a
lower energy than the product-space lifting (Gold-
luecke et al., 2013) on optical flow estimation and
manifold-valued denoising problems.
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This journal paper is an extended version of the
conference paper (Ye et al., 2021). In particular, we
offer the following contributions over the conference
version:
◦ We have added additional background and

explanations on the basics of functional lifting
to Section 2 and Section 3.
◦ In Section 4 we added the detailed update
equations for the primal-dual algorithm.
◦ We added additional figures and explana-
tions to Section 5 to illustrate and provide
an intuition of our algorithm on a simple
example.
◦ We added additional experiments on optical
flow and manifold-valued image denoising to
Section 5 and evaluated our method on a
larger set of images.

Overview of the paper.
After this introduction, we provide in Section 2
an introduction to functional lifting methods for
Problem (1), review existing works and explain our
contributions relatively to them. We summarize the
convex relaxation for (1) and its discretization in
Section 3. The proposed cutting-plane method and
sampling strategy which we use to implement the
discretized relaxation are presented in Section 4. In
Section 5 we evaluate our method on a toy problem
and several real-world imaging applications. Our
conclusions are eventually drawn in Section 6.

2 An introduction to
functional lifting

Let us first consider a simplified version of Prob-
lem (1) where Ω consists only of a single point, i.e.,
the nonconvex minimization of one data term:

min
γ∈Γ

c(γ1, . . . , γk). (3)

A well-known approach to the global optimization
of (3) is a lifting or stochastic relaxation procedure,
which has been considered in diverse fields such as
polynomial optimization (Lasserre, 2000), continu-
ous Markov random fields (Bauermeister, Laude,
Möllenhoff, Moeller, & Cremers, 2021; Fix & Agar-
wal, 2014; Peng, Hazan, McAllester, & Urtasun,
2011), variational methods (Pock, Schoenemann,
Graber, Bischof, & Cremers, 2008), and black-box

optimization (de Boer, Kroese, Mannor, & Rubin-
stein, 2005; Ollivier, Arnold, Auger, & Hansen,
2017; Schaul, 2011). The idea is to relax the search
space in (3) from γ ∈ Γ to probability distributions1

u ∈ P(Γ) and solve

min
u∈P(Γ)

∫
Γ

c(γ1, . . . , γk) du(γ1, . . . , γk). (4)

Due to linearity of the integral wrt. u and convex-
ity of the relaxed search space, this is a convex
problem for any c. Moreover, the minimizers of (4)
concentrate at the optima of c and can hence be
identified with solutions to (3). If Γ is a continuum,
this problem is infinite-dimensional and therefore
challenging.

We illustrate the conceptual difference between
the formulation (3) and (4) on a one-dimensional
example in Figure 1.

Discrete/traditional multilabeling.
In the context of Markov random fields (Ishikawa,
2003; Kappes et al., 2013) and multilabel optimiza-
tion (Chambolle, Cremers, & Pock, 2012; Lellmann,
Kappes, Yuan, Becker, & Schnörr, 2009; Lellmann
& Schnörr, 2011; Zach, Gallup, Frahm, & Nietham-
mer, 2008) one typically discretizes Γ into a finite
set of points (called the labels) Γ = {v1, . . . ,v`}.
This turns (4) into a finite-dimensional linear pro-
gram minu∈∆` 〈c′,u〉 where c′ ∈ R` denotes the
label cost and ∆` ⊂ R` is the (`− 1)-dimensional
unit simplex. If we evaluate the cost at the labels,
this program upper bounds the continuous prob-
lem (3), since instead of all possible solutions, one
considers a restricted subset determined by the
labels. Since the solution will be attained at one
of the labels, typically a fine meshing is needed.
Similar to black-box and zero-order optimization
methods, this strategy suffers from the curse of
dimensionality. When each Γi is discretized into
` labels, the overall number is `k which quickly
becomes intractable since many labels are required
for a smooth solution. Additionally, for pairwise or
regularizing terms, often a large number of dual
constraints has to be implemented. In that con-
text, the work from Lellmann, Lellmann, Widmann,
and Schnörr (2013) considers a constraint pruning
strategy as an offline-preprocessing.

1P(Γ) is the set of nonnegative Radon measures on Γ with
total mass u(Γ) = 1.
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Fig. 1 Traditional optimization vs. optimization over a space of probability distributions. In the top row, going from left
to right, we illustrate a traditional gradient-based local optimization method on a nonconvex problem of the form (3). Given
a bad initialization, the algorithm might get stuck in a poor local optimum. The bottom row illustrates an optimization
procedure on the relaxed problem (4). Due to convexity of the objective and search space of probability measures, the
solution concentrates at a Dirac distribution centered around a global optimum.

Sublabel-accurate multilabeling.
The discrete-continuous MRF (Fix & Agarwal,
2014; Zach, 2013; Zach & Kohli, 2012) and lifting
methods (Laude, Möllenhoff, Moeller, Lellmann, &
Cremers, 2016; Möllenhoff et al., 2016; Möllenhoff
& Cremers, 2017) attempt to find a more label-
efficient convex formulation. These approaches can
be understood through duality (Fix & Agarwal,
2014; Möllenhoff & Cremers, 2017). Applied to (3),
the idea is to replace the cost c : Γ → R with a
dual variable q : Γ→ R:

min
u∈P(Γ)

sup
q:Γ→R

∫
Γ

q(γ1, . . . , γk) du(γ1, . . . , γk),

s.t. q(γ) ≤ c(γ) for all γ ∈ Γ. (5)

The inner supremum in the formulation (5) maxi-
mizes the lower-bound q and if the dual variable
is sufficiently expressive, this problem is equivalent
to (4).

Approximating q, for example with piecewise
linear functions on Γ, one arrives at a lower-bound
to the nonconvex problem (3). It has been observed
in a recent series of works (Laude et al., 2016;
Möllenhoff et al., 2016; Möllenhoff & Cremers,
2017; Vogt et al., 2020; Zach & Kohli, 2012) that
piecewise linear dual variables can lead to smooth
solutions even when q (and therefore also u) is
defined on a rather coarse mesh. As remarked by
Fix and Agarwal (2014); Laude et al. (2016); Möl-
lenhoff et al. (2016), for an affine dual variable
this strategy corresponds to minimizing the con-
vex envelope of the cost, minγ∈Γ c

∗∗(γ), where c∗∗
denotes the Fenchel biconjugate of c.

The implementation of the constraints in (5)
can be challenging even in the case of piecewise-
linear q. This is partly due to the fact that
Problem (5) is a semi-infinite optimization problem
(Blankenship & Falk, 1976), i.e., an optimiza-
tion problem with infinitely many constraints. The
works (Möllenhoff et al., 2016; Zach & Kohli, 2012)
implement the constraints via projections onto the
epigraph of the (restricted) conjugate function of
the cost within a proximal optimization frame-
work. Such projections are only available in closed
form for some choices of c and expensive to com-
pute if the dimension is larger than one (Laude
et al., 2016). This limits the applicability in a
“plug-and-play” fashion.

Product-space liftings.
The product-space lifting approach (Goldluecke et
al., 2013) attempts to overcome the aforementioned
exponential memory requirements of labeling meth-
ods in an orthogonal way to the sublabel-based
methods. The main idea is to exploit the product-
space structure in (1) and optimize over k marginal
distributions of the probability measure u ∈ P(Γ),
which we denote by ui ∈ P(Γi). Applying Gold-
luecke et al. (2013) to the single data term (3) one
arrives at the following relaxation:

min
{ui∈P(Γi)}

sup
{qi:Γi→R}

k∑
i=1

∫
Γi

qi(γi) dui(γi)

s.t.
k∑
i=1

qi(γi) ≤ c(γ) for all γ ∈ Γ. (6)
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Since one only has to discretize the individual
Γi this substantially reduces the memory require-
ments from O(`N ) to O(

∑k
i=1 `

Ni). While at first
glance it seems that the curse of dimensionality is
lifted, the difficulty is moved to the dual, where
we still have a large (or even infinite) number of
constraints. A global implementation of the con-
straints with Lagrange multipliers as proposed in
Goldluecke et al. (2013) again leads to the same
exponential dependency on the dimension.

As a side note, readers familiar with optimal
transport may notice that the supremum in (6)
is a multi-marginal transportation problem (Car-
lier, 2003; Villani, 2008) with transportation cost c.
This view is mentioned by Bach (2019) where
relaxations of form (6) are analyzed under submod-
ularity assumptions.

In summary, the sublabel-accurate lifting meth-
ods, discrete-continuous MRFs (Möllenhoff et al.,
2016; Zach & Kohli, 2012) and product-space
liftings (Goldluecke et al., 2013) all share a com-
mon difficulty: implementation of an exponential
or even infinite number of constraints on the dual
variables.

Summary of our contribution.
Our main contribution is a simple way to imple-
ment the dual constraints in an online fashion
with a random sampling strategy which we present
in Section 4. This allows a black-box implemen-
tation, which only requires an evaluation of the
cost c and no epigraphical projection operations as
in Möllenhoff et al. (2016); Zach and Kohli (2012).
Moreover, the sampling approach allows us to pro-
pose and implement a sublabel-accurate variant
of the product-space relaxation (Goldluecke et al.,
2013) which we describe in the following section.

3 Product-space relaxation
Our starting point is the convex relaxation of (1)
presented in Goldluecke et al. (2013); Strekalovskiy,
Chambolle, and Cremers (2014). In these works,
Γi ⊂ R is chosen to be an interval. Following
Vogt et al. (2020) we consider a generalization to
manifolds Γi ⊂ RNi which leads us to the following
relaxation:

min
{ui:Ω→P(Γi)}

sup
{qi:Ω×Γi→R}
{pi:Ω×Γi→R2}

L({ui}, {qi}, {pi}),

s.t. ‖PTγi∇γipi(x, γi)‖∗ ≤ λi, ∀i, x, γi, (7)
k∑
i=1

qi(x, γi) ≤ c(x, γ), ∀x, γ (8)

where the Lagrangian is given by

L({ui}, {qi}, {pi}) =

k∑
i=1

∫
Ω

∫
Γi

qi(x, γi) (9)

−Divx pi(x, γi) duxi (γi) dx. (10)

This cost function appears similar to (6) explained
in the previous section, but with two differences.
First, we now have marginal distributions ui(x)
for every x ∈ Ω since we do not consider only
a single data term anymore. The notation duxi
in (10) denotes the integration against the prob-
ability measure ui(x) ∈ P(Γi). The variables qi
play the same role as in (6) and lower-bound the
cost under constraint (8).

The second difference is the introduction of
additional dual variables pi and the term −Divx pi
in (10). Together with the constraint (7), this can
be shown to implement the total variation regu-
larization (Lellmann, Strekalovskiy, et al., 2013;
Vogt et al., 2020). Following Vogt et al. (2020), the
derivative ∇γipi(x, γi) in (7) denotes the (Ni× 2)-
dimensional Jacobian considered in the Euclidean
sense and PTγi the projection onto the tangent
space of Γi at the point γi.

To get an intuition on how (7) and (10) imple-
ment the total variation regularization, consider
the case when the labeling variable uxi = δu(x) is
given as a Dirac measure at every point x. Assum-
ing k = 1 for simplicity, the term in (10) then
simplifies to∫

Ω

−Divx p(x, u(x)) dx (11)

=

∫
Ω

〈∇γp(x, u(x)),∇u(x)〉 dx, (12)

which follows by applying the chain-rule and the
fact that p has compact support. Finally, taking
a point-wise supremum over p inside the integral
in (12) under the dual-norm constraint (7) gives
us the total variation of u:

∫
Ω
‖∇u(x)‖ dx.
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3.1 Finite-element discretization
We approximate the infinite-dimensional prob-
lem (10) by restricting ui, pi and qi to be
piecewise functions on a discrete meshing of Ω×Γi.
The considered discretization is a standard finite-
element approach and largely follows Vogt et
al. (2020). Unlike the forward-differences consid-
ered in Vogt et al. (2020) we use lowest-order
Raviart-Thomas elements (see, e.g., Caillaud and
Chambolle (2020), Section 5) in Ω, which are
specifically tailored towards the considered total
variation regularization.

Discrete mesh.
We approximate each di-dimensional manifold Γi ⊂
RNi with a simplicial manifold Γhi , given by the
union of a collection of di-dimensional simplices Ti.
We denote the number of vertices (“labels”) in the
triangulation of Γi as `i. The set of labels is denoted
by Li = {vi,1, . . . ,vi,`i}. As assumed, Ω ⊂ R2 is
a rectangle which we split into a set of faces F
of edge-length hx with edge set E . The number of
faces and edges are denoted by F = |F|, E = |E|.

Data term and the ui, qi variables.
We assume the cost c : Ω × Γ → R≥0 is con-
stant in x ∈ Ω on each face and denote its value
as c(x(f), γ) for f ∈ F , where x(f) ∈ Ω denotes
the midpoint of the face f . Similarly, we also
assume the variables ui and qi to be constant
in x ∈ Ω on each face but continuous piecewise
linear functions in γi. They are represented by coef-
ficient functions uhi ,q

h
i ∈ RF ·`i , i.e., we specify

the values on the labels and linearly interpolate
inbetween. This is done by the interpolation oper-
ator Wi,f,γi : RF ·`i → R which given an index
1 ≤ i ≤ k, face f , and (continuous) label posi-
tion γi ∈ Γi computes the function value based on
barycentric coordinates: Wi,f,γiu

h
i = ui(x(f), γi).

Note that after discretization, ui is only defined on
Γhi but we can uniquely associate to each γi ∈ Γhi
a point on Γi.

Divergence and pi variables.
Our variable pi is represented by coeffi-
cients phi ∈ RE·`i which live on the edges in Ω
and the labels in Γi. The vector pi(x, γi) ∈ R2

is obtained by linearly interpolating the coeffi-
cients on the vertical and horizontal edges of
the face and using the interpolated coefficients

to evaluate the piecewise-linear function on Γhi .
Under this approximation, the discrete divergence
Divhx : RE·`i → RF ·`i is given by (Divhx phi )(f) =(
phi (er) + phi (et)− phi (el)− phi (eb)

)
/hx where

er, et, el, eb are the right, top, left and bottom
edges of f , respectively.

Total variation constraint.
Computing the operator PTγi∇γi is largely inspired
by Vogt et al. (2020), Section 2.2. It is implemented
by a linear map Di,f,α,t : RE·`i → Rdi×2. Here,
f ∈ F and α ∈ [0, 1]2 correspond to a point x ∈ Ω
while t ∈ Ti is the simplex containing the point cor-
responding to γi ∈ Γi. First, the operator computes
coefficients in R`i of two piecewise-linear functions
on the manifold by linearly interpolating the values
on the edges based on the face index f ∈ F and
α ∈ [0, 1]2. For each function, the derivative in sim-
plex t ∈ Ti on the triangulated manifold is given by
the gradient of an affine extension. Projecting the
resulting vector onto the di-dimensional tangent
space for both functions leads to a di × 2-matrix
which approximates PTγi∇γipi(x, γi).

Final discretized problem.
Plugging our discretized ui, qi, pi into (10), we
arrive at the following finite-dimensional optimiza-
tion problem:

min
{uhi ∈RF ·`i}

max
{phi ∈R

E·`i},
{qhi ∈R

F ·`i}

h2
x ·

k∑
i=1

〈uhi ,qhi −Divhx phi 〉

+
∑
f∈F

i{uhi (f) ∈ ∆`i}, (13)

s.t. ‖Di,f,α,tp
h
i ‖∗ ≤ λi,

∀i ∈ [k], f ∈ F , α ∈ {0, 1}2, t ∈ Ti, (14)
k∑
i=1

Wi,f,γiq
h
i ≤ c (x(f), γ) ,∀f ∈ F , γ ∈ Γ, (15)

where i{·} is the indicator function. In our appli-
cations, we found it sufficient to enforce the
constraint (14) at the corners of each face which
corresponds to choosing α ∈ {0, 1}2. Apart from
the infinitely many constraints in (15), this is
a finite-dimensional convex-concave saddle-point
problem.
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3.2 Solution recovery
Before presenting in the next section how we
propose to implement the constraints (15), we
briefly discuss how a primal solution {uhi } of the
above problem is turned into an approximate solu-
tion to (1). To that end, we follow Lellmann,
Strekalovskiy, et al. (2013); Vogt et al. (2020) and
compute the Riemannian center of mass via an
iteration τ = 1, . . . , T :

V τj = loguτi (vi,j), (16)

vτ =

`i∑
j=1

uhi (f, j)V τj , (17)

uτ+1
i = expuτi (vτ ). (18)

Here, u0
i ∈ Γi is initialized by the label with the

highest probability according to uhi (f, ·). loguτi and
expuτi denote the logarithmic and exponential map-
ping between Γhi and its tangent space at uτi ∈ Γi,
which are both available in closed-form for the
manifolds we consider here. In our case T = 20
was enough to reach convergence. For flat man-
ifolds, T = 1 is enough, as both mappings boil
down to the identity and (18) computes a weighted
Euclidean mean.

In general, there is no theory which shows that
uT (x) = (uT1 (x), . . . , uTk (x)) from (18) is a global
minimizer of (1). Tightness of the relaxation in
the special case k = 1 and Γ ⊂ R is shown in
Pock et al. (2010). For higher dimensional Γ, the
tightness of related relaxations is ongoing research;
see Ghoussoub, Kim, Lavenant, and Palmer (2021)
for results on the Dirichlet energy. By computing
a-posteriori optimality gaps, solutions of (10) were
shown to be typically near the global optimum of
Problem (1); see, e.g., Goldluecke et al. (2013).

4 Implementation of the
constraints

Though the optimization variables in (13) are finite-
dimensional, the energy is still difficult to optimize
because of the infinitely many constraints in (15).

Before we present our approach, let us first
describe what we refer to as the baseline method
for the remainder of this paper. As the base-
line approach, we consider the direct solution of
(13) where we implemented the constraints only

at the label/discretization points L1 × . . . × Lk
via Lagrange multipliers (this strategy is also
employed by the global variant of the product-
space approach (Goldluecke et al., 2013)). This
baseline actually corresponds to a single outer iter-
ation Nit of the proposed Algorithm 1, with a large
number Mit of inner iterations.

We aim for a framework that allows for solving
a better approximation of (15) than the baseline
while being of similar memory complexity. To this
end, Algorithm 1 alternates the following two steps:

1) Sampling. Based on the current solution
we prune previously considered but feasible con-
straints and sample a new subset of the infinitely
many constraints in (15). From all the current sam-
pled constraints, we consider the most violated
constraints for each face, add one sample at the
current solution and discard the rest.

2) Solving the subsampled problem. Con-
sidering the current finite subset of constraints,
we solve Problem (13) using a primal-dual
method (Chambolle & Pock, 2011) with diagonal
preconditioning (Pock & Chambolle, 2011). Both
constraints (14) and (15) are implemented using
Lagrange multipliers.

These two phases are performed alternatingly,
with the aim to eventually approach the solution
of the continuous problem (13). In practice, a fixed
number of outer iterations Nit is set. While we
do not prove convergence of the overall algorithm,
convergence results for related procedures exist; see,
e.g., Blankenship and Falk (1976), Theorem 2.4.

The detailed algorithm is explained in Alg. 1.
The cost matrix C is constructed by evaluating
c(x(f), γ) at proposed samples Sf . We denote ξ
and ν as the Lagrange multipliers. The Lagrange
multiplier ξ is initialized by a warm-start strategy,
i.e. ξit keeps same if we have the same proposed
sample from previous outer iteraion. The prox of
a function g with step size τ is defined as:

proxτg(x) = arg min
y

1

2τ
‖x− y‖+ g(y) (19)

Our constraint sampling strategy is detailed in
Algorithm 2. For each face in F , this algorithm
generates a finite set of “sublabels” Sf ⊂ Γ at
which we implement the constraints (15). Next,
we provide the motivation behind each line in the
algorithm.
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Algorithm 1 Proposed algorithm for problem (1).
Input: c : Ω× Γ→ R, λi > 0, Nit > 0, Mit > 0, n > 0, δ > 0, r > 0.

1: uh,0i = 1/`i, qh,0i = 0, ph,0i = 0.
2: S0

f = L1 × . . .× Lk.
3: for it = 0 to Nit do
4: Construct interpolation matrix Wit

i and cost matrix Cit based on Sitf from Algorithm 2.
5: Initialize ξiti with the warm-start strategy.
6: Construct the diagonal preconditioners Tit

u , Tit
ν , Tit

ξ , Σit
p and Σit

q by Pock and Chambolle (2011).
7: for j = 0 to Mit do
8: ph,j+1

i = ph,ji + Σit
p (−h2

x · (Divhx)Tuh,ji + DT
i,α,tν

j
i )

9: qh,j+1
i = qh,ji + Σit

q (h2
x · u

h,j
i − (Wit

i )T ξji )

10: p̄h,ji = 2ph,j+1
i − ph,ji

11: q̄h,ji = 2qh,j+1
i − qh,ji

12: uh,j+1
i = prox·∈∆`i (u

h,j
i −Tit

u (q̄h,ji −Divhxp̄
h,j
i ))

13: νj+1
i = proxλTitν ‖·‖2(νji −Tit

ν Di,v,tp̄
h,j
i )

14: ξj+1
i = prox·≥0(ξji −Tit

ξ (Cit −
∑k

i Wit
i q̄h,ji ))

15: end for
16: Get sampled Sit+1

f for each face by Alg. 2.
17: end for

Algorithm 2 Sampling strategy at face f ∈ F .
Input: Solution u = (u1, . . . , uk) at face f ,

sublabel-set Sf , n, δ, r.
/* global exploration */

1: S ′f ← uniformSample(Γ, n)
/* local exploration around solution */

2: S ′f ← S ′f ∪ localPerturb(u, δ, n)
/* remove feasible constraints */

3: Sf ←
{
γ ∈ Sf :

∑k
i=1 qi(f, γ) > c(f, γ)

}
/* add the most violated r samples */

4: Sf ← top-k(S ′f , r) ∪ Sf
/* have one sample at current solution */

5: Sf ← Sf ∪ {u}.
6: Return Sf

Random uniform sampling (Line 1).
To have a global view of the cost function, we
consider a uniform sampling on the label space Γ.
The parameter n > 0 determines the number of
the samples for each face.

Local perturbation around the mean
(Line 2).
Besides the global information, we apply local per-
turbation around the current solution u. In case
the current solution is close to the optimal one,

this strategy allows us to refine it with these sam-
ples. The parameter δ > 0 determines the size of
the local neighbourhood. In our experiments, we
always used a Gaussian perturbation with δ = 0.1.

Pruning strategy (Lines 3-4).
Most samples from previous iterations are dis-
carded because the corresponding constraints are
already satisfied. We prune all current feasible
constraints as in Blankenship and Falk (1976). Sim-
ilarly, the two random sampling strategies (Lines 1
and 2) might return some samples for which the
constraints are already fulfilled. Therefore, we only
consider the samples with violated constraints and
pick the r most violated from them. This prun-
ing strategy is essential for a memory efficient
implementation as shown later.

Sampling at u (Line 5).
Finally, we add one sample which is exactly at
the current solution u ∈ Γ to have at least one
guaranteed sample per face.

In the next section, we illustrate the behavior
of Algorithm 1 on a toy problem, and evaluate its
performance on real-world imaging problems.
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Fig. 2 Illustration of the baseline algorithm. (a) Five sam-
ples (red dots) from the labels are considered (b) The dual
variable q satisfies the constraints on the samples. How-
ever, q is not globally optimal as it violates the constraint
on the optimal solution (“green > blue”).

5 Numerical validation
Our approach and the baseline are implemented in
PyTorch. Code for reproducing the following exper-
iments can be found here: https://github.com/
zhenzhangye/sublabel_meets_product_space.
Note that the bottlenecks of our sampling strategy
are creating the samples and picking the most
violated r as shown in Algorithm 2. Additionally,
the sparse matrix operations and PDHG updating
are superior supported on CUDA. Therefore, a
specialized implementation as in Goldluecke et al.
(2013) will allow the method to scale by factor
10− 100× in favor of runtime.

5.1 Illustration of the Algorithm
First of all, we consider a simplistic minimization
problem on a single nonconvex data term:

c(u) = min


−4u+ 2.4, u ∈ [0.1, 0.35),

4u− 0.4, u ∈ [0.35, 0.6],

2, otherwise,
(20)

with 5 labels to illustrate the behavior of both,
the baseline algorithm and the proposed sampling
strategies.

Figure 2 depicts the baseline’s behavior. While
it only evaluates the energy on the labels, five sam-
ples are considered as illustrated by the red dots in
Figure 2 (a). Figure 2 (b) shows the dual variable
qhi after it iterations. Since the algorithm is maxi-
mizing qhi , the green and red dots should overlay

(e.g. the second label) when it converges. Despite
the convergence, the resulting qh violates the con-
straints significantly close to the optimal solution
(“green > blue”). Therefore, to attain the global
optimal solution, the baseline approach needs more
labels which requires more memory.

The motivation of random uniform sampling
(Line 1, Algorithm 2) and local perturbation
around the mean (Line 2, Algorithm 2) in our
sampling strategy is intuitively clear. However, as
demonstrated later in the experiment of a trun-
cated quadratic energy, sampling at u (Line 5,
Algorithm 2) is critical for the stability of our
method. A comparison in Figure 3 helps to show
the necessity of this strategy. We ran two exper-
iments with the identical settings except for the
sampling at u. After a given number of iterations,
the dual variable qh is approximately optimal, as
indicated in Figure 3 (a). Our pruning strategy
(Line 3, Algorithm 2) removes all of the proposed
samples since they satisfy the constraints. As a
result, the subproblem becomes unconstrainted on
dual variable qh and it’s update has no signifi-
cance, Figure 3 (b). We propose to always at least
have one sample at u even when qh is nearly opti-
mal, cf. Figure 3 (c). As illustrated in Figure 3 (d),
this can avoid the degeneration of qh as it is still
constrained.

Finally, the complete sampling strategy is illus-
trated in Figure 4. As shown in Figure 4 (a), the
primal-dual method can obtain the optimal qh for
the sampled subproblem. Our sampling strategy
can provide necessary samples and prune the feasi-
ble ones, cf. Figure 4 (b). These few but meaningful
samples lead the qh to achieve global optimality,
cf. Figure 4 (c).

5.2 Truncated Quadratic Energy
In this section, we study the numerical effect of
each line in Algorithm 2. We evaluate our method
on the truncated quadratic energy c(x, u(x)) =
min{(u(x) − f(x))2, ν}. where f : Ω → R is the
input data as show in Figure 5. For this specific
experiment, we generate a 64 × 64 gray image
degraded with Gaussian noise of standard devia-
tion σ = 0.05 and 5% salt-and-pepper noise. The
parameters are chosen as ν = 0.025, λ = 0.25,
Nit = 10, Mit = 200, n = 10 and r = 1. To reduce
the effect of randomness, we run each algorithm
20 times and report mean and standard deviation

https://github.com/zhenzhangye/sublabel_meets_product_space
https://github.com/zhenzhangye/sublabel_meets_product_space
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Fig. 3 Comparison of sampling at u (Line 5, Algorithm 2). (a) Because all of the proposed samples (gray dots) fullfil
the constraint, they are all pruned (Line 3, Algorithm 2). (b) The updated q deteriorates because the subproblem is
unconstrainted on it. (c) At least one sample is taken (namely uit, red dot). (d) This sample constraints q and thus prevents
a degenerate solution.
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Fig. 4 Illustration of our proposed sampling strategies. (a) Two samples (red dots) are considered leading to the shown
optimal dual variable q after running primal-dual iterations. (b) The two samples are pruned because the constraints are
feasible. Several random samples are proposed (gray dots) and only one of them is picked (red dot). (c) One more sample
on uit is added and the q is refined.

of the final energy for different number of labels in
Table 1. We want to emphasize that more labels
have benefits for both baseline and our algorithm.
Nevertheless, ours can reach better results using
the same amount of labels and memory

As can be seen in this table, adding uniform
sampling and picking the most violated constraint
per face (Lines 1 and 4 of Algorithm 2) already
decreases the final energy significantly. We also
consider local exploration around the current solu-
tion (Line 2), which helps to find better energies

at the expense of higher memory requirements.
The pruning strategy (Line 3) circumvents this
memory issue, however the energy deteriorates
dramatically because some faces could end up hav-
ing no samples after pruning. Therefore, keeping
the current solution as a sample (Line 5) per face
prevents the energy from degrading. Including all
these sampling strategies, the proposed method
can achieve the best energy and run-time, at
comparable memory usage to the baseline method.
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Labels Baseline +Line 1&4 +Line 2 +Line 3 +Line 5
Energy 4589 (±0.00) 2305 (±3.73) 2291 (±3.6) 8585 (±130.4) 2051 (±10.7)
Time [s] 3 8.98 22.77 23.22 23.22 23.33

Mem. [Mb] 11.21 13.94 15.53 11.65 12.05
Energy 2582 (±0.00) 2020 (±2.68) 2012 (±1.3) 7209 (±116.7) 1969 (±3.6)
Time [s] 7 74.13 16.02 16.61 15.56 18.38

Mem. [Mb] 28.35 32.96 33.49 28.356 28.68
Energy 2029 (±0.00) 1935 (±1.14) 1926 (±0.7) 5976 (±75.7) 1901 (±3.7)
Time [s] 13 183.80 37.65 38.84 38.29 38.22

Mem. [Mb] 52.85 60.55 60.94 54.35 54.73
Table 1 Ablation study indicating the effect of individual lines in Algorithm 2. Numbers in parentheses indicate the
standard deviation across 20 runs.

(a) (b)
Fig. 5 (a) The original 64 × 64 gray image. (b) Degraded
with Gaussian noise of standard deviation σ = 0.05 and 5%
salt-and-pepper noise.

We further illustrate the comparison on the
number of iterations and time between the base-
line and our proposed method in Figure 6. Due to
the replacement on the samples, we have a peak
right after each sampling phase. The energy how-
ever converges immediately, leading to an overall
decreasing trend.

Additionally, we compare our method to the
baseline on a more practical dataset CBSD from
Martin, Fowlkes, Tal, and Malik (2001). This
dataset contains 68 images and the noised ones
with additive white gaussian noise. We use the
level of 5% gaussian noise in this experiment. The
number of labels is 7 for both methods. 5K itera-
tions are performed on the baseline method, while
we set Nit = 10 and Mit = 500 to get a fair
comparison. The ohter parameters are chosen as
λ = 0.25, n = 50 and r = 1. The results are shown
in Figure 8. Our method outpeforms the baseline
among all the images regarding both energy and
peak signal-to-noise ratio (PSNR).

5.3 Manifold-value Denoising
To show the flexibility of our algorithm, we next
evaluate it on a manifold-valued denoising problem
in HSV color space. The hue component of this
space is a circle, i.e., Γ1 = S1, Γ2,Γ3 = [0, 1]. The
data term of this experiment is still a truncated
quadratic energy, where for the hue component

the distance is taken on the circle S1. The input
images (Baker et al., 2011; Martin et al., 2001) are
degraded with the same setting as above.

Both the baseline and our method are imple-
mented with 7 labels. First of all, we evaluate the
impact of the most violated r samples. As shown in
Figure 7, The maximum difference of energy and
memory is only 0.8% and 0.06% respectively. This
hyperparamter has a very limited impact in this
experiment. Therefore, we pick r = 5 in this exper-
iment. To get an equal number of total iterations,
30K iterations are performed on the baseline, while
we set Nit = 100 outer iterations with 300 inner
primal-dual steps for our method. Other parame-
ters are chosen as λ = 0.015 and n = 30. As shown
in Figure 9, our method can achieve a lower energy
than the baseline. Qualitatively, since our method
implements the constraints not only at the labels
but also inbetween, there is less bias compared to
the baseline.

5.4 Optical flow
Given two input images I1, I2, we compute the
optical flow u : Ω → R2 for the label space Γ =
[a, b]2. We use a simple `1-norm for the data term,
i.e. c(x, u(x)) = ‖I2(x) − I1(x + u(x))‖1 and set
the regularization weight as λ = 0.04. The baseline
approach runs for 50K iterations, while we set
Nit = 50 and Mit = 1000 for a fair comparison.
Additionally, we choose n = 20 and r = 1 in
Algorithm 2.

We consider three methods for this experiment:
the baseline, the method from Laude et al. (2016)
and ours. Table 2 summarizes the quantitative
results obtained on the Middleburry dataset (Baker
et al., 2011), while the detailed absolute numbers
can be found in the appendix. This table shows
how our approach performs relatively to the base-
line, i.e. “mean( Ours

Baseline )”, e.g. for three labels our
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Fig. 6 Comparison between the baseline and our approach on a 64 × 64 gray image shown in Figure 5, degraded with
Gaussian and salt-and-papper noise. Our approach finds lower energies in fewer iterations and time than the baseline, which
implements the constraints only at the label points.

#Labels 3 7 11 15 19

Rel. Energy 50.91%(±6.54%) 64.15%(±9.83%) 73.68%(±11.17%) 79.40%(±9.70%) 80.69%(±11.23%)

Rel. Memory 99.84%(±0.75%) 100.02%(±0.07%) 99.99%(±0.04%) 99.99%(±0.03%) 99.98%(±0.04%)

Rel. aep 91.94%(±7.79%) 99.92%(±3.17%) 98.67%(±1.63%) 99.43%(±1.78%) 100.71%(±1.16%)

Rel. aae 82.34%(±8.68%) 95.19%(±5.74%) 94.93%(±6.15%) 96.55%(±5.85%) 100.86%(±3.97%)

Table 2 We compute the optical flow on the Middlebury dataset Baker et al. (2011) using our method and our baseline
for a varying amount of labels. Given an equal number of labels/memory, our sampling strategy performs favorably to an
implementation of the constraints at the labels. The relative numbers of energy, memory, average endpoint error (aep) and
average angular error (aae) are calculated as “mean( Ours

Baseline )” across all 8 datasets. The number in the parentheses
resemble the standard deviation. The detailed table with all results can be found in the appendix.
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Fig. 7 Comparison between different number of most vio-
lated constraints on the energy and memory: (a) the change
of the energy withr = 1 as the basis; (b) the change of mem-
ory with r = 1 as the basis. It can be observed that both
the energy and memory vary very little (0.8% and 0.06%
respectively) regarding different r.

energy is 50.91% of the baseline energy for all 8
datasets, while using 99.84% of the baseline’s mem-
ory and having an average end point error (aep)
and average angular error (aae) of 91.94% and
82.34% of the baseline error metrics, respectively.
To enable qualitative comparison, we visualize in
Figure 10 the results on two of the datasets. The
remaining qualitative results on the Middlebury
data set (Baker et al., 2011) are shown in the
appendix. Our method outperforms the baseline
approach regarding energy under the same number
of labels and requires the same amount of memory.
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Fig. 8 Quantative results on the CBSD dataset (Martin
et al., 2001). We ordered both results from the best to
the worst. The difference is calculated using the formula
ours - baseline

baseline . It is clear that our method is consistently
outperforms the baseline across all images.

Because Laude et al. (2016) uses a tighter relx-
ation on the label space, they can achieve lower
energy with the smaller number labels. However,
it runs out of memory easily while ours owns a
better scability.

6 Conclusion and Limitations
In this paper we made functional lifting methods
more scalable by combining two advances, namely
product-space relaxations (Goldluecke et al., 2013)
and sublabel-accurate discretizations (Möllenhoff
& Cremers, 2017; Vogt et al., 2020). This com-
bination is enabled by adapting a cutting-plane
method from semi-infinite programming (Blanken-
ship & Falk, 1976). This allows an implementation
of sublabel-accurate methods without difficult
epigraphical projections.

Moreover, our approach makes sublabel-
accurate functional-lifting methods applicable to
any cost function in a simple black-box fashion. In
experiments, we demonstrate the effectiveness of
the approach over a baseline based on the product-
space relaxation (Goldluecke et al., 2013) and
provided a proof-of-concept experiment showcasing
the method in the manifold-valued setting.

Future work will concentrate on applying and
adapting the presented framework to solve large
inverse problems in computer vision for which
multiple manifold-valued quantities have to be esti-
mated in a joint fashion. One sample consists of
each variable that needs to be optimized in this sit-
uation. Picking the sample more wisely is an open
issue for the future work.
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A Additional Optical Flow
Results

Table 3 shows the energy and memory requirement
as well as the average endpoint error (aep) and
average angular error (aae) for the baseline, the
method from Laude et al. (2016) and our approach
across different number of labels for all 8 used Mid-
dlebury datasets (Baker et al., 2011). Figure 11
and Figure 12 visualize the remaining optical flow
results on the Middlebury dataset (Baker et al.,
2011) using the baseline, the method from Laude
et al. (2016) and ours for a varying amount of
labels. Note that the approach from Laude et al.
(2016) leverages a tighter discretization on the
label space. Though their approach achieves bet-
ter energy under fewer labels, ours has a better
scability.



Springer Nature 2021 LATEX template

18 A Cutting-Plane Method for Sublabel-Accurate Relaxation of Problems with Product Label Spaces

#Labels 3 11 19

Baseline ECCV Ours Baseline ECCV Ours Baseline ECCV Ours

D
im

et
ro
do

n Energy 8326.07 3233.34 4789.68 4607.09 2805 3982.92 4161.21

OOM

3886.04

Memory [Mb] 244.45 573 245.43 1795.51 10296 1795.76 4583.72 4582.42

aep [px] 1.39 1.15 1.31 1.08 1.15 1.08 1.07 1.08

aae [◦] 0.57 0.45 0.49 0.34 0.48 0.34 0.33 0.34

G
ro
ve
2

Energy 24919.9 9815.9 10873.84 10344.75 8798.9 7679.19 8600.58

OOM

7340.10

Memory [Mb] 330.25 786 331.43 2426.97 13941 2426.33 6220.34 6220.34

aep [px] 1.74 1.41 1.88 1.77 1.64 1.74 1.80 1.78

aae [◦] 0.48 0.26 0.46 0.37 0.34 0.35 0.38 0.37

G
ro
ve
3

Energy 56730.6 14789 31917.5 25943.1 14039 12891.6 16402.7

OOM

10451.8

Memory [Mb] 334.9 783 334.9 2427.3 13926 2427.3 6220.6 6213.1

aep [px] 3.08 1.97 2.58 2.19 2.11 2.09 2.09 2.07

aae [◦] 0.79 0.28 0.65 0.37 0.33 0.31 0.31 0.30

H
yd

ra
ng

ea Energy 36943.87 11598 17622.77 9857.40 5634 6829.89 7793.58

OOM

6416.15

Memory [Mb] 244.27 586 245.29 1795.06 10320 1795.59 4582.12 4582.42

aep [px] 3.01 2.56 2.62 1.89 1.67 1.87 1.78 1.81

aae [◦] 0.85 0.65 0.63 0.26 0.27 0.25 0.23 0.24

R
ub

be
rW

ha
le Energy 13142.73 4526 6069.95 6375.56 3948 5198.42 5502.00

OOM

5020.85

Memory [Mb] 246.38 576 246.52 1796.18 10303 1795.76 4583.00 4582.27

aep [px] 0.94 0.76 0.81 0.71 0.72 0.70 0.68 0.69

aae [◦] 0.60 0.45 0.48 0.39 0.42 0.38 0.37 0.37

U
rb
an

2

Energy 31765.19 10153 18200.39 11083.50 9562 8775.62 7694.50

OOM

6523.03

Memory [Mb] 332.54 760 333.05 2426.33 13863 2426.33 6220.34 6220.34

aep [px] 5.79 6.01 5.38 4.62 5.91 4.51 4.24 4.26

aae [◦] 0.85 0.36 0.72 0.32 0.39 0.28 0.23 0.22

U
rb
an

3

Energy 25991.05 7901 14622.53 10966.07 6696 7809.14 10303.19

OOM

6587.87

Memory [Mb] 332.63 763 328.53 2426.97 13848 2426.79 6220.34 6220.34

aep [px] 4.83 3.91 4.63 4.10 4.30 4.10 4.06 4.11

aae [◦] 0.68 0.32 0.60 0.34 0.37 0.34 0.31 0.32

V
en
us

Energy 24589.15 8203 10429.92 10475.71 4151 8155.96 9775.23

OOM

7897.65

Memory [Mb] 173.16 404 170.64 1263.71 7247 1262.51 3231.28 3230.04

aep [px] 2.63 2.28 2.30 2.08 2.21 2.09 2.08 2.12

aae [◦] 0.74 0.45 0.50 0.32 0.42 0.32 0.31 0.33
Table 3 We compute the optical flow on the Middlebury dataset (Baker et al., 2011) using the baseline, the method from
Laude et al. (2016) and ours for a varying amount of labels. We denote the out of memory error as OOM. Given an equal
number of labels/memory, our sampling strategy performs favorably to an implementation of the constraints at the labels
comparing to the baseline. Additionally, our method obtains a better scalibilty than the one from Laude et al. (2016).
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Fig. 11 Part I: We visualize the optical flow on the Middlebury dataset (Baker et al., 2011) using baseline, the method
from Laude et al. (2016) and ours for a varying amount of labels for qualitative inspection.
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Fig. 12 Part II: We visualize the optical flow on the Middlebury dataset (Baker et al., 2011) using baseline, the method
from Laude et al. (2016) and ours for a varying amount of labels for qualitative inspection.
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