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Robot Assistants in Human Households...

Should:

• Carry out heavy and tedious tasks for humans

• Assist humans in tasks they cannot or do not
want to perform

• Carry out tasks self employed

Should not:

• Hinder humans in any way

• Be annoying (vacuum bedroom while human
sleeps)

Michael Karg STPR for HRI
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Service Robots in Human Households...
• Need to know what their human partner is doing even without

beeing explicitly told
• Need to react adequately to human behavior
• Should learn from observations

Human Belief State Module

The robot should have a module that maintains a belief-state about the
activities of its human partner!

Michael Karg STPR for HRI
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Challenges for a Human Belief State Module

• High uncertainties

• World is not static any more

• Human behaviour is hard to model and interpret

• Human might change his mind or perform several tasks
simultaneously

Idea: Simultaneous Plan Recognition and Monitoring

Probabilistic framework that keeps track of activities that are likely to be
executed and constantly allow for changes.

Michael Karg STPR for HRI
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Cognition-Endabled, Reactive Robot Control

• ROS middleware
• CRAM - Cognitive Robot Abstract Machine for flexible, reliable, and

general robot control
• CPL plan language (based on CommonLISP)
• Knowrob knowledge processing system (based on Prolog)

Image courtesy of Michael Beetz / TUM-IAS group
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The KnowRob Knowledge Processing System

• Work by Moritz Tenorth et al.

• Tools for knowledge acquisition, representation and reasoning that
are tailored to the demands in mobile robotics

• Combines knowledge about the environment, objects, actions etc.
obtained from observations or the Web (OpenCyc, WikiHow, ...)

• Knowledge represented Ontolgies using Web Ontology Language
(OWL)

• Describe relational knowledge using Description Logics

• Allows queries about e.g. likely storage locations of objects based
on the type of object and the container and how to open the specific
container

Michael Karg STPR for HRI
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Semantically Annotated Environment Information

• Objects and environment map represented in knowledge base
• Furniture pieces as object instances inherit properties of their type
• Articulation models for opening containers (Jürgens work)
• Spatio-temporal representation of object-poses

Image courtesy of Moritz Tenorth

Michael Karg STPR for HRI
9



Institute for Advanced Study Technische Universität München

Example-query: Where is the Pancake-Mix?

Image courtesy of Moritz Tenorth
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Spatio-Temporal Plan Representations

• Model for human activities based on observation of human task
performance

• General, humanlike representation of locations based on semantic
environment maps

• Transferable to other environments given a semantic map

• Allow for plan monitoring and -recognition in different environments

Goal:

A general, transferable representation of human tasks that allows a robot
to explain its observations

Michael Karg STPR for HRI
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The TUM Kitchen Dataset
• Labeled motion-tracking data of humans performing a

table-setting-task in a kitchen environment
• 6 objects stored in 3 different locations (cupboard, drawer, stove)

plus goal location (table)
• Labels for actions of both hands and body in general

Michael Karg STPR for HRI
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Spatial Model Generation

• Assumption: Human most of the time is standing still while
interacting with objects

• Estimate positions where human is standing still and interacts with
objects using motion tracking data and labels

• Perform clustering using Expectation Maximization Algorithm

Michael Karg STPR for HRI
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Spatial Model Generation

• Idea: Represent locations relative to furniture objects in the
environment

• Assumption: Storage locations of objects known

• Query KnowRob to find storage locations of objects involved in plan

• Put 2D-Gaussians into reference to nearest storage location
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Spatial Model Generation

• Idea: Represent locations relative to furniture objects in the
environment

• Assumption: Storage locations of objects known
• Query KnowRob to find storage locations of objects involved in plan
• Put 2D-Gaussians into reference to nearest storage location

General Spatial Model of locations a human visits during a table-setting
task.

Michael Karg STPR for HRI
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Spatio-Temporal Plan Representations (STPRs)

• Representation of human activities based on spatial model using
KnowRob-linked locations

• Sequence of n tuples with location li and duration ti :

pn = ((l1, t1), (l2, t2)..., (ln, tn))

• Visualization: Timeline-like representation

Michael Karg STPR for HRI
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Generation of STPRs

• Analyze human motion tracking data with regards to spatial model

• Create sequences of location/duration tuples

Michael Karg STPR for HRI
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Transferring Spatial Models to Other Environments

• Spatial model can be transfered to other environments given a
semantic map and storage locations of objects

• Obtain locations of objects and their orientation from semantic map

• Create gaussians relative to container objects using the learned
relations

Michael Karg STPR for HRI
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Challenges in Plan Recognition

• High uncertainties

• Only partial observations of objects/human position might be
available

• Human might suddenly change its plans or abandom it

• How to detect plan-endings despite only partial observations?

Idea:

Generate a SPRAM module that maintains a posterior probability
distribution about human task execution.

Michael Karg STPR for HRI
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Video: Probabilistic SPRAM Module in Action

Michael Karg STPR for HRI
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A High-Level Particle Filter for SPRAM

• Model estimation using a High-Level Particle Filter

• Describes posterior probability distribution by a set of particles

• Particles include STPRs (with spatial model) as human task models

• Monte-Carlo based filtering approximates the posterior p(xt |z1..t) by:

∫
f (xt) p(xt |z0..t)dxt ≈ 1

P

∑P
L=1 f (x(L)

k )

where xt are the human activites, zi = (locationi , durationi , objectsi)
and f (...) represents the weighting function.

Michael Karg STPR for HRI
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A High-Level Particle Filter for SPRAM
• Random Particle Injection prevents degeneration (human might

change his plan, plan ending might not be detected)
• Weighting function combines locations, durations, object-detections

and overall execution time
• Simultaneous monitoring of most-likely task(s)
• Prediction of places that are likely to be visited by human in the next

time

Michael Karg STPR for HRI
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Work In Progress

• Monitoring of several likely tasks

• Combination of STPRs with partial order-models from KnowRob
would allow for more elaborate reasoning and improve recognition

• Set up realistic ontology about a “normal” day of a human based on
real-world data

• Improve performance using a Relational Particle Filter (Assumption:
Obervations conditionally independet which they are NOT!)

• Include paths between places into prediction of places

Michael Karg STPR for HRI
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Summary

• We use Spatio-Temporal Plan Descriptions (STPR) for plan
monitoring and recognition in human centered environments

• We set up a module that performs Simultaneous Plan Recognition
and Monitoring based on STPRs and semantic environment
information

• STPRs can be used accross environments given a semantic map
(e.g. from RoboEarth)

• First experiments look promising and there is more to come!

Michael Karg STPR for HRI
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The end

Any questions?

Michael Karg STPR for HRI
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Video: The MORSE Simulator

Michael Karg STPR for HRI
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Application Example: Basic Plan Monitoring

• Durations a human spends at places while performing pick and
place tasks should be similar in different environements

• Assumption: Durations a human spends at one location depends on
amount of manipulation that has to be performed

Question

Are durations a human spends at different types of storage locations
comparable?

Michael Karg STPR for HRI
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Application Example: Basic Plan Monitoring

Question

Can we use this information to distinguish a pick and place task from
other tasks?
Michael Karg STPR for HRI
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Application Example: Basic Plan Monitoring

• Use durations from TUM Kitchen Dataset as model and calculate
confidence value based on durations at storage locations

Table setting task:

Cleaning task:

Michael Karg STPR for HRI
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Application Example: Basic Plan Monitoring

• Use durations from TUM Kitchen Dataset as model and calculate
confidence value based on durations at storage locations

Table setting task:

Confidence: 0.593
Cleaning task:

Confidence: 0.350
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Application Example: Basic Plan Monitoring

• Experiments in two different environments (setup 1, setup 2) using
model of TUM Kitchen Dataset

• Recorded motion tracking data of 10 participants performing 3
different tasks:

– Robot-like table setting
– Human-like table setting
– Cleaning task

• Results:
Task cp Setup 1 cp Setup 2

Robot-like table setting 0.524 0.593
Human-like table setting 0.448 0.506
Cleaning task: 0.191 0.350

Michael Karg STPR for HRI
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Application Example: Basic Plan Monitoring
• Use plan patterns to calculate confidence value based in string

comparison methods (e.g. Levenshtein distance)

• A: Initial location of placemat and napkin

• B: Initial location of cutlery

• C: Initial location of plate and cup

• D: Goal location

Table setting task:

Michael Karg STPR for HRI
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Application Example: Basic Plan Monitoring

Use Generalize Levenshtein Similarity to calculate confidence value:

Table-setting model learned from TUM kitchen dataset:
ADADCDBDBDBDCD

Table-setting task observed in environment 2:
ADADCBDBDBDBDCD

Cleaning-task observed in environment 2:
DACDADBC

Michael Karg STPR for HRI
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Application Example: Basic Plan Monitoring

Use Generalize Levenshtein Similarity to calculate confidence value:

Table-setting model learned from TUM kitchen dataset:
ADADCDBDBDBDCD

Table-setting task observed in environment 2:
ADADCBDBDBDBDCD Confidence: 0.943

Cleaning-task observed in environment 2:
DACDADBC Confidence: 0.342

Michael Karg STPR for HRI
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Application Example: Basic Plan Monitoring

Generalized Levenshtein Similarity for 3 different tasks in 2 different
environements using model of table setting task in TUM Kitchen
environment:

Task GLS Setup 1 GLS Setup 2

Robot-like table setting 0.982 0.943
Human-like table setting 0.429 0.429
Cleaning task: 0.357 0.340

Conclusion:

We can distinguish different tasks according to their patterns and
durations using spatio-temporal plan descriptions!

Michael Karg STPR for HRI
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