
Camera Tracking Using Dense 3D
Reconstruction

Erik Bylow

Motivation

- Doing dense 3D-reconstruction in real-time
- Application in augmented reality
- Useful in robotics
- Online shopping

(Loading Video...)

intro.avi
Media File (video/avi)

Outline

- Motivation
- Fusing the depth images into a global model
- Track the depth sensor against this model
- Results and Conclusion

Fusing The Depth Images Into a
Global Model With Known Camera
Poses

Fusing the Depth Maps

Figure: A couple of depth maps which gives the distance between the
camera and the surface

Figure: Example of a reconstructed surface from a depth image

Fusing the Depth Maps

Fused Depth
ImagesFusion

Figure: Two slightlty overlapping depth images are fused into one global
model

Fusing the Depth Maps

- A Signed Distance Function can implicitly represent the surface

- 0.2 -0.05 0.1 0.25Camera

Vertex
surface

Figure: The principle of a signed distance function, one dimensional

Fusing the Depth Maps

- Measure the distance between a vertex and the surface

Camera
Projective
distance

Figure: The projective distance between a vertex and the surface

Fusing the Depth Maps

- Truncated Signed Distance TSDF(x):

TSDF (x) =


−µ if ρ(x) < µ
ρ(x) if |ρ(x)| ≤ µ
µ if ρ(x) > µ

ρ(x) is the projective distance between vertex x and the surface.

Fusing the Depth Maps

Truncated Signed
Distance Function

Weight function

epsilon

Figure: The truncated distance function and how the weight function
looks like

W (x) =


1 if ρ(x) < ε
exp(−σ(ρ(x)− ε)2) if ρ(x) > ε and ρ(x) ≤ µ
0 if ρ(x) > µ

Fusing the Depth Maps

Figure: A 3 dimensional voxel grid where each node contains a truncated
signed distance to the surface and the weight

Fusing the Depth Maps

- Measure the projective distance ρ(x) between each vertex and
the surface

Figure: The projective distance is the distance between the vertex and
the surface along the ray. The distance here is the yellow line

Fusing the Depth Maps

- To fuse the new information into the global model, a running
weighted average is computed for each vertex:

Dk+1(x) =
Dk(x)Wk(x) + d(x)k+1w(x)k+1

Wk(x) + w(x)k+1
(1)

Wk+1(x) = Wk+1(x) + wk(x) (2)

where x is the vertex and wk+1(x) and dk+1(x) are the measured
weight and distance for frame k+1.

Fusing the Depth Maps
- After that all images are fused into the SDF, a visualization is
made
- The zero-crossing is extracted using an algorithm called Marching
Cubes

-

-

-

-

-

+

+

+

+

+

Figure: The principle of marching cube, the surface goes at the
zero-crossing

Fusing the Depth Maps

- In 3D, the principle is the same
- Instead of using lines, triangles are drawn

- +

-

-

+-

Figure: Example of how the triangles can be drawn

Fusing the Depth Maps

Figure: The result of 1376 depth maps of a teddybear

Camera Tracking

How To Track the Camera Against
the Global Model

Camera Tracking

- Now we have a method for fusing the depth images into a global
model when we have the cameras.
- The Signed Distance Function gives a projective point-to-point
measure between each vertex and the surface.
- Define an error metric by using the SDF
- A form of projective point-to-point ICP

Camera Tracking

- ICP stands for Iterative Closest Point
- Given two point-clouds, minimize the error between them

Figure: The red and green initial point-clouds. The blue cloud is the
result of minimizing the error between the red and green

Camera Tracking

- From the model obtained from the first k cameras, find camera
k+1 by minimizing the error.

Figure: Aligning camera k+1 agianst the global model

Camera Tracking

E (ξ) =

∑
i ,j(V (X (ξ, Id(i , j))))2

M
(3)

- M is the number of points in the grid
- V is the signed distance function
- ξ is a 6-dimensional vector representing the translation and
rotation of the camera.
- X (ξ, Id(i , j)) is a reconstructed point by using the depth value
Id(i , j) and the current camera configuartion ξ

Figure: The red point X is reconstructed from the current camera guess,
and the value in the SDF in this point is calculated

Camera Tracking

- Linearizing around the current camera guess ξ0

V (ξ) ≈ V (ξ0) +∇V (ξ0)(ξ − ξ0) (4)

- Plugging this approximation into the error function gives:

E (ξ) ≈
∑

i ,j(V (ξ0) +∇V (ξ0)(ξ − ξ0))2

M
(5)

- This function we want to minimize, hence we want to solve
∇E (ξ) = 0.

Camera Tracking

∇E (ξ) ≈
∑
i ,j

(2V (ξ0)∇V (ξ0) + 2∇V (ξ0)∇V (ξ0)T (ξ − ξ0) = 0

(6)

(
∑
i ,j

(∇V (ξ0)∇V (ξ0)T)ξ = −∇V (ξ0) + (
∑
i ,j

(∇V (ξ0)∇V (ξ0)T)ξ0

(7)

Aξ = b (8)

ξ = A−1b (9)

RESULTS

RESULTS

- This has been tested against different benchmarks.

Absolute Trajectory Error (ATE) Teddy xyz

rmse [m] 0.091 0.023

mean error [m] 0.086 0.021

median error [m] 0.081 0.0184

error std [m] 0.030 0.011

abs trans error min [m] 0.015 0.0009

abs trans error max [m] 0.211 0.065

- It has also been tested for live-data.

(Loading Video...)

Backup.avi
Media File (video/avi)

CONCLUSION

- Using live-data, fusion and tracking goes in real-time, as long as
the tracking is not lost.
- Tracking works fine as long as camera movement are not to big.

FUTURE WORK

- Next step is to look at different error-metrics such as
point-to-plane for instance.
- Looking at different norms, such as L1.
- Compairing to Kinect Fusion
- Speed up the code as much as possible.

	Fusion
	Camera Tracking
	RESULTS

