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1. 

 Örebro and its University 
o 59°16' north, population ∼130k 
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1. 

 Örebro and its University 
o 59°16' north, population ∼130k 
o ∼ 17k students, ∼1200 employees,  
o 7 schools, 15 research centers 

 

 Center for  
Applied Autonomous Sensor Systems 
o established in 1998 
o largest Swedish research center  

in robotics 
o two research labs 

» Cognitive Robotic Systems lab (CRS) 
» Mobile Robotics and Olfaction lab (MRO) 

AASS@Örebro University 
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1. 

 

 General Focus ... 
o perception systems for mobile robots  

(fundamentals for autonomous and safe operation) 

 Objective ... 
o advance theoretical and practical foundations that allow mobile 

robots to operate in an unconstrained, dynamic environment 

 Approaches are Characterized by ... 
o fusion of different sensor modalities 
o timely integration into industrial demonstrators 

MR&O Lab Profile 

http://aass.oru.se/Research/mro/ 

http://aass.oru.se/Research/mro/�
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1. 

 D1 – Mobile Robotics 
o for autonomous and safe long-term operation in the real world 
o technology transfer through collaborative projects with industrial 

partners in the area of logistics robots 
o examples: autonomous forklifts and autonomous wheel loaders 

MR&O Lab Profile – Two Major Research Directions 
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1. 

 Forklift Trucks (Danaher Motion, Linde MH, Stora Enso) 

 

MR&O Lab Profile – Two Major Research Directions 

speed x 2 
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1. 

 Forklift Trucks (Danaher Motion, Linde MH, Stora Enso) 
o environment with a dynamic "background" 

Professional Service Robots for Transport Applications 
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1. 

 Forklift Trucks (Danaher Motion, Linde MH, Stora Enso) 
o environment with a dynamic "background" 
o requires 3D sensing 

Professional Service Robots for Transport Applications 

1 meter “drop” to 
the railway tracks 
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1. 

 Forklift Trucks (Danaher Motion, Linde MH, Stora Enso) 

 

Professional Service Robots for Transport Applications 

speed x 1 
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1. 

 Forklift Trucks (Danaher Motion, Linde MH, Stora Enso) 

 Wheel Loaders (VolvoCE, VolvoTech, NCC) 

 

MR&O Lab Profile – Two Major Research Directions 
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1. 

 Forklift Trucks (Danaher Motion, Linde MH, Stora Enso) 

 Wheel Loaders (VolvoCE, VolvoTech, NCC) 

 Mining Vehicles (Atlas Copco, Fotonic) 

 

MR&O Lab Profile – Two Major Research Directions 

picture from the actual mine! 
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 Forklift Trucks (Danaher Motion, Linde MH, Stora Enso) 

 Wheel Loaders (VolvoCE, VolvoTech, NCC) 

 Mining Vehicles (Atlas Copco, Fotonic) 

 Hospital Transport Vehicles (RobCab) 
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1. 

 Forklift Trucks (Danaher Motion, Linde MH, Stora Enso) 

 Wheel Loaders (VolvoCE, VolvoTech, NCC) 

 Mining Vehicles (Atlas Copco, Fotonic) 

 Hospital Transport Vehicles (RobCab) 

 Garbage Bin Collection and Cleaning (RoboTech) 

MR&O Lab Profile – Two Major Research Directions 
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1. 

 D2 – Artificial and Mobile Robot Olfaction 
o Artificial Olfaction = gas sensing with artificial sensor systems 
o we study particularly open sampling systems def  
o develop "electronic nose" towards a "mobile nose"  
o examples: gas sensor networks (air pollution monitoring), 

inspection robots (landfill site surveillance, gas leak localization) 
 

MR&O Lab Profile – Two Major Research Directions 
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1. 

 Forklift Trucks (Danaher Motion, Linde MH, Stora Enso) 

 Wheel Loaders (VolvoCE, VolvoTech, NCC) 

 Mining Vehicles (Atlas Copco, Fotonic) 

 Hospital Transport Vehicles (RobCab) 

 Garbage Bin Collection and Cleaning (RoboTech) 
o ... and pollution monitoring 

MR&O Lab Profile – Two Major Research Directions 
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1. 

 Forklift Trucks (Danaher Motion, Linde MH, Stora Enso) 

 Wheel Loaders (VolvoCE, VolvoTech, NCC) 

 Mining Vehicles (Atlas Copco, Fotonic) 

 Hospital Transport Vehicles (RobCab) 

 Garbage Bin Collection and Cleaning (RoboTech) 

 Landfill Site Inspection (Atleverket) 

 

Mobile Work Machines 
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Field Robotics and  
3D Perception Projects at AASS 
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2. 

 History of "Field Robotics" Projects 
o NSAL (2005–2012) AASS (CRS Lab), Atlas Copco 

» behavior-based autonomous LHD vehicle navigation in mines 
» main contribution 

• mixed autonomous/teleoperated 
control  
(now a commercial product) 

Field Robotics and 3D Perception Projects at AASS 
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2. 

 History of "Field Robotics" Projects 
o NSAL (2005–2012) 
o MALTA (2008–2011) AASS, HiH, Kollmorgen, Linde Material Handling, Stora Enso Logistics 

» Multiple autonomous forklifts for loading and transportation applications 
» main contribution 

• navigation without reflectors 
• autonomous paper reel handling 

Field Robotics and 3D Perception Projects at AASS 



 

# 42 © A. J. Lilienthal et al. (Jul 26, 2012) 

2. 

 History of "Field Robotics" Projects 
o NSAL (2005–2012) 
o MALTA (2008–2011)  SAVIE (2011–2014) AASS, Kollmorgen, Linde MH 

» Multiple autonomous forklifts for loading and transportation applications 
» Safe autonomous industrial vehicles for industrial environments 
» topics  

• localization w minimum infrastructure (single fish-eye camera, 2D LRF) 
• obstacle detection/avoidance at "high speed" 

Field Robotics and 3D Perception Projects at AASS 
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2. 

 History of "Field Robotics" Projects 
o NSAL (2005–2012) 
o MALTA (2008–2011)  SAVIE (2011–2014) AASS, Kollmorgen, Linde MH 

» Multiple autonomous forklifts for loading and transportation applications 
» Safe autonomous industrial vehicles for industrial environments 
» topics  

• localization w minimum infrastructure (single fish-eye camera, 2D LRF) 
• detection and distance prediction of humans with reflective vest 

Field Robotics and 3D Perception Projects at AASS 
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2. 

 History of "Field Robotics" Projects 
o NSAL (2005–2012) 
o MALTA (2008–2011)  SAVIE (2011–2014) AASS, Kollmorgen, Linde MH 

» Multiple autonomous forklifts for loading and transportation applications 
» Safe autonomous industrial vehicles for industrial environments 
» topics  

• localization w minimum infrastructure (single fish-eye camera, 2D LRF) 
• obstacle detection/avoidance at "high speed" 
• trajectory prediction / path planning, with traffic rules ( flexibility + predictability) 

 

Field Robotics and 3D Perception Projects at AASS 
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2. 

 History of "Field Robotics" Projects 
o NSAL (2005–2012) 
o MALTA (2008–2011)  SAVIE (2011–2014) 
o SAUNA (2011–2014) AASS, Atlas-Copco, Kollmorgen, Fotonic 

» logistics + safe autonomous vehicle navigation in dynamic environments 

Field Robotics and 3D Perception Projects at AASS 
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2. 

 History of "Field Robotics" Projects 
o NSAL (2005–2012) 
o MALTA (2008–2011)  SAVIE (2011–2014) 
o SAUNA (2011–2014) AASS, Atlas-Copco, Kollmorgen, Fotonic 

» logistics + safe autonomous vehicle navigation in dynamic environments 
• Objective 2 – Rich 3D Perception 

• compact 3D representation, registration on compact 3D representations (localization), 
mapping in dynamic environments, identification of drivable areas, 3D HMT SLAM 

Field Robotics and 3D Perception Projects at AASS 
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2. 

 History of "Field Robotics" Projects 
o NSAL (2005–2012) 
o MALTA (2008–2011)  SAVIE (2011–2014) 
o SAUNA (2011–2014) AASS, Atlas-Copco, Kollmorgen, Fotonic 

» logistics + safe autonomous vehicle navigation in dynamic environments 
• Objective 2 – Rich 3D Perception 
• Objective 1 – Safe Motion 

• collision avoidance, trajectory modification, tracking of vehicles/humans, real-time response 

Field Robotics and 3D Perception Projects at AASS 
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2. 

 History of "Field Robotics" Projects 
o NSAL (2005–2012) 
o MALTA (2008–2011)  SAVIE (2011–2014) 
o SAUNA (2011–2014) AASS, Atlas-Copco, Kollmorgen, Fotonic 

» logistics + safe autonomous vehicle navigation in dynamic environments 
• Objective 2 – Rich 3D Perception 
• Objective 1 – Safe Motion 
• Objective 3 – Hybrid Planning 

• automate mission planning process (mission + motion planning), take into account multiple 
types of requirements/constraints, incomplete prior knowledge 

Field Robotics and 3D Perception Projects at AASS 
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2. 

 History of "Field Robotics" Projects 
o NSAL (2005–2012) 
o MALTA (2008–2011)  SAVIE (2011–2014) 
o SAUNA (2011–2014) AASS, Atlas-Copco, Kollmorgen, Fotonic 

» logistics + safe autonomous vehicle navigation in dynamic environments 
• requirements elicited from industrial partners  
•  solutions integrated into a "SAUNA System" 

Field Robotics and 3D Perception Projects at AASS 

x 3 
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2. 

 History of "Field Robotics" Projects 
o NSAL (2005–2012) 
o MALTA (2008–2011)  SAVIE (2011–2014) 
o SAUNA (2011–2014) AASS, Atlas-Copco, Kollmorgen, Fotonic 

» logistics + safe autonomous vehicle navigation in dynamic environments 
» challenges 

• fleets of mixed autonomous and human-operated vehicles 
• high speeds (up to 30-40 km/h) 
• rich 3-D perception for enhanced safety and performance 
• automated mission planning capabilities at several levels of abstraction 
• collision and deadlock avoidance throughout mission planning, trajectory 

computation and execution 
• flexible operation, accommodation of run-time changes 

Field Robotics and 3D Perception Projects at AASS 
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2. 

 History of "Field Robotics" Projects 
o NSAL (2005–2012) 
o MALTA (2008–2011)  SAVIE (2011–2014) 
o SAUNA (2011–2014) AASS, Atlas-Copco, Kollmorgen, Fotonic 

» logistics + safe autonomous vehicle navigation in dynamic environments 
» challenges  requirements elicititation from industrial partners 

• fleets of mixed autonomous and human-operated vehicles 
• high speeds (up to 30-40 km/h) 
• rich 3-D perception for enhanced safety and performance 
• automated mission planning capabilities at several levels of abstraction 
• collision and deadlock avoidance throughout mission planning, trajectory 

computation and execution 
• flexible operation, accommodation of run-time changes 

Field Robotics and 3D Perception Projects at AASS 
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2. 

 History of "Field Robotics" Projects 
o NSAL (2005–2012) 
o MALTA (2008–2011)  SAVIE (2011–2014) 
o SAUNA (2011–2014) 
o All-4-eHAM (2009–2012) AASS, Volvo CE, NCC Roads 

» Autonomous wheel loaders for efficient handling of heterogeneous materials 

Field Robotics and 3D Perception Projects at AASS 
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2. 

 History of "Field Robotics" Projects 
o NSAL (2005–2012) 
o MALTA (2008–2011)  SAVIE (2011–2014) 
o SAUNA (2011–2014) 
o All-4-eHAM (2009–2012) AASS, Volvo CE, NCC Roads 

» Autonomous wheel loaders for efficient handling of heterogeneous materials 
• robust autonomous operation in 3D, slowly-changing terrain 

• pile detection and attack pose estimation 
• scanning while moving 
• obstacle and people detection in 3D data 

Field Robotics and 3D Perception Projects at AASS 
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2. 

 History of "Field Robotics" Projects 
o NSAL (2005–2012) 
o MALTA (2008–2011)  SAVIE (2011–2014) 
o SAUNA (2011–2014) 
o All-4-eHAM (2009–2012)  ALLO (2012–2015) AASS, Volvo CE, NCC Roads 

» Autonomous wheel loaders for efficient handling of heterogeneous materials 
» Automomous Long-Term Load-Haul-Dump Operations 

• quantitative evaluation of pile handling and maintenance 
• long-term strategies for pile handling 
• task planning and scheduling  

(gravel recipes for asphalt production) 
• maintenance of 3D maps  

in dynamic environments 
• path planning and scheduling  

in dynamic environments 
• map quality assurance (certification) 

Field Robotics and 3D Perception Projects at AASS 
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2. 

 History of "Field Robotics" Projects 
o NSAL (2005–2012) 
o MALTA (2008–2011)  SAVIE (2011–2014) 
o SAUNA (2011–2014) 
o All-4-eHAM (2009–2012)  ALLO (2012–2015) 
o RobLog (2011–2015) AASS, Vollers, Qubica, BIBA, Jacobs, Pisa, HSRT 

» Unloading Containers (Cognitive Robot for Automation of Logistic Processes) 

Field Robotics and 3D Perception Projects at AASS 
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2. 

 History of "Field Robotics" Projects 
o NSAL (2005–2012) 
o MALTA (2008–2011)  SAVIE (2011–2014) 
o SAUNA (2011–2014) 
o All-4-eHAM (2009–2012)  ALLO (2012–2015) 
o RobLog (2011–2015) AASS, Vollers, Qubica, BIBA, Jacobs, Pisa, HSRT 

» Unloading Containers 
• industrial scenario (coffee sacks) 

Field Robotics and 3D Perception Projects at AASS 
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2. 

 History of "Field Robotics" Projects 
o NSAL (2005–2012) 
o MALTA (2008–2011)  SAVIE (2011–2014) 
o SAUNA (2011–2014) 
o All-4-eHAM (2009–2012)  ALLO (2012–2015) 
o RobLog (2011–2015) AASS, Vollers, Qubica, BIBA, Jacobs, Pisa, HSRT 

» Unloading Containers 
• industrial scenario (coffee sacks) 
• advanced scenario 

Field Robotics and 3D Perception Projects at AASS 
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2. 

 History of "Field Robotics" Projects 
o NSAL (2005–2012) 
o MALTA (2008–2011)  SAVIE (2011–2014) 
o SAUNA (2011–2014) 
o All-4-eHAM (2009–2012)  ALLO (2012–2015) 
o RobLog (2011–2015) AASS, Vollers, Qubica, BIBA, Jacobs, Pisa, HSRT 

» Unloading Containers 
• industrial scenario (coffee sacks) 
• advanced scenario 

Field Robotics and 3D Perception Projects at AASS 
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2. 

 History of "Field Robotics" Projects 
o NSAL (2005–2012) 
o MALTA (2008–2011)  SAVIE (2011–2014) 
o SAUNA (2011–2014) 
o All-4-eHAM (2009–2012)  ALLO (2012–2015) 
o RobLog (2011–2015) AASS, Vollers, Qubica, BIBA, Jacobs, Pisa, HSRT 

» Unloading Containers 
• industrial scenario (coffee sacks) 
• advanced scenario 

Field Robotics and 3D Perception Projects at AASS 
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2. 

 History of "Field Robotics" Projects 
o NSAL (2005–2012) 
o MALTA (2008–2011)  SAVIE (2011–2014) 
o SAUNA (2011–2014) 
o All-4-eHAM (2009–2012)  ALLO (2012–2015) 
o RobLog (2011–2015) 
o SPENCER (2013–2016) AASS, TUM, Twente, CNRS, RWTH, BlueBotics, KLM, Freiburg 

» group-friendly navigation 

Field Robotics and 3D Perception Projects at AASS 



 

# 74 © A. J. Lilienthal et al. (Jul 26, 2012) 

2. 

 History of "Field Robotics" Projects 
o NSAL (2005–2012) 
o MALTA (2008–2011)  SAVIE (2011–2014) 
o SAUNA (2011–2014) 
o All-4-eHAM (2009–2012)  ALLO (2012–2015) 
o RobLog (2011–2015) 
o SPENCER (2013–2016) AASS, TUM, Twente, CNRS, RWTH, BlueBotics, KLM, Freiburg 

» group-friendly navigation 
» identification of likely spokespersons 

Field Robotics and 3D Perception Projects at AASS 
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2. 

 History of "Field Robotics" Projects 
o NSAL (2005–2012) 
o MALTA (2008–2011)  SAVIE (2011–2014) 
o SAUNA (2011–2014) 
o All-4-eHAM (2009–2012)  ALLO (2012–2015) 
o RobLog (2011–2015) 
o SPENCER (2013–2016) AASS, TUM, Twente, CNRS, RWTH, BlueBotics, KLM, Freiburg 

» group-friendly navigation 
» identification of likely spokespersons 
» Schengen fast track scenario 

Field Robotics and 3D Perception Projects at AASS 
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2. 

 History of "Field Robotics" Projects 
o NSAL (2005–2012) 
o MALTA (2008–2011)  SAVIE (2011–2014) 
o SAUNA (2011–2014) 
o All-4-eHAM (2009–2012)  ALLO (2012–2015) 
o RobLog (2011–2015) 
o SPENCER (2013–2016) AASS, TUM, Twente, CNRS, RWTH, BlueBotics, KLM, Freiburg 

» challenges 
• localization and mapping in dynamic and social environments 

• identify dynamics of objects 
•  robust and precise localization in highly dynamic environments 

• learning of socially annotated maps 
• related to spatial event distribution models 

Field Robotics and 3D Perception Projects at AASS 
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Rich 3D for Industrial Applications 
 
 

3 
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3. 

 3D Perception Requirements 
o ... depend heavily on the application scenario, e.g. SAUNA, RobLog 
o  we consider also an inspection robot that senses 

» range 
» colour 
» temperature 
» gas 
» air flow 
» humidity 
 

3D Perception Requirements 
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3. 

 3D Perception Requirements 
o detailed model (detailed "enough") 

» SAUNA: allows extraction of drivable area at reasonably high speeds 

3D Perception Requirements 
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3. 

 3D Perception Requirements 
o detailed model (detailed "enough") 

» SAUNA: allows extraction of drivable area at reasonably high speeds 
» RobLog: allows identification of objects from partial views (occlusion) 

•  allows inference (predicting future states) 

3D Perception Requirements 
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3. 

 3D Perception Requirements 
o detailed model (detailed "enough") 

» SAUNA: allows extraction of drivable area at reasonably high speeds 
» RobLog: allows identification of objects from partial views (occlusion) 

•  allows inference (predicting future states) 
» Inspection Robot: allows for detection of changes that are of potential 

interest to human decision makers 

3D Perception Requirements 
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3. 

 3D Perception Requirements 
o detailed model 
o dense (quasi-continuous) model from sparse measurements 

» SAUNA: model uncertainty between distant measurements 
» RobLog: dense enough for object recognition 
» Inspection Robot: change detection for arbitrary points in space from non-

aligned measurements 

3D Perception Requirements 
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3. 

 3D Perception Requirements 
o detailed model 
o dense (quasi-continuous) model from sparse measurements 
o compact model 

» often large amount of data 
» compact  memory requirements do not scale with time but with the size 

of the environment  
» queries often faster in a compact model 
»  compact yet truthful and versatile representation required 

3D Perception Requirements 
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3. 

 3D Perception Requirements 
o detailed model 
o dense (quasi-continuous) model from sparse measurements 
o compact model 

» SAUNA: allows for real-time and long-term operation 
» SAUNA: all operations need to be carried out on the compact model 

3D Perception Requirements 
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3. 

 3D Perception Requirements 
o detailed model 
o dense (quasi-continuous) model from sparse measurements 
o compact model 

» SAUNA: allows for real-time and long-term operation 
» SAUNA: all operations need to be carried out on the compact model 
» Inspection Robot: detect changes compared to old model 

3D Perception Requirements 

weeks or months 
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3. 

 3D Perception Requirements 
o detailed model 
o dense (quasi-continuous) model from sparse measurements 
o compact model 
o probabilistic model 

» model should represent uncertainty about the state of the world 
» can be in a separate layer 

3D Perception Requirements 
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3. 

 3D Perception Requirements 
o detailed model 
o dense (quasi-continuous) model from sparse measurements 
o compact model 
o probabilistic model 
o layered model 

» layers carry most of the meaning 
• object labels + corresponding uncertainty 
• semantic categories + corresponding uncertainty 
• distribution of social behaviours, temperature,  

colour, gas, ... 

3D Perception Requirements 
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3. 

 3D Perception Requirements 
o detailed model 
o dense (quasi-continuous) model from sparse measurements 
o compact model 
o probabilistic model 
o layered model 

» layers carry most of the meaning 
• object labels + corresponding uncertainty 
• semantic categories + corresponding uncertainty 
• distribution of social behaviours, temperature,  

colour, gas, ... 

3D Perception Requirements 

fresh air 

Ethanol 

2-propanol 
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3. 

 3D Perception Requirements 
o detailed model 
o dense (quasi-continuous) model from sparse measurements 
o compact model 
o probabilistic model 
o layered model 
o maintenance of model in a dynamic environment 

» online update 
» representation of  

changes over time 
» representation of  

different dynamics 

3D Perception Requirements 
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3. 

 3D Perception Requirements 
o detailed model 
o dense (quasi-continuous) model from sparse measurements 
o compact model 
o probabilistic model 
o layered model 
o maintenance of model in a dynamic environment 

» online update 
» representation of  

changes over time 
» representation of  

different dynamics 
• changes against  

different time scales 

3D Perception Requirements 

All Levels 
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3. 

 3D Perception Requirements 
o detailed model 
o dense (quasi-continuous) model from sparse measurements 
o compact model 
o probabilistic model 
o layered model 
o maintenance of model in a dynamic environment 

» online update 
» representation of  

changes over time 
» representation of  

different dynamics 
• changes against  

different time scales 

3D Perception Requirements 

Less Dynamic 
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3. 

 3D Perception Requirements 
o detailed model 
o dense (quasi-continuous) model from sparse measurements 
o compact model 
o probabilistic model 
o layered model 
o maintenance of model in a dynamic environment 

» online update 
» representation of  

changes over time 
» representation of  

different dynamics 
• changes against  

different time scales 

3D Perception Requirements 

Completely Static 
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3. 

 3D Perception Requirements 
o detailed model 
o dense (quasi-continuous) model from sparse measurements 
o compact model 
o probabilistic model 
o layered model 
o maintenance of model in a dynamic environment 

» online update 
» representation of  

changes over time 
» representation of  

different dynamics 
• changes against  

different time scales 

3D Perception Requirements 

Only Dynamic 
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3. 

 3D Perception Requirements 
o detailed model 
o dense (quasi-continuous) model from sparse measurements 
o compact model 
o probabilistic model 
o layered model 
o maintenance of model in a dynamic environment 

» online update 
» representation of changes over time 
» representation of different dynamics 

• changes against different time scales 
• model different dynamics explicitly (static, fully dynamic, alternating, semi-static, ...) 

3D Perception Requirements 
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3. 

 3D Perception Requirements 
o detailed model 
o dense (quasi-continuous) model from sparse measurements 
o compact model 
o probabilistic model 
o layered model 
o maintenance of model in a dynamic environment 

» online update 
» representation of changes over time 
» representation of different dynamics 

o  use of dynamic map 
» discard dynamic areas for localization  

• assign lower weight depending on dynamics and last observation 
» take dynamics into account for planning and scheduling 

3D Perception Requirements 
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3. 

 3D Perception Requirements 
o detailed model 
o dense (quasi-continuous) model from sparse measurements 
o compact model 
o probabilistic model 
o layered model 
o maintenance and use of model in a dynamic environment 
o sensor planning 

» Inspection Robot: build dense model that allows to detect changes at 
arbitrary points in space 

3D Perception Requirements 
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3. 

 3D Perception Requirements 
o detailed model 
o dense (quasi-continuous) model from sparse measurements 
o compact model 
o probabilistic model 
o layered model 
o maintenance and use of model in a dynamic environment 
o sensor planning 
o scanning-while-moving 

» ALL-4-eHAM  necessary? 

3D Perception Requirements 
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3. 

 3D Perception Requirements 
o detailed model 
o dense (quasi-continuous) model from sparse measurements 
o compact model 
o probabilistic model 
o layered model 
o maintenance and use of model in a dynamic environment 
o sensor planning 
o scanning-while-moving 
o robustness 

» outdoor conditions 
» graceful degradation wrt errors 

3D Perception Requirements 
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3. 

 3D Perception Requirements  Does Rich 3D Help? 
o detailed model (detailed "enough") 

» extraction of drivable area, object recognition, change detection 
o dense (quasi-continuous) model from sparse measurements 

» change detection for arbitrary points in space 
o compact model 

» compact yet truthful representation  real-time and long-term operation 
o probabilistic model 

» represent uncertainty about the state of the world 
o layered model 

» layers often carry most of map meaning 
o maintenance and use of model in a dynamic environment 

» representation of changes and dynamics, use for localization and planning 
o sensor planning 
o robustness 

Rich 3D? 
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3. 

 3D Perception Requirements  Does Rich 3D Help? 
o detailed model (detailed "enough") 

» extraction of drivable area, object recognition, change detection 
o dense (quasi-continuous) model from sparse measurements 

» change detection for arbitrary points in space 
o compact model 

» compact yet truthful representation  real-time and long-term operation 
o probabilistic model 

» represent uncertainty about the state of the world 
o layered model 

» layers often carry most of map meaning 
o maintenance and use of model in a dynamic environment 

» representation of changes and dynamics, use for localization and planning 
o sensor planning 
o robustness 

Rich 3D? 

better extrapolation on sparse measurements 

additional information  key points 

rich 3D models may often be layered maps 

also required for rich 3D 

e.g. localization in feature-sparse areas 

longer range, richer information 
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3D-NDT Representation 

4 
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4. 

 (2D) Normal Distributions Transform (NDT) 
o originally developed for 2D scan registration [Biber et al., 2003] 
o sparse (grid-based) Gaussian mixture model 

» space is partitioned in disjoint voxels (cells) 
» Gaussian pdf, parametrized by a Covariance matrix and mean used to 

represent space in each cell 

3D-NDT Representation 
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4. 

 3D Normal Distributions Transform (3D-NDT) 
o extension to 3D scan registration [Magnusson et al., 2007] 
o 3D-NDT is 

» sparse 

3D-NDT Representation 
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4. 

 3D Normal Distributions Transform (3D-NDT) 
o extension to 3D scan registration [Magnusson et al., 2007] 
o 3D-NDT is 

» sparse 
» useful for 3D registration 

• Point-to-NDT 
[Magnusson et al., 2007] 

3D-NDT Representation 
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4. 

 3D Normal Distributions Transform (3D-NDT) 
o extension to 3D scan registration [Magnusson et al., 2007] 
o 3D-NDT is 

» sparse 
» useful for 3D registration 

• Point-to-NDT 
[Magnusson et al., 2007] 

• NDT-to-NDT 
[Stoyanov et al., 2012] 

3D-NDT Representation 
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4. 

 3D Normal Distributions Transform (3D-NDT) 
o extension to 3D scan registration [Magnusson et al., 2007] 
o 3D-NDT is 

» sparse 
» useful for 3D registration 
» useful for change detection 

3D-NDT Representation 
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4. 

 3D Normal Distributions Transform (3D-NDT) 
o extension to 3D scan registration [Magnusson et al., 2007] 
o 3D-NDT is 

» sparse 
» useful for 3D registration 
» useful for change detection 
» useful for place recognition 

[Magnusson et al., 2009] 

3D-NDT Representation 
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Rich 3D Perception – 
Recent and Ongoing Work 

 
 

5 
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NDT-to-NDT Registration 
 

5 
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5. 

 NDT-2-NDT Registration [Stoyanov et al., 2012] 
o registration 

Rich 3D Perception Work at AASS 



 

# 127 © A. J. Lilienthal et al. (Jul 26, 2012) 

5. 

 NDT-2-NDT Registration [Stoyanov et al., 2012] 
o registration with ICP (iterative closest point) 

Rich 3D Perception Work at AASS 

point-to-
NDT (P2D) 

NDT-to-
NDT (D2D) ICP 
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5. 

 NDT-2-NDT Registration [Stoyanov et al., 2012] 
o registration with ICP (iterative closest point) 

Rich 3D Perception Work at AASS 
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5. 

 NDT-2-NDT Registration [Stoyanov et al., 2012] 
o registration with ICP (iterative closest point) 

Rich 3D Perception Work at AASS 
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5. 

 NDT-2-NDT Registration [Stoyanov et al., 2012] 
o registration with ICP (iterative closest point) 

Rich 3D Perception Work at AASS 
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5. 

 NDT-2-NDT Registration [Stoyanov et al., 2012] 
o registration with ICP (iterative closest point) 

Rich 3D Perception Work at AASS 
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5. 

 NDT-2-NDT Registration [Stoyanov et al., 2012] 
o registration with ICP (iterative closest point) 

Rich 3D Perception Work at AASS 
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5. 

 NDT-2-NDT Registration [Stoyanov et al., 2012] 
o registration with ICP (iterative closest point) 

Rich 3D Perception Work at AASS 
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5. 

 NDT-2-NDT Registration [Stoyanov et al., 2012] 
o registration with ICP (iterative closest point) 
o registration with 3D-NDT (Point-to-NDT) 

Rich 3D Perception Work at AASS 

point-to-
NDT (P2D) 

NDT-to-
NDT (D2D) ICP 
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5. 

 NDT-2-NDT Registration [Stoyanov et al., 2012] 
o registration with ICP (iterative closest point) 
o registration with 3D-NDT (Point-to-NDT) 

Rich 3D Perception Work at AASS 
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5. 

 NDT-2-NDT Registration [Stoyanov et al., 2012] 
o registration with ICP (iterative closest point) 
o registration with 3D-NDT (Point-to-NDT) 

Rich 3D Perception Work at AASS 
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5. 

 NDT-2-NDT Registration [Stoyanov et al., 2012] 
o registration with ICP (iterative closest point) 
o registration with 3D-NDT (Point-to-NDT) 

Rich 3D Perception Work at AASS 
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5. 

 NDT-2-NDT Registration [Stoyanov et al., 2012] 
o registration with ICP (iterative closest point) 
o registration with 3D-NDT (Point-to-NDT) 

Rich 3D Perception Work at AASS 
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5. 

 NDT-2-NDT Registration [Stoyanov et al., 2012] 
o registration with ICP (iterative closest point) 
o registration with 3D-NDT (Point-to-NDT) 

Rich 3D Perception Work at AASS 
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5. 

 NDT-2-NDT Registration [Stoyanov et al., 2012] 
o registration with ICP (iterative closest point) 
o registration with 3D-NDT (Point-to-NDT) 

Rich 3D Perception Work at AASS 
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5. 

 NDT-2-NDT Registration [Stoyanov et al., 2012] 
o registration with ICP (iterative closest point) 
o registration with 3D-NDT (Point-to-NDT) 

Rich 3D Perception Work at AASS 
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5. 

 NDT-2-NDT Registration [Stoyanov et al., 2012] 
o registration with ICP (iterative closest point) 
o registration with 3D-NDT (Point-to-NDT) 
o registration with 3D-NDT (NDT-to-NDT) 

 

Rich 3D Perception Work at AASS 

point-to-
NDT (P2D) 

NDT-to-
NDT (D2D) ICP 
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5. 

 NDT-2-NDT Registration [Stoyanov et al., 2012] 
o registration with ICP (iterative closest point) 
o registration with 3D-NDT (Point-to-NDT) 
o registration with 3D-NDT (NDT-to-NDT) 

 

Rich 3D Perception Work at AASS 
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5. 

 NDT-2-NDT Registration [Stoyanov et al., 2012] 
o registration with ICP (iterative closest point) 
o registration with 3D-NDT (Point-to-NDT) 
o registration with 3D-NDT (NDT-to-NDT) 

 

Rich 3D Perception Work at AASS 
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5. 

 NDT-2-NDT Registration [Stoyanov et al., 2012] 
o registration with ICP (iterative closest point) 
o registration with 3D-NDT (Point-to-NDT) 
o registration with 3D-NDT (NDT-to-NDT) 

 

Rich 3D Perception Work at AASS 
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5. 

 NDT-2-NDT Registration [Stoyanov et al., 2012] 
o registration with ICP (iterative closest point) 
o registration with 3D-NDT (Point-to-NDT) 
o registration with 3D-NDT (NDT-to-NDT) 

 

Rich 3D Perception Work at AASS 
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5. 

 NDT-2-NDT Registration [Stoyanov et al., 2012] 
o registration with ICP (iterative closest point) 
o registration with 3D-NDT (Point-to-NDT) 
o registration with 3D-NDT (NDT-to-NDT) 

» compute 3D-NDT for both scans  MNDT(P1), MNDT(P2) 
» compute likelihood of MNDT(P2) given MNDT(P1) 
» find (local) maximum using Newton's method and analytical derivative 

expressions 
 

 

Rich 3D Perception Work at AASS 
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5. 

 NDT-2-NDT Registration [Stoyanov et al., 2012] 
o registration with ICP (iterative closest point) 
o registration with 3D-NDT (Point-to-NDT) 
o registration with 3D-NDT (NDT-to-NDT) 

» compute 3D-NDT for both scans  MNDT(P1), MNDT(P2) 
» compute likelihood of MNDT(P2) given MNDT(P1) 
» find (local) maximum using Newton's method and analytical derivative 

expressions 
» hot start  

 
 

Rich 3D Perception Work at AASS 
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5. 

 NDT-2-NDT Registration [Stoyanov et al., 2012] 
o registration with ICP (iterative closest point) 
o registration with 3D-NDT (Point-to-NDT) 
o registration with 3D-NDT (NDT-to-NDT) 

» compute 3D-NDT for both scans  MNDT(P1), MNDT(P2) 
» compute likelihood of MNDT(P2) given MNDT(P1) 
» find (local) maximum using Newton's method and analytical derivative 

expressions 
» hot start  

• derive a simple initialization, based on the 3D-NDT Histogram 
• look for transformation resulting in best overlap between histograms. 
• select one or several of the best initial guesses 
 

 

Rich 3D Perception Work at AASS 
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5. 

 NDT-2-NDT Registration [Stoyanov et al., 2012] 
o tested over two data sets — indoor and outdoor, 3D aLRF 

 

Rich 3D Perception Work at AASS 

indoor: outdoor:  

"AASS Loop" "AASS Loop" 
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5. 

 NDT-2-NDT Registration [Stoyanov et al., 2012] 
o results 

» translation deviation from known ground truth transformations 

Rich 3D Perception Work at AASS 
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5. 

 NDT-2-NDT Registration [Stoyanov et al., 2012] 
o results 

» translation deviation from known ground truth transformations 

Rich 3D Perception Work at AASS 
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5. 

 NDT-2-NDT Registration [Stoyanov et al., 2012] 
o results 

» translation deviation from known ground truth transformations 

Rich 3D Perception Work at AASS 
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5. 

 NDT-2-NDT Registration [Stoyanov et al., 2012] 
o results 

» translation deviation from known ground truth transformations 

Rich 3D Perception Work at AASS 
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5. 

 NDT-2-NDT Registration [Stoyanov et al., 2012] 
o results 

» translation deviation from known ground truth transformations 
• only successful registrations (inliers)  much better convergence of 3D-NDT 

Rich 3D Perception Work at AASS 
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5. 

 NDT-2-NDT Registration [Stoyanov et al., 2012] 
o results 

» translation deviation from known ground truth transformations 
• only successful registrations (inliers)  much better convergence of 3D-NDT 

Rich 3D Perception Work at AASS 
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5. 

 NDT-2-NDT Registration [Stoyanov et al., 2012] 
o results 

» translation deviation from known ground truth transformations 
• only successful registrations (inliers)  much better convergence of 3D-NDT 
• percentage of inliers highest for NDT-to-NDT and increases when using hotstart 

Rich 3D Perception Work at AASS 
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5. 

 NDT-2-NDT Registration [Stoyanov et al., 2012] 
o results 

» translation deviation from known ground truth transformations 
• only successful registrations (inliers)  much better convergence of 3D-NDT 
• percentage of inliers highest for NDT-to-NDT and increases when using hotstart 

» average runtimes for NDT-to-NDT at around 500 milliseconds 

Rich 3D Perception Work at AASS 



 

# 159 © A. J. Lilienthal et al. (Jul 26, 2012) 

5. 

 NDT-2-NDT Registration [Stoyanov et al., 2012] 
o results 

» translation deviation from known ground truth transformations 
• only successful registrations (inliers)  much better convergence of 3D-NDT 
• percentage of inliers highest for NDT-to-NDT and increases when using hotstart 

» average runtimes for NDT-to-NDT at around 500 milliseconds 
• runtime increases when using hotstart, but NDT-to-NDT with hotstart still faster 

than the other two implementations 

Rich 3D Perception Work at AASS 
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Real Time Registration of  
RGB-D Data using  

Local Visual Features and  
3D-NDT Registration 

 
 

5 
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5. 

 Sparse Rich 3D-NDT Registration [Andreasson et al., 2012] 

o find local visual features (SURF) from (Kinect) image data 
o find closest matches and corresponding depth values  

(match candidates) 
o RANSAC on feature pairs  
 initial transformation estimate (hot start) 

o compute 3D-NDT components only for surrounding regions of 
match candidates 
» fixed support size 

Rich 3D Perception Work at AASS 



 

# 162 © A. J. Lilienthal et al. (Jul 26, 2012) 

5. 

 Sparse Rich 3D-NDT Registration [Andreasson et al., 2012] 

o test data from [Sturm et al., 2011] 
» J. Sturm, S. Magnenat, N. Engelhard, F. Pomerleau, F. Colas, W. Burgard, D. 

Cremers, and R. Siegwart.  
"Towards a Benchmark for RGBD SLAM Evaluation". 
In Proc. of the RGB-D Workshop on Advanced Reasoning with Depth Cameras 
at Robotics: Science and Systems Conf. (RSS), Los Angeles, USA, June 2011. 

Rich 3D Perception Work at AASS 
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5. 

 Sparse Rich 3D-NDT Registration [Andreasson et al., 2012] 

o test data from [Sturm et al., 2011] 
o test of different registration variations 

» RGB images downscaled by 1/4 (side length, for real-time performance) 

Rich 3D Perception Work at AASS 
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5. 

 Sparse Rich 3D-NDT Registration [Andreasson et al., 2012] 

o test data from [Sturm et al., 2011] 
o test of different registration variations 

» RGB images downscaled by 1/4 (side length, for real-time performance) 
» comparison of "NDT F" with [Steinbrucker et al., 2011] 

• F. Steinbrucker, J. Sturm, and D. Cremers.  
"Real-time Visual Odometry from Dense RGB-D Images". 
In Workshop on Live Dense Reconstruction with Moving Cameras at the Intl. Conf. 
on Computer Vision (ICCV), 2011. 

Rich 3D Perception Work at AASS 
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5. 

 Sparse Rich 3D-NDT Registration [Andreasson et al., 2012] 

o test data from [Sturm et al., 2011] 
o test of different registration variations 

» RGB images downscaled by 1/4 (side length, for real-time performance) 
» comparison of "NDT F" with [Steinbrucker et al., 2011] 

Rich 3D Perception Work at AASS 
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iMAC Occupancy Grid Maps for 
Representation of Dynamic Environments 

5 
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5. 

 iMAC Occupancy Grid Maps [Saarinen et al., 2012] 

o Jari Saarinen, Henrik Andreasson, and Achim J. Lilienthal. 
"Independent Markov Chain Occupancy Grid Maps for 
Representation of Dynamic Environments". 
IROS 2012, to appear. 

Rich 3D Perception Work at AASS 
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5. 

 iMAC Occupancy Grid Maps [Saarinen et al., 2012] 

o model each cell as an independent Markov chain 

Rich 3D Perception Work at AASS 
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5. 

 iMAC Occupancy Grid Maps [Saarinen et al., 2012] 

o model each cell as an independent Markov chain 
o learn Poisson rate parameters for exit and entry process 

Rich 3D Perception Work at AASS 
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5. 

 iMAC Occupancy Grid Maps [Saarinen et al., 2012] 

o model each cell as an independent Markov chain 
o learn Poisson rate parameters for exit and entry process 
o identify different dynamics based on learned Poisson parameters 

Rich 3D Perception Work at AASS 
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5. 

 iMAC Occupancy Grid Maps [Saarinen et al., 2012] 

o model each cell as an independent Markov chain 
o learn Poisson rate parameters for exit and entry process 
o identify different dynamics based on learned Poisson parameters 
o use recency-weighted approach 

Rich 3D Perception Work at AASS 
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5. 

 iMAC Occupancy Grid Maps [Saarinen et al., 2012] 

o model each cell as an independent Markov chain 
o learn Poisson rate parameters for exit and entry process 
o use rate parameters as estimate of state change probability 

Rich 3D Perception Work at AASS 
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5. 

 iMAC Occupancy Grid Maps [Saarinen et al., 2012] 

o long-term data collection in industrial environment 
» milk production plant 
» Laser Guided Vehicle (LGV) in production use 

Rich 3D Perception Work at AASS 
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5. 

 iMAC Occupancy Grid Maps [Saarinen et al., 2012] 

o long-term data collection in industrial environment 
» milk production plant 
» Laser Guided Vehicle (LGV) in production use 

• get orders from the production area and  
deliver them to the storage area 

Rich 3D Perception Work at AASS 

storage and order picking area 

production area 
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5. 

 iMAC Occupancy Grid Maps [Saarinen et al., 2012] 

o long-term data collection in industrial environment 
» milk production plant 
» Laser Guided Vehicle (LGV) in production use 
» data from 2D Sick LRF 
» pose data from positioning system 
» 10h of operation (8.8km trajectory) 
» dynamics in the environment 

• other LGVs (10) 
• manually operated forklifts 
• people 
• ever changing storage layout 

Rich 3D Perception Work at AASS 
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5. 

 iMAC Occupancy Grid Maps [Saarinen et al., 2012] 

o long-term data collection in industrial environment 
o results (black  max.) 

» λentry (logarithmic scale) 
 

Rich 3D Perception Work at AASS 

time 
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5. 

 iMAC Occupancy Grid Maps [Saarinen et al., 2012] 

o long-term data collection in industrial environment 
o results (black  max.) 

» λentry 

» λexit 
• busy corridors are more visible 

with time 

Rich 3D Perception Work at AASS 

time 
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5. 

 iMAC Occupancy Grid Maps [Saarinen et al., 2012] 

o long-term data collection in industrial environment 
o results (black  max.) 

» λentry, λexit pairs 

Rich 3D Perception Work at AASS 
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5. 

 iMAC Occupancy Grid Maps [Saarinen et al., 2012] 

o long-term data collection in industrial environment 
o results (black  max.) 

» analyse timescales  analyse behaviour of Markov chains after N steps 

Rich 3D Perception Work at AASS 
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5. 

 iMAC Occupancy Grid Maps [Saarinen et al., 2012] 

o long-term data collection in industrial environment 
o analyse timescales  behaviour of Markov chains after N steps 

• activity shown for smaller N  shorter timescales 
• N=8  motion and sensor noise 
• N=32  starts to reveal semi-static parts 

Rich 3D Perception Work at AASS 

N=8 N=16 N=32 
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3D-NDT in Dynamic Environments 
(A First Glimpse) 

5 
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5. 

 3D-NDT Model Maintenance (Saarinen et al.) 
o online updates  

Rich 3D Perception Work at AASS 
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5. 

 3D-NDT Model Maintenance (Saarinen et al.) 
o online updates  
o create model at different timescales (diff  dyn. objects) 

Rich 3D Perception Work at AASS 
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