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1. AASS MR&O Lab — Profile
2. Field Robotics and 3D Perception Projects at AASS

3. Rich 3D for Industrial Applications
4. 3D-NDT Representation

5. Rich 3D Perception — Recent and Ongoing Work

O NDT-to-NDT Registration

O Real Time Registration of RGB-D Data using Local Visual Features
and 3D-NDT Registration

0 iMAC Occupancy Grid Maps for Representation of Dynamic
Environments

O 3D-NDT in Dynamic Environments (A First Glimpse)
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» Cognitive Robotic Systems lab (CRS)
» Mobile Robotics and Olfaction lab (MRO)
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& MR&O Lab Profile <
o .
MR&O ﬁ http://aass.oru.se/Research/mro/ e ———

MOBILE ROBOTICS & OLFACTION

= General Focus ...

O perception systems for mobile robots
(fundamentals for autonomous and safe operation)

= Objective ...

O advance theoretical and practical foundations that allow mobile
robots to operate in an unconstrained, dynamic environment

= Approaches are Characterized by ...
O fusion of different sensor modalities
O timely integration into industrial demonstrators

© A. . Lilienthal et al. (Jul 26, 2012) *13
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MR&O Lab Profile — Two Major Research Directions

= D1 — Mobile Robotics

O for autonomous and safe long-term operation in the real world

0 technology transfer through collaborative projects with industrial
partners in the area of logistics robots

0 examples: autonomous forklifts and autonomous wheel loaders

———— T —
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2. MR&O Lab Profile — Two Major Research Directions <
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Professional Service Robots for Transport Applications

= Forklift Trucks (Danaher Motion, Linde MH, Stora Enso)
O environment with a dynamic "background"

[~y © A. J. Lilienthal et al. (Jul 26,2012)  *18



Professional Service Robots for Transport Applications

= Forklift Trucks (Danaher Motion, Linde MH, Stora Enso)

O environment with a dynamic "background"
O requires 3D sensing

s © A. J. Lilienthal et al. (Jul 26,2012)  *19



Professional Service Robots for Transport Applications

speed x 1

[~y © A. J. Lilienthal et al. (Jul 26, 2012)  *20



2. MR&O Lab Profile — Two Major Research Directions .

= Forklift Trucks (Danaher Motion, Linde MH, Stora Enso)
= Wheel Loaders (VolvoCE, VolvoTech, NCC)
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MR&O Lab Profile — Two Major Research Directions

= Forklift Trucks (Danaher Motion, Linde MH, Stora Enso)
= Wheel Loaders (VolvoCE, VolvoTech, NCC)
* Mining Vehicles (Atlas Copco, Fotonic)
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2. MR&O Lab Profile — Two Major Research Directions .

= Forklift Trucks (Danaher Motion, Linde MH, Stora Enso)
= Wheel Loaders (VolvoCE, VolvoTech, NCC)

" Mining Vehicles (Atlas Copco, Fotonic)

* Hospital Transport Vehicles (RobCab)
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2. MR&O Lab Profile — Two Major Research Directions .

= Forklift Trucks (Danaher Motiofa . §&
= Wheel Loaders (VolvoCE, Volvo Resia " o8

" Mining Vehicles (Atlas Copco, F
= Hospital Transport Vehicles (Ra
g Garbage Bin Collection and Cleaning (RoboTech)
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MR&O Lab Profile — Two Major Research Directions

= D2 - Artificial and Mobile Robot Olfaction

O Artificial Olfaction = gas sensing with artificial sensor systems
O we study particularly open sampling systems d¢f
O develop "electronic nose" towards a "mobile nose"

0 examples: gas sensor networks (air pollution monitoring),
inspection robots (landfill site surveillance, gas leak localization)
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MR&O Lab Profile — Two Major Research Directions

= Forklift Trucks (Danaher Motion, Linde MH, Stora Enso)
= Wheel Loaders (VolvoCE, VolvoTech, NCC)

" Mining Vehicles (Atlas Copco, Fotonic)

= Hospital Transport Vehicles (RobCab)

= Garbage Bin Collection and Cleaning (RoboTech)
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MR&O Lab Profile — Two Major Research Directions

= Forklift Trucks (Danaher Motion, Linde MH, Stora Enso)
= Wheel Loaders (VolvoCE, VolvoTech, NCC)

= Mining Vehicles (Atlas Copco, Fotonic)

= Hospital Transport Vehicles (RobCab)

= Garbage Bin Collection and Cleaning (RoboTech)
O ... and pollution monitoring

© A. . Lilienthal et al. (Jul 26, 2012) *33



1. Mobile Work Machines <

= Forklift Trucks (Danaher N\
=" Wheel Loaders (VolvoCE, "

= Mining Vehicles (Atlas Cop

=" Hospital Transport Vehicle

= Garbage Bin Collection ar







Field Robotics and 3D Perception Projects at AASS

= History of "Field Robotics" Projects
O NSAL (2005_2012) AASS (CRS Lab), Atlas Copco

» behavior-based autonomous LHD vehicle navigation in mines

» main contribution

* mixed autonomous/teleoperated
control
(now a commercial product)

Safety system

© A. ). Lilienthal et al. (Jul 26, 2012) *39



Field Robotics and 3D Perception Projects at AASS

= History of "Field Robotics" Projects

O
o0 MALTA (2008—2011) AASS, HiH, Kollmorgen, Linde Material Handling, Stora Enso Logistics

» Multiple autonomous forklifts for loading and transportation applications

» main contribution
* navigation without reflectors
e autonomous paper reel handling

© A. ). Lilienthal et al. (Jul 26, 2012) *40



Field Robotics and 3D Perception Projects at AASS

= History of "Field Robotics" Projects

O NSAL (2005-2012)
0 MIALTA (2008-2011) = SAVIE (2011-2014) AASS, Kollmorgen, Linde MH

»

»

»

Multiple autonomous forklifts for loading and transportation applications
Safe autonomous industrial vehicles for industrial environments

topics

* |ocalization w minimum infrastructure (single fish-eye camera, 2D LRF)
 obstacle detection/avoidance at "high speed"

© A. ). Lilienthal et al. (Jul 26, 2012)
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Field Robotics and 3D Perception Projects at AASS

= History of "Field Robotics" Projects

O NSAL (2005-2012)
0 MIALTA (2008-2011) = SAVIE (2011-2014) AASS, Kollmorgen, Linde MH

» Multiple autonomous forklifts for loading and transportation appl
» Safe autonomous industrial vehicles for industrial environments

» topics
* |ocalization w minimum infrastructure (single fish-eye camera, 2D LRF)

* detection and distance prediction of humans with reflective vest

© A. ). Lilienthal et al. (Jul 26, 2012) *43



Field Robotics and 3D Perception Projects at AASS

= History of "Field Robotics" Projects

O NSAL (2005-2012)
0 MIALTA (2008-2011) = SAVIE (2011-2014) AASS, Kollmorgen, Linde MH

»

»

»

Multiple autonomous forklifts for loading and transportation applications
Safe autonomous industrial vehicles for industrial environments

topics

* |ocalization w minimum infrastructure (single fish-eye camera, 2D LRF)

 obstacle detection/avoidance at "high speed"
* trajectory prediction / path planning, with traffic rules (= flexibility + predictability)

© A. ). Lilienthal et al. (Jul 26, 2012) *44



2 Field Robotics and 3D Perception Projects at AASS

= History of "Field Robotics" Projects
O NSAL (2005-2012)
O MALTA (2008-2011) - SAVIE (2011-2014)
O SAUNA (2011_2014) AASS, Atlas-Copco, Kollmorgen, Fotonic

» logistics + safe autonomous vehicle navigation in dynamic environments

© A. ). Lilienthal et al. (Jul 26, 2012) *54



Field Robotics and 3D Perception Projects at AASS

= History of "Field Robotics" Projects
(@)
(@)
O SAUNA (2011_2014) AASS, Atlas-Copco, Kollmorgen, Fotonic

» logistics + safe autonomous vehicle navigation in dynamic environments

e Objective 2 — Rich 3D Perception

e compact 3D representation, registration on compact 3D representations (localization),
mapping in dynamic environments, identification of drivable areas, 3D HMT SLAM

008 Fdia, \
' €=
Viee® @ ®

"X X X’
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Field Robotics and 3D Perception Projects at AASS

= History of "Field Robotics" Projects
O NSAL (2005-2012)
O MALTA (2008-2011) - SAVIE (2011-2014)
O SAUNA (2011_2014) AASS, Atlas-Copco, Kollmorgen, Fotonic

» logistics + safe autonomous vehicle navigation in dynamic environments
e Objective 2 — Rich 3D Perception

* Objective 1 — Safe Motion
* collision avoidance, trajectory modification, tracking of vehicles/humans, real-time response

© A. ). Lilienthal et al. (Jul 26, 2012) *56



Field Robotics and 3D Perception Projects at AASS

= History of "Field Robotics" Projects

O NSAL (2005-2012)
O MALTA (2008-2011) - SAVIE (2011-2014)
O SAUNA (2011_2014) AASS, Atlas-Copco, Kollmorgen, Fotonic

» logistics + safe autonomous vehicle navigation in dynamic environments
e Objective 2 — Rich 3D Perception
e Objective 1 — Safe Motion
e Objective 3 — Hybrid Planning

* automate mission planning process (mission + motion planning), take into account multiple
types of requirements/constraints, incomplete prior knowledge

© A. ). Lilienthal et al. (Jul 26, 2012)  #57



Field Robotics and 3D Perception Projects at AASS

= History of "Field Robotics" Projects
O NSAL (2005-2012)
O MALTA (2008-2011) - SAVIE (2011-2014)
O SAUNA (2011_2014) AASS, Atlas-Copco, Kollmorgen, Fotonic

» logistics + safe autonomous vehicle navigation in dynamic environments
* requirements elicited from industrial partners
e - solutions integrated into a "SAUNA System"

SAUNA Functional Schema
updated 10-12-2011

o [[] obj1: safe navigation
o [ obi2: Rich 3-D perception

[ ©Obj 3: Hybrid planning

Collision Avoidance & Prediction
Requires:

Detecled ob:

Naminal trajectory, Pu:gM P,

Polygons inside cumrent preview wir

Provides:

Restrictions on current polygon

[
of
cccccc Trjeclory,
sic

SJURISUCY [EEds

yg ec
pm o winciow
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| Constraint Generation

Trajectory Fellowing
Requires: ires:
Path (x, y,[8.8]).
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a.| Drivable area, polygons wi intervals lu), Pose
G o | Geemeric mods! Prwldo
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Field Robotics and 3D Perception Projects at AASS

= History of "Field Robotics" Projects
O NSAL (2005-2012)
O MALTA (2008-2011) - SAVIE (2011-2014)
O SAUNA (2011_2014) AASS, Atlas-Copco, Kollmorgen, Fotonic

» logistics + safe autonomous vehicle navigation in dynamic environments

» challenges

 fleets of mixed autonomous and human-operated vehicles
high speeds (up to 30-40 km/h)
rich 3-D perception for enhanced safety and performance

automated mission planning capabilities at several levels of abstraction

collision and deadlock avoidance throughout mission planning, trajectory
computation and execution

flexible operation, accommodation of run-time changes

© A. ). Lilienthal et al. (Jul 26, 2012)



Field Robotics and 3D Perception Projects at AASS

= History of "Field Robotics" Projects
O NSAL (2005-2012)
O MALTA (2008-2011) - SAVIE (2011-2014)
O SAUNA (2011_2014) AASS, Atlas-Copco, Kollmorgen, Fotonic

» logistics + safe autonomous vehicle navigation in dynamic environments

» challenges €< requirements elicititation from industrial partners
 fleets of mixed autonomous and human-operated vehicles

high speeds (up to 30-40 km/h)

rich 3-D perception for enhanced safety and performance

automated mission planning capabilities at several levels of abstraction

collision and deadlock avoidance throughout mission planning, trajectory
computation and execution

flexible operation, accommodation of run-time changes
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Field Robotics and 3D Perception Projects at AASS

= History of "Field Robotics" Projects
Q)
O
Q)
0 All-4-eHAM (2009-2012) AASS, Volvo CE, NCC Roads

» Autonomous wheel loaders for efficient handling of heterogeneous materials

© A. l. Lilienthal et al. (Jul 26, 2012) *64



Field Robotics and 3D Perception Projects at AASS

= History of "Field Robotics" Projects
Q)
o
Q)
0 All-4-eHAM (2009-2012) AASS, Volvo CE, NCC Roads

» Autonomous wheel loaders for efficient handling of heterogeneous materials

* robust autonomous operation in 3D, slowly-changing terrain
* pile detection and attack pose estimation
* scanning while moving
* obstacle and people detection in 3D data

© A. ). Lilienthal et al. (Jul 26,2012)  *65




Field Robotics and 3D Perception Projects at AASS

= History of "Field Robotics" Projects
0 NSAL (2005-2012)
0 MALTA (2008-2011) = SAVIE (2011-2014) _
0 SAUNA (2011-2014)

0 All-4-eHAM (2009-2012) = ALLO (2012—-2015) AASS, Volvo CE, NCC Roads

» Autonomous wheel loaders for efficient handling of heterogeneous materials

» Automomous Long-Term Load-Haul-Dump Operations
e quantitative evaluation of pile handling and maintenance

* long-term strategies for pile handling
* task planning and scheduling

(gravel recipes for asphalt production)
* maintenance of 3D maps

in dynamic environments
e path planning and scheduling

in dynamic environments

* map quality assurance (certification)

© A. ). Lilienthal et al. (Jul 26, 2012) *67



2 Field Robotics and 3D Perception Projects at AASS

= History of "Field Robotics" Projects
0 NSAL (2005-2012)
0 MALTA (2008-2011) = SAVIE (2011-2014)
0 SAUNA (2011-2014)
0 All-4-eHAM (2009-2012) = ALLO (2012-2015)

@) RObLOg (2011_2015) AASS, Vollers, Qubica, BIBA, Jacobs, Pisa, HSRT
» Unloading Containers (Cognitive Robot for Automation of Logistic Processes)

© A. ). Lilienthal et al. (Jul 26, 2012) *68



Field Robotics and 3D Perception Projects at AASS

= History of "Field Robotics" Projects
0 NSAL (2005-2012) '
0 MALTA (2008-2011) > SAVIE (2011-2!}
0 SAUNA (2011-2014) [
0 All-4-eHAM (2009-2012) = ALLO (20
O RobLog (2011 2015)AASS Vollers, Qubica, BIB. ! i
g 1

» Unloading Containers
* industrial scenario (coffee sacks)




2 Field Robotics and 3D Perception Projects at AASS

= History of "Field Robotics" Projects
0 NSAL (2005-2012)
0 MALTA (2008-2011) = SAVIE
0 SAUNA (2011-2014)

0 All-4-eHAM (2009-2012) = / kk/ -
O RobLog (2011-2015) AASS, Vollers,

» Unloading Containers
* industrial scenario (coffee sacks)
e advanced scenario

© A. ). Lilienthal et al. (Jul 26,2012) *70



Field Robotics and 3D Perception Projects at AASS

= History of "Field Robotics" Projects
O
O
O
O
@) RObLOg (2011_2015) AASS, Vollers, Qubica, BIBA, Jacobs, Pisa, HSRT
» Unloading Containers —— 7%

* industrial scenario (coffee sacks)
e advanced scenario

./ -

4

B .
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2 Field Robotics and 3D Perception Projects at AASS

= History of "Field Robotics" Projects
0 NSAL (2005-2012)
0 MALTA (2008-2011) = SAVIE (2011-2014)
0 SAUNA (2011-2014)
0 All-4-eHAM (2009-2012) = ALLO (2012-2015)

0 RObLOg (2011_2015) AASS, Vollers, Qubica, BIBA, Jacobs, Pisa, HSRT

» Unloading Containers
* industrial scenario (coffee sacks)
e advanced scenario

© A. ). Lilienthal et al. (Jul 26, 2012) *72



2 Field Robotics and 3D Perception Projects at AASS

= History of "Field Robotics" Projects
0 NSAL (2005-2012)
0 MALTA (2008-2011) = SAVIE (2011-2014)
0 SAUNA (2011-2014)
0 All-4-eHAM (2009-2012) = ALLO (2012-2015)

O Roblog (2011-2015)
O SPENCER (2013—2016) AASS, TUM, Twente, CNRS, RWTH, BlueBotics, KLM, Freiburg

» group-friendly navigation

© A. . Lilienthal et al. (Jul 26, 2012) #73



2 Field Robotics and 3D Perception Projects at AASS

= History of "Field Robotics" Projects
0 NSAL (2005-2012)
0 MALTA (2008-2011) = SAVIE (2011-2014)
0 SAUNA (2011-2014)
0 All-4-eHAM (2009-2012) = ALLO (2012-2015)

O Roblog (2011-2015)
O SPENCER (2013—2016) AASS, TUM, Twente, CNRS, RWTH, BlueBotics, KLM, Freiburg

» group-friendly navigation
» identification of likely spokespersons

© A. . Lilienthal et al. (Jul 26, 2012) *#74



2 Field Robotics and 3D Perception Projects at AASS

= History of "Field Robotics" Projects
0 NSAL (2005-2012)
0 MALTA (2008-2011) = SAVIE (2011-2014)
0 SAUNA (2011-2014)
0 All-4-eHAM (2009-2012) = ALLO (2012-2015)

0 RoblLog (2011-2015)
O SPENCER (2013—2016) AASS, TUM, Twente, CNRS, RWTH, BlueBotics, KLM, Freiburg

» group-friendly navigation
» identification of likely spokespersons
» Schengen fast track scenario

© A. ). Lilienthal et al. (Jul 26, 2012) *75



2 Field Robotics and 3D Perception Projects at AASS

= History of "Field Robotics" Projects
0 NSAL (2005-2012)
0 MALTA (2008-2011) = SAVIE (2011-2014)
0 SAUNA (2011-2014)
0 All-4-eHAM (2009-2012) = ALLO (2012-2015)

0 RoblLog (2011-2015)
O SPENCER (2013—2016) AASS, TUM, Twente, CNRS, RWTH, BlueBotics, KLM, Freiburg

» challenges

* |ocalization and mapping in dynamic and social environments
* identify dynamics of objects
* - robust and precise localization in highly dynamic environments
* learning of socially annotated maps
* related to spatial event distribution models

© A. ). Lilienthal et al. (Jul 26, 2012) *76






3D Perception Requirements

= 3D Perception Requirements
O ... depend heavily on the application scenario, e.g. SAUNA, RoblLog

O —> we consider also an inspection robot that senses
» range
» colour
» temperature
» gas
» air flow
» humidity

© A. ). Lilienthal et al. (Jul 26, 2012) *78



3D Perception Requirements

= 3D Perception Requirements

O detailed model (detailed "enough")
» SAUNA: allows extraction of drivable area at reasonably high speeds

© A. ). Lilienthal et al. (Jul 26, 2012)



3D Perception Requirements

= 3D Perception Requirements

O detailed model (detailed "enough")
» SAUNA: allows extraction of drivable area at reasonably high speeds

» Roblog: allows identification of objects from partial views (occlusion)
* - allows inference (predicting future states)

© A. ). Lilienthal et al. (Jul 26, 2012) *80



3D Perception Requirements

= 3D Perception Requirements
O detailed model (detailed "enough")

»

»

»

SAUNA: allows extraction of drivable area at reasonably high speeds
RobLog: allows identification of objects from partial views (occlusion)
* = allows inference (predicting future states)

Inspection Robot: allows for detection of changes that are of potential
interest to human decision makers

© A. ). Lilienthal et al. (Jul 26, 2012)
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3D Perception Requirements

= 3D Perception Requirements
O detailed model

O dense (quasi-continuous) model from sparse measurements
» SAUNA: model uncertainty between distant measurements
» RoblLog: dense enough for object recognition

» Inspection Robot: change detection for arbitrary points in space from non-
aligned measurements

© A. . Lilienthal et al. (Jul 26, 2012) 82



3D Perception Requirements

= 3D Perception Requirements
O detailed model
O dense (quasi-continuous) model from sparse measurements

O compact model
» often large amount of data

» compact <& memory requirements do not scale with time but with the size
of the environment

» queries often faster in a compact model
» —> compact yet truthful and versatile representation required

© A. ). Lilienthal et al. (Jul 26, 2012)
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3D Perception Requirements

= 3D Perception Requirements
O detailed model
O dense (quasi-continuous) model from sparse measurements

O compact model
» SAUNA: allows for real-time and long-term operation
» SAUNA: all operations need to be carried out on the compact model

© A. . Lilienthal et al. (Jul 26, 2012) *#84



3D Perception Requirements

= 3D Perception Requirements
O detailed model
O dense (quasi-continuous) model from sparse measurements

O compact model
» SAUNA: allows for real-time and long-term operation
» SAUNA: all operations need to be carried out on the compact model
» Inspection Robot: detect changes compared to old model

weeks or months

© A. ). Lilienthal et al. (Jul 26,2012)  *85



3D Perception Requirements

= 3D Perception Requirements
O detailed model
O dense (quasi-continuous) model from sparse measurements
O compact model

O probabilistic model
» model should represent uncertainty about the state of the world
» can be in a separate layer
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3D Perception Requirements

= 3D Perception Requirements
O detailed model
O dense (quasi-continuous) model from sparse measurements
O compact model
O probabilistic model

O layered model

» layers carry most of the meaning
* object labels + corresponding uncertainty
* semantic categories + corresponding uncertainty

e distribution of social behaviours, temperature,
colour, gas, ...
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3D Perception Requirements

= 3D Perception Requirements
O detailed model

O dense (quasi-continuous) model from sparse measurements

O compact model
O probabilistic model

O layered model

» layers carry most of the meaning
* object labels + corresponding uncertainty
* semantic categories + corresponding uncertainty

e distribution of social behaviours, temperature,
colour, gas, ...
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3D Perception Requirements

= 3D Perception Requirements
O detailed model
O dense (quasi-continuous) model from sparse measurements
O compact model
O probabilistic model
O layered model

O maintenance of model in a dynamic environment
» online update
» representation of
changes over time

» representation of
different dynamics
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3D Perception Requirements

= 3D Perception Requirements
O detailed model
O dense (quasi-continuous) model from sparse measurements
O compact model
O probabilistic model
O layered model

O maintenance of model in a dynamic environment
» online update

All Levels

» representation of
changes over time

» representation of
different dynamics

e changes against
different time scales




3D Perception Requirements

= 3D Perception Requirements
O detailed model
O dense (quasi-continuous) model from sparse measurements
O compact model
O probabilistic model
O layered model

O maintenance of model in a dynamic environment
» online update

Less Dynamic

» representation of
changes over time

» representation of
different dynamics

e changes against
different time scales




3D Perception Requirements

= 3D Perception Requirements
O detailed model
O dense (quasi-continuous) model from sparse measurements
O compact model
O probabilistic model
O layered model

O maintenance of model in a dynamic environment
» online update

Completely Static

» representation of
changes over time

» representation of
different dynamics

e changes against
different time scales




3D Perception Requirements

= 3D Perception Requirements
O detailed model
O dense (quasi-continuous) model from sparse measurements
O compact model
O probabilistic model
O layered model

O maintenance of model in a dynamic environment
» online update

Only Dynamic

» representation of
changes over time

» representation of
different dynamics

e changes against
different time scales




3D Perception Requirements

= 3D Perception Requirements
O detailed model
O dense (quasi-continuous) model from sparse measurements
O compact model
O probabilistic model
O layered model

O maintenance of model in a dynamic environment
» online update
» representation of changes over time

» representation of different dynamics
e changes against different time scales
* model different dynamics explicitly (static, fully dynamic, alternating, semi-static, ...)
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3D Perception Requirements

= 3D Perception Requirements
O detailed model
O dense (quasi-continuous) model from sparse measurements
O compact model
O probabilistic model
O layered model

O maintenance of model in a dynamic environment
» online update
» representation of changes over time
» representation of different dynamics

O -2 use of dynamic map

» discard dynamic areas for localization
 assign lower weight depending on dynamics and last observation
» take dynamics into account for planning and scheduling
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3D Perception Requirements

= 3D Perception Requirements
O detailed model
O dense (quasi-continuous) model from sparse measurements
O compact model
O probabilistic model
O layered model
O maintenance and use of model in a dynamic environment

O sensor planning

» Inspection Robot: build dense model that allows to detect changes at
arbitrary points in space
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3D Perception Requirements

= 3D Perception Requirements
O detailed model
O dense (quasi-continuous) model from sparse measurements
O compact model
O probabilistic model
O layered model

O sensor planning

O scanning-while-moving
» ALL-4-eHAM —> necessary?
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3D Perception Requirements

= 3D Perception Requirements
O detailed model
O dense (quasi-continuous) model from sparse measurements
O compact model
O probabilistic model
O layered model
O maintenance and use of model in a dynamic environment
O sensor planning
O scanning-while-moving

O robustness
» outdoor conditions
» graceful degradation wrt errors
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Rich 3D?

= 3D Perception Requirements = Does Rich 3D Help?
O detailed model (detailed "enough")
» extraction of drivable area, object recognition, change detection
O dense (quasi-continuous) model from sparse measurements
» change detection for arbitrary points in space
0 compact model
» compact yet truthful representation - real-time and long-term operation
O probabilistic model
» represent uncertainty about the state of the world
O layered model
» layers often carry most of map meaning
O maintenance and use of model in a dynamic environment
» representation of changes and dynamics, use for localization and planning

O sensor planning
O robustness
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Rich 3D?

= 3D Perception Requirements = Does Rich 3D Help?
O detailed model (detailed "enough')  Ionger range, richer information
» extraction of drivable area, object recognition, change detection

O dense (quasi-continuous) model from sparse measurements
» change detection for arbitrary points in space

O compact model
» compact yet truthful representation - real-time and long-term operation

0 probabilistic model additional information - key points

» represent uncertainty about the state of the world
O layered model

» layers often carry most of map meaning rich 3D models may often be layered maps
O maintenance and use of model in a dynamic environment

» representation of changes and dynamics, use for localization and planning
O sensor planning also required for rich 3D

better extrapolation on sparse measurements

O ro b ustness e.g. localization in feature-sparse areas
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3D-NDT Representation

= (2D) Normal Distributions Transform (NDT)

O originally developed for 2D scan registration [Biber et al., 2003]

O sparse (grid-based) Gaussian mixture model
» space is partitioned in disjoint voxels (cells)

» Gaussian pdf, parametrized by a Covariance matrix and mean used to
represent space in each cell
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3D-NDT Representation

= 3D Normal Distributions Transform (3D-NDT)

O extension to 3D scan registration [Magnusson et al., 2007]

O 3D-NDT is

» sparse

Number of Points: 87 778
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i 3D-NDT Representation =

= 3D Normal Distributions Transform (3D-NDT)
O extension to 3D scan registration [Magnusson et al., 2007]
0 3D-NDT is

» sparse

» useful for 3D registration
* Point-to-NDT
[Magnusson et al., 2007]
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3D-NDT Representation

= 3D Normal Distributions Transform (3D-NDT)
O extension to 3D scan registration [Magnusson et al., 2007]
0 3D-NDT is

» sparse

» useful for 3D registration
* Point-to-NDT
[Magnusson et al., 2007]
* NDT-to-NDT
[Stoyanov et al., 2012]
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3D-NDT Representation

= 3D Normal Distributions Transform (3D-NDT)
O extension to 3D scan registration [Magnusson et al., 2007]
0 3D-NDT is

» sparse
» useful for 3D registration

» useful for change detection

© A. l. Lilienthal et al. (Jul 26, 2012) *121




3D-NDT Representation

= 3D Normal Distributions Transform (3D-NDT)

O extension to 3D scan registration [Magnusson et al., 2007]
O 3D-NDT is

»

»

»

»

sparse

useful for 3D registration

useful for change detection —
True positives
True negatives

useful for place recognition | raise negatives
[Magnusson et al., 2009]
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Rich 3D Perception —
Recent and Ongoing Work
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Rich 3D Perception Work at AASS

= NDT-2-NDT Registration [Stoyanov et al., 2012]

O registration
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Rich 3D Perception Work at AASS

= NDT-2-NDT Registration [Stoyanov et al., 2012]

O registration with ICP (iterative closest point)

. pointto- [l ©5 77/ /¢ NDT4o-
. NDT (P2D) @l -~~~/ | NDT (D2D)
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Rich 3D Perception Work at AASS

= NDT-2-NDT Registration [Stoyanov et al., 2012]

O registration with ICP (iterative closest point)
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Rich 3D Perception Work at AASS

= NDT-2-NDT Registration [Stoyanov et al., 2012]

O registration with ICP (iterative closest point)
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Rich 3D Perception Work at AASS

= NDT-2-NDT Registration [Stoyanov et al., 2012]

O registration with ICP (iterative closest point)
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Rich 3D Perception Work at AASS

= NDT-2-NDT Registration [Stoyanov et al., 2012]

O registration with ICP (iterative closest point)

e
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Rich 3D Perception Work at AASS

= NDT-2-NDT Registration [Stoyanov et al., 2012]

O registration with ICP (iterative closest point)
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Rich 3D Perception Work at AASS

= NDT-2-NDT Registration [Stoyanov et al., 2012]

O registration with ICP (iterative closest point)

¢ o 000 6 40 ¢ 46 o0 o o0

50 60
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Rich 3D Perception Work at AASS

= NDT-2-NDT Registration [Stoyanov et al., 2012]

O registration with ICP (iterative closest point)
O registration with 3D-NDT (Point-to-NDT)

! g

. pointto- il “37C ¢/ | ¢ NDT4o-
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Rich 3D Perception Work at AASS

= NDT-2-NDT Registration [Stoyanov et al., 2012]

O registration with ICP (iterative closest point)
O registration with 3D-NDT (Point-to-NDT)
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Rich 3D Perception Work at AASS

= NDT-2-NDT Registration [Stoyanov et al., 2012]

O registration with ICP (iterative closest point)
O registration with 3D-NDT (Point-to-NDT)
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Rich 3D Perception Work at AASS

= NDT-2-NDT Registration [Stoyanov et al., 2012]

O registration with ICP (iterative closest point)
O registration with 3D-NDT (Point-to-NDT)
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Rich 3D Perception Work at AASS

= NDT-2-NDT Registration [Stoyanov et al., 2012]

O registration with ICP (iterative closest point)
O registration with 3D-NDT (Point-to-NDT)
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Rich 3D Perception Work at AASS

= NDT-2-NDT Registration [Stoyanov et al., 2012]
O registration with ICP (iterative closest point)
O registration with 3D-NDT (Point-to-NDT)

*e
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Rich 3D Perception Work at AASS

= NDT-2-NDT Registration [Stoyanov et al., 2012]
O registration with ICP (iterative closest point)
O registration with 3D-NDT (Point-to-NDT)

*e
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Rich 3D Perception Work at AASS

= NDT-2-NDT Registration [Stoyanov et al., 2012]

O registration with ICP (iterative closest point)
O registration with 3D-NDT (Point-to-NDT)
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Rich 3D Perception Work at AASS

= NDT-2-NDT Registration [Stoyanov et al., 2012]
O registration with ICP (iterative closest point)
O registration with 3D-NDT (Point-to-NDT)
O registration with 3D-NDT (NDT-to-NDT)

£/ pointto- , » * NDT-to-
. NDT (P2D) [l |-~~~/ | NDT (D2D)
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Rich 3D Perception Work at AASS

= NDT-2-NDT Registration [Stoyanov et al., 2012]
O registration with ICP (iterative closest point)
O registration with 3D-NDT (Point-to-NDT)
O registration with 3D-NDT (NDT-to-NDT)




Rich 3D Perception Work at AASS

= NDT-2-NDT Registration [Stoyanov et al., 2012]
O registration with ICP (iterative closest point)
O registration with 3D-NDT (Point-to-NDT)

O registration with 3D-NDT (NDT-to-NDT)




Rich 3D Perception Work at AASS

= NDT-2-NDT Registration [Stoyanov et al., 2012]
O registration with ICP (iterative closest point)
O registration with 3D-NDT (Point-to-NDT)
O registration with 3D-NDT (NDT-to-NDT)
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Rich 3D Perception Work at AASS

= NDT-2-NDT Registration [Stoyanov et al., 2012]
O registration with ICP (iterative closest point)
O registration with 3D-NDT (Point-to-NDT)

O registration with 3D-NDT (NDT-to-NDT)
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Rich 3D Perception Work at AASS

= NDT-2-NDT Registration [Stoyanov et al., 2012]
O registration with ICP (iterative closest point)
O registration with 3D-NDT (Point-to-NDT)

O registration with 3D-NDT (NDT-to-NDT)
» compute 3D-NDT for both scans 2 My5:(7,), Myor(P,)
» compute likelihood of My(7,) given Myr(7%)

» find (local) maximum using Newton's method and analytical derivative
expressions
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Rich 3D Perception Work at AASS

= NDT-2-NDT Registration [Stoyanov et al., 2012]

O registration with ICP (iterative closest point)
O registration with 3D-NDT (Point-to-NDT)

O registration with 3D-NDT (NDT-to-NDT)
» compute 3D-NDT for both scans 2 My5:(7,), Myor(P,)
» compute likelihood of My(7,) given Myr(7%)

» find (local) maximum using Newton's method and analytical derivative
expressions

» hot start

offset y (meters)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
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Rich 3D Perception Work at AASS

= NDT-2-NDT Registration [Stoyanov et al., 2012]
O registration with ICP (iterative closest point)
O registration with 3D-NDT (Point-to-NDT)
O registration with 3D-NDT (NDT-to-NDT)

»

»

»

»

compute 3D-NDT for both scans 2 My (%), Mypor(75)
compute likelihood of My(%,) given My(7;)

find (local) maximum using Newton's method and analytical derivative
expressions

hot start

 derive a simple initialization, based on the 3D-NDT Histogram

* look for transformation resulting in best overlap between histograms.

* select one or several of the best initial guesses

Orientation Buckets Histogram

e




Rich 3D Perception Work at AASS

= NDT-2-NDT Registration [Stoyanov et al., 2012]

O tested over two data sets — indoor and outdoor, 3D aLRF

indoor: 60 point clouds outdoor: 469 point clouds

"AASS Loop" "AASS Loop"
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Rich 3D Perception Work at AASS

= NDT-2-NDT Registration [Stoyanov et al., 2012]

O results
» translation deviation from known ground truth transformations

Error Norm Translation AASS

n
T
|

o~
T
L

[ %)
T
1

[
T
1

—y
T
1

Error Norm Translation (m)

o
T
1

ICP ICPHist NDT-P2D NDT-P2DHist NDT-D2D NDT-D2DHist

© A. ). Lilienthal et al. (Jul 26, 2012) *#151



Rich 3D Perception Work at AASS

= NDT-2-NDT Registration [Stoyanov et al., 2012]

O results
» translation deviation from known ground truth transformations

Error Norm Translation AASS
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Rich 3D Perception Work at AASS

= NDT-2-NDT Registration [Stoyanov et al., 2012]

O results
» translation deviation from known ground truth transformations

Error Norm Translation AASS
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Rich 3D Perception Work at AASS

= NDT-2-NDT Registration [Stoyanov et al., 2012]

O results
» translation deviation from known ground truth transformations

Error Norm Translation AASS
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Rich 3D Perception Work at AASS

= NDT-2-NDT Registration [Stoyanov et al., 2012]

O results

» translation deviation from known ground truth transformations
 only successful registrations (inliers) 2 much better convergence of 3D-NDT

Error Norm Translation AASS (Inliers)
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Rich 3D Perception Work at AASS

= NDT-2-NDT Registration [Stoyanov et al., 2012]

O results

» translation deviation from known ground truth transformations
 only successful registrations (inliers) 2 much better convergence of 3D-NDT

Error Norm Translation AASS (Inliers)
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Rich 3D Perception Work at AASS

= NDT-2-NDT Registration [Stoyanov et al., 2012]
O results

» translation deviation from known ground truth transformations
 only successful registrations (inliers) 2 much better convergence of 3D-NDT
* percentage of inliers highest for NDT-to-NDT and increases when using hotstart

Percentage of Inliers AASS

Percentage of Inliers %

| ICP IGPHist NDT-P2DNDT-P2DHistNDT-D20ONDT-D2DHist
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Rich 3D Perception Work at AASS

= NDT-2-NDT Registration [Stoyanov et al., 2012]

O results

»

»

translation deviation from known ground truth transformations
 only successful registrations (inliers) 2 much better convergence of 3D-NDT
* percentage of inliers highest for NDT-to-NDT and increases when using hotstart

average runtimes for NDT-to-NDT at around 500 milliseconds
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Rich 3D Perception Work at AASS

= NDT-2-NDT Registration [Stoyanov et al., 2012]

O results

» translation deviation from known ground truth transformations

 only successful registrations (inliers) 2 much better convergence of 3D-NDT

* percentage of inliers highest for NDT-to-NDT and increases when using hotstart
» average runtimes for NDT-to-NDT at around 500 milliseconds

* runtime increases when using hotstart, but NDT-to-NDT with hotstart still faster
than the other two implementations
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Real Time Registration of
RGB-D Data using
Local Visual Features and
3D-NDT Registration
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Rich 3D Perception Work at AASS

= Sparse Rich 3D-NDT Registration [Andreasson etal., 2012]

O find local visual features (SURF) from (Kinect) image data
O find closest matches and corresponding depth values
(match candidates)
O RANSAC on feature pairs
-2 initial transformation estimate (hot start)

0 compute 3D-NDT components only for surrounding regions of
match candidates
» fixed support size
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Rich 3D Perception Work at AASS

= Sparse Rich 3D-NDT Registration [Andreasson etal., 2012]

O test data from [Sturm et al., 2011]
» J. Sturm, S. Magnenat, N. Engelhard, F. Pomerleau, F. Colas, W. Burgard, D.
Cremers, and R. Siegwart.
"Towards a Benchmark for RGBD SLAM Evaluation".

In Proc. of the RGB-D Workshop on Advanced Reasoning with Depth Cameras
at Robotics: Science and Systems Conf. (RSS), Los Angeles, USA, June 2011.

© A. ). Lilienthal et al. (Jul 26, 2012) *#162



Rich 3D Perception Work at AASS

= Sparse Rich 3D-NDT Registration [Andreasson etal., 2012]
O test data from [Sturm et al., 2011]

O test of different registration variations
» RGB images downscaled by 1/4 (side length, for real-time performance)

RGB-D Images ) Data Processing Flow
I Iy ={Ip, Irce} >

Pure RANSAC \ ( \
L
=

f Find best fit RANSAC
RANSAC NDT transformation 7°
NDT F \
Extract SURF features
£y F, and brute force
C at ne}ghl}f:urs of Trim outlier features
NDT F2 152 Fa ot
Set 3D position of

Fy, F; to cell mean | |

Filter features Compute 3D-NDT
NDT F3 \ F;. F; by depth J registration

NDT F4 \ J \ J

Compute 3D-NDT ]
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Rich 3D Perception Work at AASS

= Sparse Rich 3D-NDT Registration [Andreasson etal., 2012]
O test data from [Sturm et al., 2011]

O test of different registration variations
» RGB images downscaled by 1/4 (side length, for real-time performance)

» comparison of "NDT F" with [Steinbrucker et al., 2011]

e F. Steinbrucker, J. Sturm, and D. Cremers.
"Real-time Visual Odometry from Dense RGB-D Images".
In Workshop on Live Dense Reconstruction with Moving Cameras at the Intl. Conf.
on Computer Vision (ICCV), 2011.
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Rich 3D Perception Work at AASS

= Sparse Rich 3D-NDT Registration [Andreasson etal., 2012]
O test data from [Sturm et al., 2011]

O test of different registration variations

» RGB images downscaled by 1/4 (side length, for real-time performance)
» comparison of "NDT F" with [Steinbrucker et al., 2011]

Dataset z (m) z (m) 9 (deg) | 6 (deg) | fps (Hz)
1-360 0.014 0.010 0.592 0.483 17.5
1-desk2 0.016 0.012 1.009 0.820 15.3
1-floor 0.015 0.007 1.027 0.402 24.1
l-room 0.011 0.008 0.635 0.502 13.8
]1-desk 0.0122 | 1.1567 0.909

G-ICP [13] - 0.0154 -

Steinbrucker [4] - 0.0065 -

2-desk 0.0039 | 0.3413 0.2961

G-ICP [13] - 0.0060 -

Steinbrucker [4] - 0.0027 -
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IMAC Occupancy Grid Maps for
Representation of Dynamic Environments
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Rich 3D Perception Work at AASS

= iMAC Occupancy Grid Maps [Saarinen etal,, 2012]

O Jari Saarinen, Henrik Andreasson, and Achim J. Lilienthal.
"Independent Markov Chain Occupancy Grid Maps for
Representation of Dynamic Environments".

IROS 2012, to appear.
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Rich 3D Perception Work at AASS

= iMAC Occupancy Grid Maps [Saarinen etal,, 2012]

0 model each cell as an independent Markov chain

(>
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Rich 3D Perception Work at AASS

= iMAC Occupancy Grid Maps [Saarinen etal,, 2012]

0 model each cell as an independent Markov chain
O learn Poisson rate parameters for exit and entry process

5\ _ Qexit Hevents: occupied to free +1

. Berit  Hobservations when occupied+1

\ _ Qentry __ #Hevents: free to occupied +1
entry — Bentry  #Hobservations when free+1

© A. ). Lilienthal et al. (Jul 26, 2012) *#169



Rich 3D Perception Work at AASS

= iMAC Occupancy Grid Maps [Saarinen etal,, 2012]
0 model each cell as an independent Markov chain
O learn Poisson rate parameters for exit and entry process
O identify different dynamics based on learned Poisson parameters

5\ _ Qexit Hevents: occupied to free +1
Berit  Hobservations when occupied—+1
5\ _ Qentry __ H#events: free to occupied +1
entry Bentry #observations when free+1
Functional state Aezit | Aentry
Static occupied — 0 High
Static free High — 0
Semi-static Low Low
Dynamic High Low
Semi-static occupied (doors) Low High

© A. J. Lilienthal et al. (Jul 26, 2012)
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Rich 3D Perception Work at AASS

= iMAC Occupancy Grid Maps [Saarinen etal,, 2012]
0 model each cell as an independent Markov chain
O learn Poisson rate parameters for exit and entry process
O identify different dynamics based on learned Poisson parameters
O use recency-weighted approach

© A. ). Lilienthal et al. (Jul 26, 2012) *#171



Rich 3D Perception Work at AASS

= iMAC Occupancy Grid Maps [Saarinen etal,, 2012]
0 model each cell as an independent Markov chain
O learn Poisson rate parameters for exit and entry process
O use rate parameters as estimate of state change probability

I

Aewit ~ p(m — O\m — 1)

-~

)\entry ~ p(m — 1‘m — 0)

© A. ). Lilienthal et al. (Jul 26, 2012) *#172
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= iMAC Occupancy Grid Maps [Saarinen etal,, 2012]

O long-term data collection in industrial environment
» milk production plant
» Laser Guided Vehicle (LGV) in production use




Rich 3D Perception Work at AASS

= iMAC Occupancy Grid Maps [Saarinen etal,, 2012]

O long-term data collection in industrial environment

» milk production plant
» Laser Guided Vehicle (LGV) in production use

e get orders from the production area and
deliver them to the storage area

production area ==

|
g
]
l
I
|
|
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= iMAC Occupancy Grid Maps [Saarinen etal,, 2012]

O long-term data collection in industrial environment

»

»

»

»

»

»

Rich 3D Perception Work at AASS

milk production plant

Laser Guided Vehicle (LGV) in production use
data from 2D Sick LRF

pose data from positioning system

10h of operation (8.8km trajectory)
dynamics in the environment

e other LGVs (10)

* manually operated forklifts

* people

e ever changing storage layout




Rich 3D Perception Work at AASS

= iMAC Occupancy Grid Maps [Saarinen etal,, 2012]

O long-term data collection in industrial environment

O results (black < max.)
» A

entry (108arithmic scale)

© A. ). Lilienthal et al. (Jul 26, 2012)



Rich 3D Perception Work at AASS

= iMAC Occupancy Grid Maps [Saarinen etal,, 2012]

O long-term data collection in industrial environment

O results (black < max.)
» A

” 7\‘exit
* busy corridors are more visible
with time

entry
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Rich 3D Perception Work at AASS

= iMAC Occupancy Grid Maps [5arinen etal., 2012]
O long-term data collection in industrial environment

O results (black < max.)

” }\’entry' }\’exit pairs

‘ Static free cells

Sensor noise
-
[
- T—

Exitevents

Dynamic cells
-

Semi-static cells Static occupied cells
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Rich 3D Perception Work at AASS

= iMAC Occupancy Grid Maps [Saarinen etal,, 2012]

O long-term data collection in industrial environment

O results (black < max.)
» analyse timescales < analyse behaviour of Markov chains after N steps
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Rich 3D Perception Work at AASS

= iMAC Occupancy Grid Maps [5arinen etal., 2012]

O long-term data collection in industrial environment

O analyse timescales < behaviour of Markov chains after N steps
* activity shown for smaller N <> shorter timescales
* N=8 <> motion and sensor noise
* N=32 <> starts to reveal semi-static parts

© A. l. Lilienthal et al. (Jul 26, 2012) *180
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3D-NDT in Dynamic Environments
(A First Glimpse)
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Rich 3D Perception Work at AASS

= 3D-NDT Model Maintenance (Saarinen et al.)

O online updates
O create model at different timescales (diff = dyn. objects)

© A. ). Lilienthal et al. (Jul 26, 2012)
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