

Portable Multisensory 3D Panorama Platform utilized for Remote Factory Planning

Ronny Bismark

Supervisor: Prof. Dr. Daniel Cremers Advisors: Dr. Jürgen Sturm , Ph.D Yao-Jen Chang

PRESENTATION OUTLINE

MOTIVATION

- Common way to handle information for factory planning is to manually digitalize the factory site
- Remote Factory Planning needs as much information as possible
- Dense data with geometric information about objects
- Decrease time of factory planning and design phase
- Reduce traveling costs
- "Google street view" for indoor environment

PROBLEM STATEMENT

- Development of a portable 3D capture device
 - Selection of suitable hardware combination
 - Hardware adaptions and assembly
- Implementation of a reconstruction algorithm
 - Sensor interfaces compatible for the ARM processor
 - Integration of RGB-D data into an Structure from Motion algorithm

STRUCTURE FROM MOTION

SIEMENS

- To reconstruct the 3D geometry of a scene, the standard pipeline of Structure from Motion via Bundler is applied
- Based on epipolar geometry
- Bundler has been developed for large unordered image collections
- Includes several computer vision algorithms
 - F-matrix estimation
 - Calibrated 5-point relative pose
 - Triangulation of multiple rays
- Outputs a sparse point cloud, estimated camera poses, and SIFT keypoints

Page 5 Introduction

SIEMENS BUBBLE VIEW

- Previous work on 3D factor visualization
- Image-based 3D panorama technique
- Image acquisition by a consumer pointand-shot camera
- Sparse 3D information
- Depth ambiguities for near by objects

Point Cloud as the global 3D Map

SOFTWARE BASE

- Operating system on the prototype is a standard headless Ubuntu distribution
- ROS (Robot Operating System) as middleware
- Invented by Willow Garage to solve common platform problems
- The platform is overseen by the nonprofit Open Source Robotics Foundation (OSRF)
- Provides hardware abstraction, device drivers, libraries, visualizers, message-passing, package management
- Integrated communication options makes ROS as middleware an easy to expand project base
- The presented software uses mainly the camera driver, the messaging and the synchronization capability

ARM & SoC

- ARM processors are the main architecture for smart phones and tables
- ARM ensures high performance at low power
- All components of a computer on a single chip
- RISC instruction set
- \$35 PC Raspberry Pi influenced project idea
- Various potential development board available

PLATFORM SELECTION

Cost-benefit analysis

- Declaration of criterions and and their grading
- Comparatively weighting
- Categorize
- Cost-benefit value estimation
- Result shows that the PandaBoard ES is the favorite platform choice for our needs

		-	Chi	ern	JIL										
			acquisition cost				low								
			power consumption				T	medium							
	op			verating System			h	high							
	per			rformance			n	medium							
	US			Bhosts				h	high						
	siz			e				lo	low						
c			com	ommunity				n	medium						
		L	avai	ailability				lo	w						
						<u>ح</u>	۲								
Criterion		1-2	2		3-4			_			5-6		7-8		
acquisition cost		>\$200	>\$100			0		>\$50				<\$50			
power cons.		>6 Watt		>5 Watt				>4 Watt				<4 Watt			
operating system c		custom C	S	Linux based C				S	Ubuntu				Ubuntu + ROS		
performance <		<1GHz co	ore 1GHz core				1GHz dual-core			core	1GHz quad-core				
USB hosts		1 port	port			2 ports				1 Host, 1 OTG			G 2 Hosts		
size		>20 inch	>15 inch ²			ch ²		>10 inch ²			1 ²	<10 inch ²			
community		<10.000		>10.000			00		>100.000			0	>1 million		
availability		>1 mont	h	2-4 Weeks					1-2 Weeks			s	in	stock	
						Ł	ֈ								
			Ē	1	2	3	4	5	6	7	8	value	facto	r	
Г	1. acquisiti	on cost		1	0	0	0	0	1	1	1	3	0.054	-	
ŀ	2. power cons		m	2		0	1	0	2	2	2	9	0.161		
l l	3. operating sys			2	2		1	1	2	1	1	10	0.179	,	
l l	4. performanc			2	1	1		0	2	2	2	9	0.179)	
T I	5. USB hosts			2	2	1	2		2	2	2	13	0.232	2	
	6. size			1	0	0	0	0		1	1	3	0.054		
	7. community			1	0	1	0	0	1		1	4	0.007	1	
	8. availability			1	0	1	0	0	1	1		4	0.007	1	
ľ	total											56	1		
						T	<u>لر</u>								
criterion factor B			Be	eagleBoard Pa			nd	ndaBoard			droid-X	Raspberry			
	-		TC	2	CBV		T	2	CBV		TC	CBV	TC	CBV	
acqu	acquisition cost		3	0.16		3		0.16		4	0.21	8	0.43		
power cons		0.161	3	0.48		4		0.64		1	0.16	7	1.13		
operating system		n 0.179	7	1.25		7		1.25		7	1.25	3	0.54		
perfe	performance		4	0.71		6		1.07		7	1.25	1	0.18		
USB	USB hosts		4		0.93		6		1.39		1	0.23	1	0.23	
size	size		4	0.17		17	3		0.16		4	0.21	8	0.43	
community		0.071	3		0.	21	5		0.3	36	3	0.21	7	0.50	
availability		0.071	4	+	0.	29	5		Û.,	00	3	0.21	1	0.07	
cost-	cost-benefit value				4.	28	(+	5.3	39		3.75		3.50	

PANDABOARD ES

- Fourth-generation TI OMAP4460 ARM Cortex-A9
- Dual-core 1.2GHz CPU
- IGB RAM
- Two Cortex-M3 cores to increase power efficiency
- Processing power comparable to an Intel Atom netbook

Board Dimensions: W:4.0" (101.6 mm) X H: 4.5" (114.3 mm)

LOGITECH C920

- 1/3" sized 3.5 megapixel sensor
- 78° field of view
- Max. resolution 2304 × 1536 in YUYV
- Hardware enabled MJPEG decoding
- 10-20% bandwidth of a comparable RGB stream
- MJPEG is independent of the image motion
- 1920 x 1080 at 5 frames per second

ASUS XTION PRO LIVE

- RGB-D cameras providing color (RGB) and depth (D) information for every pixel in the image
- Projective stereo technology
- Cheap, low powered, and light-weight compared to other stereo or Time of Flight cameras
- Only one USB connection as power supply

PROTOTYPE

- ① IR projector
- 2 RGB sensor Asus Xtion Pro Live
- ③ IR sensor
- (4) HD RGB camera Logitech c920
- 5 Trigger button
- 6 On/Off flip switch
- ⑦ Standby button
- (8) SD-card slot
- (9) Ventilation slot

PROTOTYPE

- PandaBoard ES
- Battery BeagleJuice 2 with 4200mAh
- Active powered USB-hub
- Custom USB A-type cable for OTG port
- Modified keyboard controller as input
- 30 x 30mm heat-sink
- 5V micro fan (20mm)

Extra heatsink

PROTOTYPE

- PandaBoard ES
- Battery BeagleJuice 2 with 4200mAh
- Active powered USB-hub
- Custom USB A-type cable for OTG port
- Modified keyboard controller as input
- 30 x 30mm heat-sink
- 5V micro fan (20mm)

Page 16 Hardware

CALIBRATION

- Calibration algorithms provided by ROS
- Checkerboard as target
- Calibration result is used directly on Pandaboard ES
- Both sensors are calibrated the same way
- External IR lighting source and a covered projector are essential
- Mandatory for a reliable camera pose estimation

DATA ACQUISITION

- Circular path with a radius about 40 cm: about half length of the stretched arm
- Small angle separation: 15-18 images per circular path
- Multiple heights: 3 images at each angle position
- Each 360° 3D reconstruction will have 45-55 images
- Multiple views: Small distance separation: 5-10 m between centers

SOFTWARE OVERVIEW

Page 17 Software

CAMERA GRABBER

- Webcam Grabber
 - Based on usb_cam package
 - 1920x1080 resolution
 - Hardware MJPEG compression of webcam is used
 - 5 fps standalone
 - 3 fps together with RGB-D Sensor
- Kinect Grabber
 - Based on OpenNI library
 - 320x240 resolution of RGB & depth image
 - Transforms depth image to RGB frame for easy registration
 - 30 fps standalone
 - 15 fps together with webcam
 - 30% less CPU load compared to existing solution

SYNCHRONIZER

- Unequal frame rates are not consistent
- Adaptive message synchronization
- Approximate time policy of the ROS message_filter algorithm
 - Messages are used only once. Two sets cannot share the same message
 - Sets do not cross
 - Sets are contiguous -> no dropped message of one topic between the two sets
 - Output only depends on time stamps, not on the arrival time of messages

SCENE RECONSTRUCTION

- Normalizing Bundler cloud
- Subset of 100 most stable 3D points
- Points are transformed into every individual viewpoint
- Matching SIFT key-points and compare depth value
- ROI check due to different view frusta of sensors
- Estimation of scaling difference
- 100 points results in more than 1000 depth values
- Histogram to determine scaling factor
- Scale bundler camera poses to real world coordinates
- Concatenation of RGB-D data with obtained poses
- Optional ICP to improve matching

RESULTS

SIEMENS

5 different environments:

- Conference room
- Outdoor scene
- Kitchen: Narrow scene
- Cafeteria: High average number of SIFT features
- Basement: Factory like setting

KITCHEN DATASET

Page 23 Results & Conclusion

KITCHEN DATASET

- Room size 10 x 4 meter
- 59 input images
- Minimal recording distance was 0.6 meter
- Maximal recording distance was 3.70 meter
- Full model consists of 3447510 points
- Total time for reconstruction = 8 min

CAFETERIA DATASET

Scaling Factor	Histogram
Room size	14.50×11.50 meter
Input images	61
Average SIFT features	4632
Minimal recording distance	1.00
Maximal recording distance	8.50
Estimated camera poses	52
3D Points of full model	2916728
Reconstruction time	7 min

BASEMENT DATASET

Page 26 Results & Conclusion

CONCLUSION

- Development of extensible project platform
- Hardware
 - Portable 3D data acquisition device
 - Interfacing of 2 high bandwidth sensors
- Software
 - Interface for high definition MJPEG camera
 - Interface for RGB-D sensor on ARM platform
 - Synchronizing of messages
 - Scale estimation
 - Concatenation of RGB-D data
- Tested in 5 different environments
- Patent pending

FUTURE WORK

- Mesh visualization
- Build up overview map and enable natural navigation
- Automated CAD model matching
- Combine with quadrocopter mapping
- Port to consumer platform like tablets
- PrimeSense Capri sensor or Kinect 2

Page 28 Results & Conclusion

Thank you for your attention. Questions are welcome