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Markov Random Fields in Computer Vision

Image Segmentation

Boykov and Jolly [ICCV 2001]
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Markov Random Fields in Computer Vision

Image Denoising

Roth and Black [CVPR 2005]
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Markov Random Fields in Computer Vision

Stereo Reconstruction

Woodford et al. [CVPR, 2008]
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General Form

min
x∈Ln

f (x) = min
x∈Ln

∑
c∈C

θc(xc)

I x ∈ Ln set of n variables (vertices, pixels)
I L finite set of labels
I C ⊂ 2n set of cliques
I θc : L|c| → R potential function
I order(f ) = maxc∈C |c| − 1
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General Form

min
x∈Ln

f (x) = min
x∈Ln

∑
c∈C

θc(xc)

Generally NP-Hard!
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Related Work - Optimization Strategies

min
x∈Ln

f (x) = min
x∈Ln

∑
c∈C

θc(xc)

I Graph Cut: first-order, binary, submodular
Kolmogorov and Zabih [PAMI 2004]

I Graph Cut: first-order, multi-label, submodular
Ishikawa [PAMI 2003] Schlesinger and Flach [TR 2006]

I Alpha Expansion: multi-label, local solution
Boykov et al. [PAMI 2001]

I QPBO: first-order, binary, partial labeling
Hammer et al. [Math. Programming 1984]

I Higher-Order Clique Reduction: higher-order, binary
Ishikawa [CVPR 2009] Fix et al. [ICCV 2011]
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Related Work
On Partial Optimality in Multi-label MRFs

On Partial Optimality in Multi-label MRFs
Kohli, Shekhovtsov, Rother, Kolmogorov, Torr [ICML 2008]

I multi-label, first-order, non-submodular functions
I partial labeling
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Related Work - Generalized Roof Duality

Generalized Roof Duality
Kahl and Standmark [ICCV 2011, Discrete Appl. Math. 2012]

I binary, higher-order, non-submodular functions
I partial labeling
I optimal submodular relaxation
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In This Presentation

Generalized Roof Duality for Multi-Label Optimization
Windheuser, Ishikawa, Cremers [ECCV 2012]

I multi-label, higher-order, non-submodular functions
I partial labeling
I optimal submodular relaxation
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Submodular Relaxation

min
x∈Ln

f (x) −→ min
(x,y)∈L2n

g(x,y)

g satisfies:
(A) ∀x ∈ Ln : f (x) = g(x,x),
(B) g is submodular and
(C) ∀(x,y) ∈ L2n : g(x,y) = g(y,x),
where x = |L| − 1− x .

(A) image(f ) ⊂ image(g)
Minimizer of g is a lower bound of the minimizer of f .
(B) Global minimum of g can be computed efficiently.
(C) Symmetry condition required for the Persistency Theorem.
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Optimal Lower Bound

Find the submodular relaxation with the optimal lower bound.

max
g

min
(x,y)∈L2n

g(x,y)

s. t. (A) ∀x ∈ Ln : f (x) = g(x,x),
(B) g is submodular and

(C) ∀(x,y) ∈ L2n : g(x,y) = g(y,x).
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Label Ranges

Definition:

Sn := {(x,y) ∈ L2n | ∀i ∈ {1, . . . ,n} : xi + yi < `}.

Lemma: For any submodular symmetric function g : L2n → R
the following statement is true:

∀x,y ∈ Ln : g(x,y) ≥ g(min(x,y),min(x,y)).

Since (min(x,y),min(x,y)) ∈ Sn, there always exists a point
in Sn that minimizes g.
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Label Ranges
For every g there exists a minimizer (x∗,y∗) ∈ arg min g(x,y) such that

∀i : 0 ≤ x∗i ≤ y∗i < |L|.
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Overwrite Operator - Projection onto Label Ranges

The overwrite operator x← (x∗,y∗) projects
any point x ∈ Ln onto the ranges defined by (x∗,y∗) ∈ L2n
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Overwrite Operator - Projection onto Label Ranges

The overwrite operator x← (x∗,y∗) projects
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Overwrite Operator - Projection onto Label Ranges

The overwrite operator x← (x∗,y∗) projects
any point x ∈ Ln onto the ranges defined by (x∗,y∗) ∈ L2n
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Main Result

Persistency Theorem:
Let g be a function satisfying (A)-(C) and (x∗,y∗) ∈ L2n be
a minimizer of g, then

∀x ∈ Ln : f (x← (x∗,y∗)) ≤ f (x)

In particular, if x ∈ arg min(f ), then also x← (x∗,y∗) ∈ arg min(f ).
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Main Result

Theorem for First-Order MRF Functions:
For any first-order MRF function there is a closed-form solution
to the problem of finding the optimal submodular relaxation.
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Denoising Example

original noisy lower bounds upper bounds

x∗ = arg min
x

∑
p∈P

(I(p)− x(p))2 + λ
∑

pq∈N
min(|x(p)− x(q)|,T )
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Denoising Example
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Conclusion

Submodular Relaxations for Non-Submodular Multi-Label Functions

Proof of the Persistency Theorem
I any number of linearly ordered labels
I non-submodular
I potential functions of arbitrary order

First-Order Non-Submodular Functions
I optimal lower bound
I closed-form solution
I partial labeling / ranges of labels
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