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Mathematical Background: Linear Algebra
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Vector space (Vektorraum)

A set V is called a linear space or a vector space over the field R if it is
closed under vector summation

+ : V × V → V

and under scalar multiplication

· : R × V → V,

i.e. αv1 + βv2 ∈ V ∀v1, v2 ∈ V, ∀α, β ∈ R. With respect to addition (+) it
forms a commutative group (existence of neutral element 0, inverse
element −v). Scalar multiplication respects the structure of R:
α(βu) = (αβ)u. Multiplication and addition respect the distributive law:
(α + β)v = αv + βv and α(v + u) = αv + αu.

Example: V = Rn, v = (x1, . . . , xn)⊤.

A subset W ⊂ V of a vector space V is called subspace if 0 ∈ W and
W is closed under + and · (for all α ∈ R).
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Linear independence and basis

The spanned subspace of a set of vectors S = {v1, . . . , vk} ⊂ V is the
subspace formed by all linear combinations of these vectors:

span(S) =

{

v ∈ V
∣∣∣ v =

k∑

i=1

αivi

}

The set S is called linearly independent if:

k∑

i=1

αivi = 0 ⇒ αi = 0 ∀i,

in other words: if none of the vectors can be expressed as a linear
combination of the remaining vectors. Otherwise the set is called
linearly dependent.

A set of vectors B = {v1, . . . , vn} is called a basis of V if it is linearly
independent and if it spans the vector space V . A basis is a maximal
set of linearly independent vectors.
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Properties of a basis

Let B and B′ be two bases of a linear space V .
1. B and B′ contain the same number of vectors. This number n is

called the dimension of the space V .

2. Any vector v ∈ V can be uniquely expressed as a linear
combination of the basis vectors in B = {b1, . . . , bn}:

v =

n∑

i=1

αibi.

3. In particular, all vectors of B can be expressed as linear
combinations of vectors of another basis b′i ∈ B′:

b′i =
n∑

j=1

αjibj

The coefficients αji for this basis transform can be combined in a
matrix A. Setting B ≡ (b1, . . . , bn) and B′ ≡ (b′1, . . . , b

′
n) as the

matrices of basis vectors, we can write: B′ = BA ⇔ B = B′A−1.
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Inner product

On a vector space one can define an inner product (dot product, dt.:
Skalarprodukt 6= skalare Multiplikation):

〈·, ·〉 : V × V → R

which is defined by three properties:

1. 〈u, αv + βw〉 = α〈u, v〉 + β〈u, w〉 (linear)
2. 〈u, v〉 = 〈v, u〉 (symmetric)
3. 〈v, v〉 ≥ 0 and 〈v, v〉 = 0 ⇔ v = 0 (positive definite)

The scalar product induces a norm

| · | : V → R, |v| =
√
〈v, v〉

and a metric

d : V × V → R, d(v, w) = |v − w| =
√

〈v − w, v − w〉

for measuring lengths and distances, making V a metric space. Since
the metric is induced by a scalar product V is called a Hilbert space.
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Canonical and induced inner product

On V = R
n, one can define the canonical inner product for the

canonical basis B = In as

〈x, y〉 = x⊤y =
n∑

i=1

xiyi

which induces the standard L2-norm or Euclidean norm

|x|2 =
√

x⊤x =
√

x2
1 + · · · + x2

n

With a basis transform A to the new basis B′ given by I = B′A−1 the
canonical inner product in the new coordinates x′, y′ is given by:

〈x, y〉 = x⊤y = (Ax′)⊤(Ay′) = x′⊤ A⊤A y′ ≡ 〈x′, y′〉
A

⊤
A

The latter product is called the induced inner product from the matrix A.

Two vectors v and w are orthogonal iff 〈v, w〉 = 0.
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Kronecker product and stack of a matrix

Given two matrices A ∈ Rm×n and B ∈ Rk×l, one can define their
Kronecker product A ⊗ B by:

A ⊗ B ≡





a11B · · · a1nB
...

. . .
...

am1B · · · amnB



 ∈ R
mk×nl.

In Matlab this can be implemented by C=kron(A,B).
Given a matrix A ∈ Rm×n, its stack As is obtained by stacking its n
column vectors a1, . . . , an ∈ Rm:

As ≡





a1

...
an



 ∈ R
mn.

These notations allow to rewrite algebraic expressions, for example:

u⊤ A v = (v ⊗ u)⊤ As.
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Linear transformations and matrices

Linear algebra studies the properties of linear transformations between
linear spaces. Since these can be represented by matrices, linear
algebra studies the properties of matrices.
A linear transformation L between two linear spaces V and W is a
map L : V → W such that:

■ L(x + y) = L(x) + L(y) ∀x, y ∈ V

■ L(αx) = αL(x) ∀x ∈ V, α ∈ R.

Due to the linearity, the action of L on the space V is uniquely defined
by its action on the basis vectors of V . In the canonical basis
{e1, . . . , en} we have:

L(x) = Ax ∀x ∈ V,

where
A = (L(e1), . . . , L(en)) ∈ R

m×n.

The set of all real m × n-matrices is denoted by M(m, n). In the case
that m = n, the set M(m, n) ≡ M(n) forms a ring over the field R, i.e.
it is closed under matrix multiplication and summation.
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The linear groups GL(n) and SL(n)

There exist certain sets of linear transformations which form a group.
A group is a set G with an operation ◦ : G × G → G such that:

1. g1 ◦ g2 ∈ G ∀g1, g2 ∈ G (closed),
2. (g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3) ∀g1, g2, g3 ∈ G (associative),
3. ∃e ∈ G : e ◦ g = g ◦ e = e ∀g ∈ G (neutral),

4. ∃g−1 ∈ G : g ◦ g−1 = g−1 ◦ g = e ∀g ∈ G (inverse).

Example: All invertible (non-singular) real n × n-matrices form a group
with respect to matrix multiplication. This group is called the general
linear group GL(n). It consists of all A ∈ M(n) for which

det(A) 6= 0

All matrices A ∈ GL(n) for which det(A) = 1 form a group called the
special linear group SL(n). The inverse of A is also in this group, as
det(A−1) = det(A)−1
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Matrix representation of groups

A group G has a matrix representation (dt.: Darstellung) or can be
realized as a matrix group if there exists an injective transformation:

R : G → GL(n)

which preserves the group structure of G, that is inverse and
composition are preserved by the map:

R(e) = In×n, R(g ◦ h) = R(g)R(h) ∀g, h ∈ G

Such a map R is called a group homomorphism (dt.
Homomorphismus).
The idea of matrix representations of a group is that they allow to
analyze more abstract groups by looking at the properties of the
respective matrix group. Example: The rotations of an object form a
group, as there exists a neutral element (no rotation) and an inverse
(the inverse rotation) and any concatenation of rotations is again a
rotation (around a different axis). Studying the properties of the rotation
group is easier if rotations are represented by respective matrices.
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The affine group A(n)

An affine transformation L : Rn → Rn is defined by a matrix A ∈ GL(n)
and a vector b ∈ Rn such that:

L(x) = Ax + b

The set of all such affine transformations is called the affine group of
dimension n, denoted by A(n).
L defined above is not a linear map unless b = 0. By introducing
homogeneous coordinates to represent x ∈ Rn by

(
x
1

)
∈ Rn+1, L

becomes a linear mapping from

L : R
n+1 → R

n+1;

(
x

1

)

7→
(

A b

0 1

)(
x

1

)

.

A matrix
(
A b
0 1

)
with A ∈ GL(n) and b ∈ Rn is called an affine matrix. It

is an element of GL(n + 1). The affine matrices form a subgroup of
GL(n + 1). Why?
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The orthogonal group O(n)

A matrix A ∈ M(n) is called orthogonal if it preserves the inner
product, i.e.:

〈Ax, Ay〉 = 〈x, y〉, ∀x, y ∈ R
n.

The set of all orthogonal matrices forms the orthogonal group O(n),
which is a subgroup of GL(n). For an orthogonal matrix R we have

〈Rx, Ry〉 = x⊤R⊤Ry = x⊤y, ∀x, y ∈ R
n

Therefore we must have R⊤R = RR⊤ = I, in other words:

O(n) = {R ∈ GL(n) | R⊤R = I}

The above identity shows that for any orthogonal matrix R, we have
det(R⊤R) = (det(R))2 = det(I) = 1, such that det(R) ∈ {±1}.
The subgroup of O(n) with det(R) = +1 is called the special
orthogonal group SO(n). SO(n) = O(n) ∩ SL(n). In particular, SO(3)
is the group of all 3-dimensional rotation matrices.
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The Euclidean group E(n)

A Euclidean transformation L from R
n to R

n is defined by an
orthogonal matrix R ∈ O(n) and a vector T ∈ R

n:

L : R
n → R

n; x 7→ Rx + T.

The set of all such transformations is called the Euclidean group E(n).
It is a subgroup of the affine group A(n). Embedded by homogeneous
coordinates, we get:

E(n) =

{(
R T

0 1

) ∣∣∣∣∣ R ∈ O(n), T ∈ R
n

}

.

If R ∈ SO(n) (i.e. det(R) = 1), then we have the special Euclidean
group SE(n). In particular, SE(3) represents the rigid-body motions
(dt.: Starrkörpertransformationen) in R

3.
In summary:

SO(n) ⊂ O(n) ⊂ GL(n), SE(n) ⊂ E(n) ⊂ A(n) ⊂ GL(n + 1).
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Range, span, null space and kernel

Let A ∈ Rm×n be a matrix defining a linear map from Rn to Rm.
The range or span of A (dt.: Bild) is defined as the subspace of Rm

which can be ‘reached’ by A:

range(A) = {y ∈ R
m
∣∣ ∃x ∈ R

n : Ax = y}.

The range of a matrix A is given by the span of its column vectors.
The null space or kernel of a matrix A (dt.: Kern) is given by the subset
of vectors x ∈ R

n which are mapped to zero:

null(A) ≡ ker(A) = {x ∈ R
n
∣∣ Ax = 0}.

The null space of a matrix A is given by the vectors orthogonal to its
row vectors. Matlab: Z=null(A).
The concepts of range and null space are useful when studying the
solution of linear equations. The system Ax = b will have a solution
x ∈ Rn if and only if b ∈ range(A). Moreover, this solution will be unique
only if ker(A) = {0}. Indeed, if xs is a solution of Ax = b and
xo ∈ ker(A), then xs+xo is also a solution: A(xs+xo) = Axs + Axo = b.
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Rank of a matrix

The rank of a matrix (dt. Rang) is the dimension of its range:

rank(A) = dim (range(A)) .

The rank of a matrix A ∈ Rm×n has the following properties:

1. rank(A) = n − dim(ker(A)).

2. 0 ≤ rank(A) ≤ min{m, n}.

3. rank(A) is equal to the maximum number of linearly independent
row (or column) vectors of A.

4. rank(A) is the highest order of a nonzero minor of A, where a
minor of order k is the determinant of a k × k submatrix of A.

5. Sylvester’s inequality: Let B ∈ Rn×k Then AB ∈ Rm×k and

rank(A) + rank(B) − n ≤ rank(AB) ≤ min{rank(A), rank(B)}.

6. For any nonsingular matrices C ∈ Rm×m and D ∈ Rn×n, we
have: rank(A) = rank(CAD). Matlab: d=rank(A).



Mathematical Background

● Vector space (Vektorraum)

● Linear independence and

basis
● Properties of a basis

● Inner product

● Canonical and induced inner

product
● Kronecker product and stack

of a matrix
● Linear transformations and

matrices

● The linear groups GL(n)

and SL(n)
● Matrix representation of

groups

● The affine group A(n)

● The orthogonal group

O(n)

● The Euclidean group E(n)

● Range, span, null space and

kernel
● Rank of a matrix

● Eigenvalues and eigenvectors

● Properties of eigenvalues and

eigenvectors

● Symmetric matrices

● Norms of matrices

● Skew-symmetric matrices

● Examples of skew-symmetric

matrices
● The singular value

decomposition (SVD)
● Algebraic derivation of SVD

● Proof of SVD decomposition 1

● Proof of SVD decomposition 2

● A geometric interpretation of

Prof. Dr. Daniel Cremers, TU München Multiple View Geometry - p. 17/28

Eigenvalues and eigenvectors

Let A ∈ Cn×n be a complex matrix. A non-zero vector v ∈ Cn is called
a (right) eigenvector of A if:

Av = λv, with λ ∈ C.

λ is called an eigenvalue of A. Similarly v is called a left eigenvector of
A, if v⊤A = λv⊤ for some λ ∈ C.
The spectrum σ(A) of a matrix A is the set of all its eigenvalues.

Matlab:

[V,D]=eig(A);

where D is a diagonal matrix containing the eigenvalues and V is a
matrix whose columns are the corresponding eigenvectors, such that
AV=VD.
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Properties of eigenvalues and eigenvectors

Let A ∈ Rn×n be a square matrix. Then:

1. If Av = λv for some λ ∈ R, then there also exists a left-eigenvector
η ∈ R

n : η⊤A = λη⊤. Hence σ(A) = σ(A⊤).

2. The eigenvectors of a matrix A associated with different
eigenvalues are linearly independent.

3. All eigenvalues σ(A) are the roots of the characteristic polynomial
equation det(λI − A) = 0. Therefore det(A) is equal to the product
of all eigenvalues (some of which may appear multiple times).

4. If B = PAP−1 for some nonsingular matrix P , then σ(B) = σ(A).

5. If λ ∈ C is an eigenvalues, then its conjugate λ is also an
eigenvalue. Thus σ(A) = σ(A) for real matrices A.
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Symmetric matrices

A matrix S ∈ Rn×n is called symmetric if S⊤ = S. A symmetric matrix S
is called positive semi-definite (denoted by S ≥ 0 or S � 0) if
x⊤Sx ≥ 0. S is called positive definite (denoted by S > 0 or S ≻ 0) if
x⊤Sx > 0 ∀x 6= 0.
Let S ∈ Rn×n be a real symmetric matrix. Then:

1. All eigenvalues of S are real, i.e. σ(S) ⊂ R.

2. Eigenvectors vi and vj of S corresponding to distinct eigenvalues
λi 6= λj are orthogonal.

3. There always exist n orthonormal eigenvectors of S which form a
basis of R

n. Let V = (v1, . . . , vn) ∈ O(n) be the orthogonal matrix of
these eigenvectors, and Λ = diag{λ1, . . . , λn} the diagonal matrix of
eigenvalues. Then we have S = V Λ V ⊤.

4. S is positive (semi-)definite, if all eigenvalues are positive
(nonnegative).

5. Let S be positive semi-definite and λ1, λn the largest and smallest
eigenvalue. Then λ1 = max|x|=1〈x, Sx〉 and λn = min|x|=1〈x, Sx〉.
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Norms of matrices

There are many ways to define norms on the space of matrices
A ∈ R

m×n. They can be defined based on norms on the domain or
codomain spaces on which A operates. In particular, the induced
2-norm of a matrix A is defined as

||A||
2
≡ max

|x|2=1

|Ax|
2

= max
|x|2=1

√
〈x, A⊤Ax〉.

Alternatively, one can define the Frobenius norm of A as:

||A||f ≡
√∑

i,j

a2
ij =

√
trace(A⊤A).

Note that these norms are in general not the same. Since the matrix
A⊤A is symmetric and pos. semi-definite, we can diagonalize it as:
A⊤A = V diag

{
σ2

1 , . . . , σ2
n

}
V ⊤ with σ2

1 ≥ σ2
i ≥ 0. This leads to:

||A||2 = σ1, and ||A||f =
√

trace(A⊤A) =
√

σ2
1 + . . . + σ2

n.
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Skew-symmetric matrices

A matrix A ∈ Rn×n is called skew-symmetric or anti-symmetric (dt.
schiefsymmetrisch) if A⊤ = −A.
If A is a real skew-symmetric matrix, then:

1. All eigenvalues of A are either zero or purely imaginary, i.e. of the
form iω with i2 = −1, ω ∈ R.

2. There exists an orthogonal matrix V such that

A = V Λ V ⊤,

where Λ is a block-diagonal matrix Λ = diag{A1, . . . , Am, 0, . . . , 0},
with real skew-symmetric matrices Ai of the form:

Ai =

(
0 ai

−ai 0

)

∈ R
2×2, i = 1, . . . , m.

In particular, the rank of any skew-symmetric matrix is even.
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Examples of skew-symmetric matrices

In Computer Vision, a common skew-symmetric matrix is given by the
hat operator of a vector u ∈ R3 is:

û =




0 −u3 u2

u3 0 −u1

−u2 u1 0



 ∈ R
3×3.

This is a linear operator from the space of vectors R3 to the space of
skew-symmetric matrices in R3×3.
In particular, the matrix û has the property that

ûv = u × v,

where × denotes the standard vector cross product in R3. For u 6= 0,
we have rank(û) = 2 and the null space of û is spanned by u, because
ûu = u⊤û = 0.
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The singular value decomposition (SVD)

In the last slides, we have studied many properties of matrices, such
as rank, range, null space, and induced norms of matrices. Many of
these properties can be captured by the so-called singular value
decomposition (SVD).

SVD can be seen as a generalization of eigenvalues and eigenvectors
to non-square matrices. The computation of SVD is numerically
well-conditioned. It is very useful for solving linear-algebraic problems
such as matrix inversion, rank computation, linear least-squares
estimation, projections, and fixed-rank approximations.

In practice, both singular value decomposition and eigenvalue
decompositions are used quite extensively.
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Algebraic derivation of SVD

Let A ∈ Rm×n with m ≥ n be a matrix of rank(A) = p. Then there exist

■ U ∈ Rm×p whose columns are orthonormal

■ V ∈ Rn×p whose columns are orthonormal, and

■ Σ ∈ Rp×p, Σ = diag{σ1, . . . , σp}, with σ1 ≥ . . . ≥ σp,

such that
A = U ΣV ⊤.

Note that this generalizes the eigenvalue decomposition. While the
latter decomposes a symmetric square matrix A with an orthogonal
transformation V as:

A = V Λ V ⊤, with V ∈ O(n), Λ = diag{λ1, . . . , λn},

SVD allows to decompose an arbitrary (non-square) matrix A of rank p
with two transformations U and V with orthonormal columns as shown
above. Nevertheless, we will see that SVD is based on the eigenvalue
decomposition of symmetric square matrices.
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Proof of SVD decomposition 1

Given a matrix A ∈ Rm×n with m ≥ n and rank(A) = p, the matrix

A⊤A ∈ R
n×n

is symmetric and positive semi-definite. Therefore it can be
decomposed with non-negative eigenvalues σ2

1 ≥ . . . ≥ σ2
n ≥ 0 with

orthonormal eigenvectors v1, . . . , vn. The σi are called singular values.
Since

ker(A⊤A) = ker(A) and range(A⊤A) = range(A⊤),

we have span{v1, . . . , vp} = range(A⊤) and
span{vp+1, . . . , vn} = ker(A). Let

ui ≡
1

σi

Avi ⇔ Avi = σiui, i = 1, . . . , p

then the ui ∈ Rm are orthonormal:

〈ui, uj〉 =
1

σiσj

〈Avi, Avj〉 =
1

σiσj

〈vi, A
⊤Avj〉 = δij.
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Proof of SVD decomposition 2

Complete {ui}p
i=1

to a basis {ui}m
i=1 of Rm. Since Avi = σiui, we have

A (v1, . . . , vn) = (u1, . . . , um)





σ1 0 0 · · · 0

0
. . . 0

... 0

0 · · · σp

... 0
... · · · · · ·

... 0

0 · · · · · · 0 0





,

which is of the form AṼ = ŨΣ̃, thus

A = Ũ Σ̃ Ṽ ⊤.

Now simply delete all columns of Ũ and the rows of Ṽ ⊤ which are
multiplied by zero singular values and we obtain the form A = U Σ V ⊤,
with U ∈ R

m×p and V ∈ R
n×p.

In Matlab: [U,S,V] = svd(A).
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A geometric interpretation of SVD

For A ∈ Rn×n, the singular value decomposition A = U Σ V ⊤ is such
that the columns U = (u1, . . . , un) and V = (v1, . . . , vn) form
orthonormal bases of R

n. If a point x ∈ R
n is mapped to a point y ∈ R

n

by the transformation A, then the coordinates of y in basis U are
related to the coordinates of x in basis V by the diagonal matrix Σ:
each coordinate is merely scaled by the corresponding singular value:

y = Ax = U Σ V ⊤x ⇔ U⊤y = ΣV ⊤x.

The matrix A maps the unit sphere into an ellipsoid with semi-axes
σiui. To see this, we call α ≡ V ⊤x the coefficients of the point x in the
basis V and those of y in basis U shall be called β ≡ U⊤y. All points of
the circle fulfill |x|22 =

∑
i α2

i = 1. The above statement says that
βi = σiαi. Thus for the points on the sphere we have

∑

i

α2
i =

∑

i

β2
i /σ2

i = 1,

which states that the transformed points lie on an ellipsoid oriented
along the axes of the basis U .
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The generalized (Moore Penrose) inverse

For certain quadratic matrices one can define an inverse matrix, if
det(A) 6= 0. The set of all invertible matrices forms the group GL(n).
One can also define a (generalized) inverse (also called pseudo
inverse) (dt.: Pseudoinverse) for an arbitrary (non-quadratic) matrix
A ∈ R

m×n. If its SVD is A = U Σ V ⊤ the pseudo inverse is defined as:

A† = V Σ† U⊤, where Σ† =

(
Σ−1

1 0

0 0

)

n×m

,

where Σ1 is the diagonal matrix of non-zero singular values. In Matlab:
X=pinv(A). In particular, the pseudo inverse can be employed in a
similar fashion as the inverse of quadratic invertible matrices:

AA†A = A, A†AA† = A†.

The linear system Ax = b with A ∈ Rm×n of rank r ≤ min(m, n) can
have multiple or no solutions. xmin = A†b is among all minimizers of
|Ax − b|2 the one with the smallest norm |x|.
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