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Representing a 3D Moving Scene
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The origins of 3D reconstruction I

The goal to reconstruct the three-dimensional structure of the world
from a set of two-dimensional views has a long history in computer
vision. It is a classical ill-posed problem, because the reconstruction
consistent with a given set of observations/images is typically not
unique. Therefore, one will need to impose additional assumptions.
Mathematically, the study of geometric relations between a 3D scene
and the observed 2D projections is based on two types of
transformations, namely:

■ Euclidean motion or rigid-body motion representing the motion of the
camera from one frame to the next.

■ Perspective projection to account for the image formation process
(see pinhole camera, etc).

The notion of perspective projection has its roots among the ancient
Greeks (Euclid of Alexandria, ∼ 400 B.C.) and the Renaissance period
(Brunelleschi & Alberti, 1435). The study of perspective projection lead
to the field of projective geometry (Girard Desargues 1648, Gaspard
Monge 18th cent.).
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The origins of 3D reconstruction II

The first work on the problem of multiple view geometry was that of
Erwin Kruppa (1913) who showed that two views of five points are
sufficient to determine both the relative transformation (motion)
between the two views and the 3D location (structure) of the points up
to finitely many solutions.

A linear algorithm to recover structure and motion from two views
based on the epipolar constraint was proposed by Longuet-Higgins in
1981. An entire series of works along these lines was summarized in
several text books (Faugeras 1993, Kanatani 1993, Maybank 1993,
Weng et al. 1993).

Extensions to three views were developed by Spetsakis and
Aloimonos ’87, ’90, and by Shashua ’94 and Hartley ’95. Factorization
techniques for multiple views and orthogonal projection were
developed by Tomasi and Kanade 1992.
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Three-dimensional Euclidean space

The three-dimensional Euclidean space E
3 consists of all points p ∈ E

3

characterized by coordinates

X ≡ (X1, X2, X3)
⊤ ∈ R

3,

such that E
3 can be identified with R

3, such that we talk about points
(E3) and coordinates (R3) as if they were the same thing. Given two
points X and Y , one can define a bound vector as

v = Y − X ∈ R
3.

Considering this vector independent of its base point Y makes it a free
vector. The set of free vectors v ∈ R

3 forms a linear vector space. By
identifying E

3 and R
3, one can endow E

3 with a scalar product, a norm
and a metric. This allows to compute distances, curve length

l(γ) ≡

∫ 1

0

|γ̇(s)| ds for a curve γ : [0, 1] → R
3,

areas or volumes.
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Cross product & skew-symmetric matrices

On R
3 one can define a cross product

× : R
3 × R

3 → R
3 : u × v =




u2v3 − u3v2

u3v1 − u1v3

u1v2 − u2v1



 ∈ R
3,

which is a vector orthogonal to u and v. Since u× v = −v×u, the cross
product introduces an orientation. Fixing u induces a linear mapping
v 7→ u × v which can be represented by the skew-symmetric matrix

û =




0 −u3 u2

u3 0 −u1

−u2 u1 0



 ∈ R
3×3.

In turn, every skew symmetric matrix M = −M⊤ ∈ R
3×3 can be

identified with a vector u ∈ R
3. The operator ̂ defines an

isomorphism between R
3 and the space so(3) of all 3 × 3

skew-symmetric matrices. Its inverse is denoted by ∨ : so(3) → R
3.
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Rigid-body motion

A rigid-body motion (or rigid-body transformation) is a family of maps

gt : R
3 → R

3; X 7→ gt(X), t ∈ [0, T ]

which preserve the norm and cross product of any two vectors:

■ |gt(v)| = |v|, ∀ v ∈ R
3,

■ gt(u) × gt(v) = gt(u × v), ∀u, v ∈ R
3.

Since norm and scalar product are related by the polarization identity

〈u, v〉 =
1

4
(|u + v|2 − |u − v|2),

one can also state that a rigid-body motion is a map which preserves
inner product and cross product. As a consequence, rigid-body
motions also preserve the triple product

〈gt(u), gt(v) × gt(w)〉 = 〈u, v × w〉, ∀u, v, w ∈ R
3,

which means that they are volume-preserving.
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Representation of rigid-body motion

How does the above definition of rigid-body motion help to determine a
mathematical representation of rigid-body motion? Since it preserves
lengths and orientation, the motion gt of a rigid body is sufficiently
defined by specifying the motion of a Cartesian coordinate frame
attached to the object (given by an origin and orthonormal oriented
vectors e1, e2, e3 ∈ R

3). The motion of the origin can be represented by
a translation T ∈ R

3, whereas the transformation of the vectors ei is
given by new vectors ri = gt(ei).

Scalar and cross product of these vectors are preserved:

r⊤i rj = gt(ei)
⊤gt(ej) = δij , r1 × r2 = r3.

The first constraint amounts to the statement that the matrix
R = (r1, r2, r3) is an orthogonal (rotation) matrix: R⊤R = RR⊤ = I,
whereas the second property implies that det(R) = +1, in other words:
R is an element of the group of special orthogonal matrices:

SO(3) =
{
R ∈ R

3×3 | R⊤R = I, det(R) = +1
}

.
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Exponential coordinates of rotation

We will now derive a representation of an infinitesimal rotation. To this
end, consider a family of rotation matrices R(t) which continuously
transform a point from its original location (R(t = 0) = I) to a different
one.

Xtrans(t) = R(t)Xorig, with R(t) ∈ SO(3).

Since R(t)R(t)⊤ = I, ∀t, we have

d

dt
(RR⊤) = ṘR⊤ + RṘ⊤ = 0 ⇒ ṘR⊤ = −(ṘR⊤)⊤.

Thus, ṘR⊤ is a skew-symmetric matrix. As shown in the section about
the ̂-operator, this implies that there exists a vector w(t) ∈ R

3 such
that:

Ṙ(t)R⊤(t) = ŵ(t) ⇔ Ṙ(t) = ŵR(t).

Since R(0) = I, it follows that Ṙ(0) = ŵ(0). Therefore the
skew-symmetric matrix ŵ(0) ∈ so(3) gives the first order approximation
of a rotation:

R(dt) = R(0) + dR = I + ŵ(0) dt.
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Lie group and Lie algebra

The above calculations showed that the effect of any infinitesimal
rotation R ∈ SO(3) can be approximated by an element from the space
of skew-symmetric matrices

so(3) = {ŵ | w ∈ R
3}.

The rotation group SO(3) is called a Lie group. The space so(3) is
called its Lie algebra.

Def.: A Lie group (or infinitesimal group) is a smooth manifold that is
also a group, such that the group operations multiplication and
inversion are smooth maps.

As shown above: The Lie algebra so(3) is the tangent space at the
identity of the rotation group SO(3).

An algebra over a field K is a vector space V over K with
multiplication on the space V . Elements ŵ and v̂ of the Lie algebra
generally do not commute. But one can define the Lie bracket

[ . , . ] : so(3) × so(3) → so(3); [ŵ, v̂] ≡ ŵv̂ − v̂ŵ.
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Sophus Lie (1841 - 1899)

Marius Sophus Lie was a Norwegian-born mathematician. He created
the theory of continuous symmetry, and applied it to the study of
geometry and differential equations. Among his greatest achievements
was the discovery that continuous transformation groups are better
understood in their linearized versions (“Theorie der Transformations-
gruppen” 1893). These infinitesimal generators form a structure which
is today known as a Lie algebra. The linearized version of the group
law corresponds to an operation on the Lie algebra known as the
commutator bracket or Lie bracket. 1882 Professor in Christiania
(Oslo), 1886 Leipzig (succeeding Felix Klein), 1898 Christiania.
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The exponential map

Given the infinitesimal formulation of rotation in terms of the skew
symmetric matrix ŵ, is it possible to determine a useful representation
of the rotation R(t)? Let us assume that ŵ is constant in time.
The differential equation system

{
Ṙ(t) = ŵR(t),

R(0) = I.

has the solution

R(t) = eŵt =
∞∑

n=0

(ŵt)n

n!
= I + ŵt +

(ŵt)2

2!
+ . . . ,

which is a rotation around the axis w ∈ R
3 by an angle of t (if ‖w‖ = 1).

Alternatively, one can absorb the scalar t ∈ R into the skew symmetric
matrix ŵ to obtain R(t) = ev̂ with v̂ = ŵt. This matrix exponential
therefore defines a map from the Lie algebra to the Lie group:

exp : so(3) → SO(3); ŵ 7→ eŵ.
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The logarithm of SO(3)

As in the case of real analysis one can define an inverse function to
the exponential map by the logarithm. In the context of Lie groups, this
will lead to a mapping from the Lie group to the Lie algebra. For any
rotation matrix R ∈ SO(3), there exists a w ∈ R

3 such that R = exp(ŵ).
Such an element is denoted by ŵ = log(R).
If R = (rij) 6= I, then an appropriate w is given by:

|w| = cos−1

(
trace(R) − 1

2

)
,

w

|w|
=

1

2 sin(|w|)




r32 − r23

r13 − r31

r21 − r12



 .

For R = I, we have |w| = 0, i.e. a rotation by an angle 0. The above
statement says: Any orthogonal transformation R ∈ SO(3) can be
realized by rotating by an angle |w| around an axis w

|w| as defined
above. We will not prove this statement.

Obviously the above representation is not unique since increasing the
angle by multiples of 2π will give the same rotation R.
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Rodrigues’ formula

We have seen that any rotation can be realized by computing R = eŵ.
In analogy to the well-known Euler equation

eiφ = cos(φ) + i sin(φ), ∀φ ∈ R,

we have an expression for skew symmetric matrices ŵ ∈ so(3):

eŵ = I +
ŵ

|w|
sin(|w|) +

ŵ2

|w|2
(
1 − cos(|w|)

)
.

This is known as Rodrigues’ formula.
Proof: Let t = |w| and v = w/|w|. Then

v̂2 = vv⊤ − I, v̂3 = −v̂, . . .

and

eŵ = ev̂t = I +

(
t −

t3

3!
+

t5

5!
− . . .

)

︸ ︷︷ ︸
sin(t)

v̂ +

(
t2

2!
−

t4

4!
+

t6

6!
− . . .

)

︸ ︷︷ ︸
1−cos(t)

v̂2.
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Representation of rigid-body motions SE(3)

We have seen that the motion of a rigid-body is uniquely determined
by specifying the translation T of any given point and a rotation matrix
R defining the transformation of a oriented Cartesian coordinate frame
at the given point. Thus the space of rigid-body motions given by the
group of special Euclidean transformations

SE(3) ≡ {g = (R, T ) | R ∈ SO(3), T ∈ R
3}.

In homogeneous coordinates, we have:

SE(3) ≡

{
g =

(
R T

0 1

) ∣∣∣∣∣ R ∈ SO(3), T ∈ R
3

}
⊂ R

4×4.

In the context of rigid motions, one can see the difference between
points in E

3 (which can be rotated and translated) and vectors in R
3

(which can only be rotated).
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The Lie algebra of twists

Given a continuous family of rigid-body transformations

g : R → SE(3); g(t) =

(
R(t) T (t)

0 1

)
∈ R

4×4,

we consider

ġ(t)g−1(t) =

(
ṘR⊤ Ṫ − ṘR⊤T

0 0

)

∈ R
4×4.

As in the case of SO(3), the ṘR⊤ corresponds to some
skew-symmetric matrix ŵ ∈ so(3). Defining a vector
v(t) = Ṫ (t) − ŵ(t)T (t), we have:

ġ(t)g−1(t) =

(
ŵ(t) v(t)

0 0

)

≡ ξ̂(t) ∈ R
4×4.
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The Lie algebra of twists

Multiplying with g(t) from the right, we obtain:

ġ = ġg−1g = ξ̂g.

The 4 × 4-matrix ξ̂ can be viewed as a tangent vector along the curve
g(t). ξ̂ is called a twist. As in the case of so(3), the set of all twists
forms a the tangent space which is the Lie algebra

se(3) ≡

{

ξ̂ =

(
ŵ v

0 0

) ∣∣∣∣∣ ŵ ∈ so(3), v ∈ R
3

}

⊂ R
4×4.

to the Lie group SE(3).
As before, we can define operators ∧ and ∨ to convert between a twist
ξ̂ ∈ se(3) and its twist coordinates ξ ∈ R

6:

ξ̂ ≡

(
v

w

)∧

≡

(
ŵ v

0 0

)

∈ R
4×4,

(
ŵ v

0 0

)∨

=

(
v

w

)

∈ R
6.
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Exponential coordinates for SE(3)

The twist coordinates ξ =
(

v
w

)
are formed by stacking the linear velocity

v ∈ R
3 (related to translation) and the angular velocity w ∈ R

3 (related
to rotation).
The differential equation system

{
ġ(t) = ξ̂g(t), ξ̂ = const.

g(0) = I,

has the solution

g(t) = eξ̂t =

∞∑

n=0

(ξ̂t)n

n!
.

For w = 0, we have eξ̂ =
(
I v
0 1

)
, while for w 6= 0 one can show:

eξ̂ =

(
eŵ (I−eŵ)ŵv+ww⊤v

|w|

0 1

)
.
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Exponential coordinates for SE(3)

The above shows that the exponential map defines a transformation
from the Lie algebra se(3) to the Lie group SE(3):

exp : se(3) → SE(3); ξ̂ 7→ eξ̂.

The elements ξ̂ ∈ se(3) are called the exponential coordinates for
SE(3).
Conversely: For every g ∈ SE(3) there exist twist coordinates

ξ = (v, w) ∈ R
6 such that g = exp(ξ̂).

Proof: Given g = (R, T ), we know that there exists w ∈ R
3 with eŵ = R.

If |w| 6= 0, the exponential form of g introduced above shows that we
merely need to solve the equation

(I − eŵ)ŵv + ww⊤v

|w|
= T

for the velocity vector v ∈ R
3. Just as in the case of SO(3), this

representation is generally not unique, i.e. there exist many twists
ξ̂ ∈ se(3) which represent the same rigid-body motion g ∈ SE(3).
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Representing the motion of the camera

When observing a scene from a moving camera, the coordinates and
velocity of points in camera coordinates will change. We will use a
rigid-body transformation

g(t) =

(
R(t) T (t)

0 1

)

∈ SE(3)

to represent the motion from a fixed world frame to the camera frame
at time t. In particular we assume that at time t = 0 the camera frame
coincides with the world frame, i.e. g(0) = I. For any point X0 in world
coordinates, its coordinates in the camera frame at time t are:

X(t) = R(t)X0 + T (t),

or in the homogeneous representation

X(t) = g(t)X0.
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Concatenation of motions over frames

Given two different times t1 and t2, we denote the transformation from
the points in frame t1 to the points in frame t2 by g(t2, t1):

X(t2) = g(t2, t1)X(t1).

Obviously we have:

X(t3) = g(t3, t2)X2 = g(t3, t2)g(t2, t1)X(t1) = g(t3, t1)X(t1),

and thus:
g(t3, t1) = g(t3, t2)g(t2, t1).

By transferring the coordinates of frame t1 to coordinates in frame t2
and back, we see that:

X(t1) = g(t1, t2)X(t2) = g(t1, t2)g(t2, t1)X(t1),

which must hold for any point coordinates X(t1), thus:

g(t1, t2)g(t2, t1) = I ⇔ g−1(t2, t1) = g(t1, t2).
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Rules of velocity transformation

The coordinates of point X0 in frame t are given by X(t) = g(t)X0.
Therefore the velocity is given by

Ẋ(t) = ġ(t)X0 = ġ(t)g−1(t)X(t)

By introducing the twist coordinates

V̂ (t) ≡ ġ(t)g−1(t) =





ŵ(t) v(t)

0 0




∈ se(3),

we get the expression:

Ẋ(t) = V̂ (t)X(t).

In simple 3D-coordinates this gives:

Ẋ(t) = ŵ(t)X(t) + v(t).

The symbol V̂ (t) therefore represents the relative velocity of the world
frame as viewed from the camera frame.
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Transfer between frames: the adjoint map

Suppose that a viewer in another frame A is displaced relative to the
current frame by a transformation gxy: Y = gxyX(t). Then the velocity
in this new frame is given by:

Ẏ (t) = gxyẊ(t) = gxyV̂ (t)X(t) = gxyV̂ g−1
xy Y (t).

This shows that the relative velocity of points observed from camera
frame A is represented by the twist

V̂y = gxy V̂ g−1
xy ≡ adgxy

(V̂ ).

where we have introduced the adjoint map on se(3):

adg : se(3) → se(3); ξ̂ 7→ g ξ̂ g−1.
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Summary

Rotation SO(3) Rigid-body motion SE(3)

Matrix representation

R ∈ GL(3) :

R⊤R = I,

det(R) = 1

g =

(
R T

0 1

)

3-D coordinates X = RX0 X = RX0 + T

Inverse R−1 = R⊤ g−1 =

(
R⊤ −R⊤T

0 1

)

Exp. representation R = exp(ŵ) g = exp(ξ̂)

Velocity Ẋ = ŵX Ẋ = ŵX + v

Adjoint map ŵ 7→ R ŵ R⊤ ξ̂ 7→ g ξ̂ g−1
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Alternative representations: Euler angles

In addition to the exponential parameterization, there exist alternative
mathematical representations to parameterize rotation matrices
R ∈ SO(3), given by the Euler angles. These are local coordinates, i.e.
the parameterization is only correct for a portion of SO(3).

Given a basis (ŵ1, ŵ2, ŵ3) of the Lie algebra so(3), we can define a
mapping from R

3 to the Lie group SO(3) by:

α : (α1, α2, α3) 7→ exp(α1ŵ1 + α2ŵ2 + α3ŵ3).

The coordinates (α1, α2, α3) are called Lie-Cartan coordinates of the
first kind relative to the above basis.

The Lie-Cartan coordinates of the second kind are defined as:

β : (β1, β2, β3) 7→ exp(β1ŵ1) exp(β2ŵ2) exp(β3ŵ3).

For the specific basis of rotation around the z-, y-, and x-axis given by

w1 = (0, 0, 1)⊤, w2 = (0, 1, 0)⊤, w3 = (1, 0, 0)⊤,

the coordinates β1, β2, β3 are called Euler angles.
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