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Reconstruction From Two Views
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Problem formulation

In the last sections, we discussed how to identify point
correspondences between two consecutive frames. In this section, we
will tackle the next problem, namely that of reconstructing the 3D
geometry of cameras and points.

To this end, we will make the following assumptions:

■ We assume that we are given a set of corresponding points in two
frames taken with the same camera from different vantage points.

■ We assume that the scene is static, i.e. none of the observed 3D
points moved during the camera motion.

■ We also assume that the intrinsic camera (calibration) parameters
are known.

The goal is now to estimate the camera location and orientation from
the set of corresponding points. Once we know location and orientation
of the cameras, we can reconstruct the 3D location of all
corresponding points by triangulation.
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Problem formulation

Goal: Estimate camera motion and 3D scene structure from two views.



Reconstruction

● Problem formulation

● Problem formulation

● Epipolar Geometry: some

notation
● The reconstruction problem

● The epipolar constraint

● The epipolar constraint

● Properties of the essential

matrix E

● A basic reconstruction

algorithm
● The eight-point linear

algorithm
● The eight-point linear

algorithm
● Projection onto essential

space
● Eight point algorithm

(Longuet-Higgins ’81)

● Do we need eight points?

● Limitations and further

extensions
● Structure reconstruction

● Structure reconstruction

● Example

● Optimality in noisy real world

conditions
● Nonlinear optimization

methods
● Bundle adjustment

● Degenerate configurations

● Planar homographies

● From point pairs to

homography

● The four point algorithm

● General comments

● The case of an uncalibrated

Prof. Dr. Daniel Cremers, TU München Multiple View Geometry - p. 4/29

Epipolar Geometry: some notation

The projections of a point X onto the two images are denoted by x1

and x2. The optical centers of each camera are denoted by o1 and o2.
The intersections of the line (o1, o2) with each image plane are called
the epipoles e1 and e2. The intersections between the epipolar plane
(o1, o2, X) and the image planes are called epipolar lines l1 and l2.
There is one epipolar plane for each 3D point X .
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The reconstruction problem

In general 3D reconstruction is a challenging problem. If we are given
two views with 100 feature points in each of them, then we have 200
point coordinates in 2D. The goal is to estimate

■ 6 parameters modeling the camera motion R, T and

■ 100 × 3 coordinates for the 3D points Xj .

This could be done by minimizing the projection error:

E(R, T, X1, . . . , X100) =
∑

j

‖xj
1 − π(Xj)‖

2 + ‖xj
2 − π(R, T, Xj)‖

2

This amounts to a very difficult optimization problem. It turns out that
there is a more elegant solution which allows to entirely get rid of the
3D point coordinates.
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The epipolar constraint

We know that x1 (in homogeneous coordinates) is the projection of a
3D point X . Given known camera parameters (K = 1) and no rotation
or translation of the first camera, we merely have a projection with
unknown depth λ1. From the first to the second frame we additionally
have a camera rotation R and translation T followed by a projection.
This gives the equations:

λ1x1 = X, λ2x2 = RX + T.

Inserting the first equation into the second, we get:

λ2x2 = R(λ1x1) + T.

Now we remove the translation by multiplying with T̂ (T̂ v ≡ T × v):

λ2T̂ x2 = λ1T̂Rx1

And projection onto x2 gives the epipolar constraint:

x⊤

2 T̂R x1 = 0
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The epipolar constraint

The epipolar constraint

x⊤

2 T̂R x1 = 0

provides a relation between the 2D point coordinates of a 3D point in
each of the two images and the camera transformation parameters.
The original 3D point coordinates have been removed. The matrix

E = T̂R ∈ R3×3

is called the essential matrix. The epipolar constraint is also known as
essential constraint or bilinear constraint.
Geometrically, this constraint states that the three vectors

−−→
o1X, −−→o2o1

and
−−→
o2X form a plane, i.e. the triple product of these vectors

(measuring the volume of the parallelepiped) is zero: In coordinates of
the second frame Rx1 gives the direction of the vector

−−→
o1X; T gives

the direction of −−→o2o1, and x2 is proportional to the vector
−−→
o2X such that

volume = x⊤

2 (T × Rx1) = 0.
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Properties of the essential matrix E

The space of all essential matrices is called the essential space:

E ≡
{

T̂R | R ∈ SO(3), T ∈ R3

}
⊂ R3×3

Theorem [Huang & Faugeras, 1989] (Characterization of the essential
matrix): A nonzero matrix E ∈ R3×3 is an essential matrix if and only if
E has a singular value decomposition (SVD) E = UΣV ⊤ with

Σ = diag{σ, σ, 0}

for some σ > 0 and U, V ∈ SO(3).

Theorem (Pose recovery from the essential matrix): There exist exactly
two relative poses (R, T ) with R ∈ SO(3) and T ∈ R3 corresponding to
an essential matrix E ∈ E . For E = UΣV ⊤ we have:

(T̂1, R1) =
(
URZ(+π

2
)ΣU⊤, UR⊤

Z (+π
2
)V ⊤

)
, (1)

(T̂2, R2) =
(
URZ(−π

2
)ΣU⊤, UR⊤

Z (−π
2
)V ⊤

)
, (2)

In general, only one of these gives meaningful (positive) depth values.
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A basic reconstruction algorithm

We have seen that the 2D-coordinates of each 3D point are coupled to
the camera parameters R and T through an epipolar constraint. In the
following, we will derive a 3D reconstruction algorithm which proceeds
as follows:

■ Recover the essential matrix E from the epipolar constraints
associated with a set of point pairs.

■ Extract the relative translation and rotation from the essential matrix
E.

In general, the matrix E recovered from a set of epipolar constraints
will not be an essential matrix. One can resolve this problem in two
ways:

■ Recover some matrix E ∈ R3×3 from the epipolar constraints and
then project it onto the essential space.

■ Optimize the epipolar constraints within the essential space.

While the first approach is simpler and faster, the second one involves
nonlinear constrained optimization, but is in principle more accurate.
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The eight-point linear algorithm

First we rewrite the epipolar constraint as a scalar product in the
elements of the matrix E and the coordinates of the points x1 and x2.
Let

Es = (e11, e21, e31, e12, e22, e32, e13, e23, e33)
⊤ ∈ R9

be the vector of elements of E and

a ≡ x1 ⊗ x2

the Kronecker product of the vectors xi = (xi, yi, zi), defined as

a = (x1x2, x1y2, x1z2, y1x2, y1y2, y1z2, z1x2, z1y2, z1z2)
⊤ ∈ R9.

Then the epipolar constraint can be written as:

x
⊤

2 E x1 = a⊤Es = 0.

For n point pairs, we can combine this into the linear system:

χEs = 0, with χ = (a1, a2, . . . , an)⊤.
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The eight-point linear algorithm

According to

χEs = 0, with χ = (a1, a2, . . . , an)⊤.

we see that the vector of coefficients of the essential matrix E defines
the null space of the matrix χ. In order for the above system to have a
unique solution (up to a scaling factor and ruling out the trivial solution
E = 0), the rank of the matrix χ needs to be exactly 8. Therefore we
need at least 8 point pairs.

In certain degenerate cases, the solution for the essential matrix is not
unique even if we have 8 or more point pairs. One such example is the
case that all points lie on a line or on a plane.

Clearly, we will not be able to recover the sign of E. Since with each E,
there are two possible assignments of rotation R and translation T , we
therefore end up with four possible solutions for rotation and
translation.
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Projection onto essential space

The numerically estimated coefficients Es will in general not
correspond to an essential matrix. One can resolve this problem by
projecting it back to the essential space.

Theorem (Projection onto essential space): Let F ∈ R3×3 be an
arbitrary matrix with SVD F = U diag{λ1, λ2, λ3}V ⊤, λ1 ≥ λ2 ≥ λ3.
Then the essential matrix E which minimizes the Frobenius norm
‖F − E‖2

f is given by

E = U diag{σ, σ, 0}V ⊤, with σ =
λ1 + λ2

2
.
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Eight point algorithm (Longuet-Higgins ’81)

Given a set of n = 8 or more point pairs x
i
1, x

i
2:

■ Compute an approximation of the essential matrix. Construct the
matrix χ = (a1, a2, . . . , an)⊤, where ai = x

i
1 ⊗ x

i
2. Find the vector

Es ∈ R9 which minimizes ‖χEs‖ as the ninth column of Vχ in the
SVD χ = UχΣχV ⊤

χ . Unstack Es into 3 × 3-matrix E.

■ Project onto essential space. Compute the SVD
E = U diag{σ1, σ2, σ3}V

⊤. Since in the reconstruction, E is only
defined up to a scalar, we project E onto the normalized essential
space by replacing the singular values σ1, σ2, σ3 with 1, 1, 0.

■ Recover the displacement from the essential matrix. The four
possible solutions for rotation and translation are:

R = UR⊤

Z (±π
2
)V ⊤, T̂ = URZ(±π

2
)ΣU⊤,

with a rotation by ±π
2

around z: R⊤

Z (±π
2
) =




0 ±1 0

∓1 0 0

0 0 1


.
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Do we need eight points?

The above reasoning showed that we need at least eight points in
order for the matrix χ to have rank 8 and therefore guarantee a unique
solution for E. Yet, one can take into account the special structure of
E. The space of essential matrices is actually a five-dimensional
space, i.e. E only has 5 (and not 9) degrees of freedom.

A simple way to take into account the algebraic properties of E is to
make use of the fact that detE = 0. If now we have only 7 point pairs,
the null space of χ will have (at least) Dimension 2, spanned by two
vectors E1 and E2. Then we can solve for E by determining α such
that:

detE = det(E1 + αE2) = 0.

Along similar lines, Kruppa proved in 1913 that one needs only five
point pairs to recover (R, T ). In the case of degenerate motion (for
example planar or circular motion), one can resolve the problem with
even fewer point pairs.
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Limitations and further extensions

Among the four possible solutions for R and T , there is generally only
one meaningful one (which assigns positive depth to all points).

The algorithm fails if the translation is exactly 0, since then E = 0 and
nothing can be recovered. Due to noise this typically does not happen.

In the case of infinitesimal view point change (the assumption used in
local feature trackers), one can adapt the eight point algorithm to the
continuous motion case, where the epipolar constraint is replaced by
the continuous epipolar constraint. Rather than recovering (R, T ) one
recovers differential quantities given by the linear and angular velocity
of the camera.

In the case of multiple independently moving objects, one can
generalize the epipolar constraint. In the case of two motions for
example one has

(x⊤

2 E1x1)(x
⊤

2 E2x1) = 0

with two essential matrices E1 and E2. Given a sufficiently large
number of point pairs, one can solve the respective equations for
multiple essential matrices using polynomial factorization.
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Structure reconstruction

The linear eight-point algorithm allowed us to estimate the camera
transformation parameters R and T from a set of corresponding point
pairs. Yet, the essential matrix E and hence the translation T are only
defined up to an arbitrary scale ‖E‖ = ‖T‖ = γ ∈ R+. After recovering
R and T , we therefore have for point Xj:

λj
2x

j
2 = λj

1Rx
j
1 + γT, j = 1, . . . , n,

with unknown scale parameters λj
i . We can eliminate one of these

scales by applying x̂
j
2:

λj
1x̂

j
2Rx

j
1 + γx̂

j
2T = 0, j = 1, . . . , n.

This corresponds to n linear systems of the form
(

x̂
j
2Rx

j
1, x̂

j
2T

)(
λj

1

γ

)
= 0. j = 1, . . . , n.
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Structure reconstruction

Combining all scale parameters λj
1 into one vector

~λ = (λ1
1, λ

2
1, . . . , λ

n
1 , γ)⊤ ∈ Rn+1, we get the linear equation system

M~λ = 0

with

M ≡




x̂1
2Rx

1
1 0 0 0 0 x̂1

2T

0 x̂2
2Rx

2
1 0 0 0 x̂2

2T

0 0
. . . 0 0

...

0 0 0 x̂
n−1

2 Rx
n−1

1 0 x̂
n−1

2 T

0 0 0 0 x̂n
2Rx

n
1 x̂n

2T




.

The linear least squares estimate for ~λ is given by the eigenvector
corresponding to the smallest eigenvalue of M⊤M . It is only defined up
to a global scale. It reflects the ambiguity that the camera has moved
twice the distance, the scene is twice larger and twice as far away.
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Example

Left image right image

Reconstruction (Author: Jana Košecká)
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Optimality in noisy real world conditions

The eight-point algorithm discussed before has several nice properties.
In particular, we found closed-form solutions to estimate the camera
parameters and the 3D structure, based on singular value
decomposition. However, if we have noisy data x̃1, x̃2

(correspondences not exact or even incorrect), then we have

■ no guarantee that R and T are as close as possible to the true
solution.

■ no guarantee that we will get a consistent reconstruction.
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Nonlinear optimization methods

In order to take noise and statistical fluctuation into account, one can
revert to a Bayesian formulation and determine the most likely camera
transformation R, T and ‘true’ 2D coordinates x given the measured
coordinates x̃, by performing a maximum aposteriori estimate:

(x∗, R∗, T ∗) = arg maxP(x, R, T | x̃) = arg maxP(x̃ |x, R, T ) P(x, R, T )

This approach will however involve modeling probability densities P on
the fairly complicated space SO(3) × S2 of rotation and translation
parameters, as R ∈ SO(3) and T ∈ S2 (3D translation with unit length).

Alternatively, one can perform a constrained optimization by minimizing
a cost function (similarity to measurements):

φ(x, R, T ) =
n∑

j=1

2∑

i=1

‖x̃j
i − x

j
i‖

2

subject to (consistent geometry):

x
j⊤
2 T̂Rx

j
1 = 0, x

j⊤
1 e3 = 1, x

j⊤
2 e3 = 1, j = 1, 2, . . . , n.
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Bundle adjustment

Interestingly, the unknown depth parameters λi do not actually appear
in the above cost functions.

The depth parameters appear directly in the unconstrained
optimization problem:

n∑

j=1

‖x̃j
1 − π1(X

j)‖2 + ‖x̃j
2 − π2(X

j)‖2,

where πi denote the projections onto the two images. Expressed in
coordinates of the first camera frame, this is equal to the cost function:

φ(x1, R, T, λ) =
n∑

j=1

‖x̃j
1 − x

j
1‖

2 + ‖x̃j
2 − π(Rλj

1x
j
1 + T )‖2.

This optimization procedure is known as bundle adjustment.
The constrained optimization and the unconstrained bundle adjustment
can be seen as different parameterizations of the same optimization
objective.
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Degenerate configurations

The eight-point algorithm only provides unique solutions (up to a scalar
factor) if all 3D points are in a “general position”. This is no longer the
case for certain degenerate configurations, for which all points lie on
certain 2D surfaces which are called critical surfaces.

Typically these critical surfaces are described by a quadratic equation
in the three point coordinates, such that they are referred to as
quadratic surfaces.

While most critical configurations do not actually arise in practice, a
specific degenerate configuration which does arise often is the case
that all points lie on a 2D plane (such as floors, table, walls,...).

For the structure-from-motion problem in the context of points on a
plane, one can exploit additional constraints which leads to the
so-called four-point algorithm.
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Planar homographies

Let us assume that all points lie on a plane. If X1 ∈ R3 denotes the
point coordinates in the first frame, and these lie on a plane with
normal N ∈ S2, then we have:

N⊤
X1 = d ⇔

1

d
N⊤

X1 = 1.

In frame two, we therefore have the coordinates:

X2 = RX1 + T = RX1 + T
1

d
N⊤

X1 =

(
R +

1

d
TN⊤

)
X1 ≡ HX1,

where
H = R +

1

d
TN⊤ ∈ R3×3

is called a homography matrix. Inserting the 2D coordinates, we get:

λ2x2 = Hλ1x1 ⇔ x2 ∼ Hx1,

where ∼ means equality up to scaling. This expression is called a
planar homography. H depends on camera and plane parameters.
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From point pairs to homography

For a pair of corresponding 2D points we therefore have

λ2x2 = Hλ1x1.

By multiplying with x̂2 we can eliminate λ2 and obtain:

x̂2Hx1 = 0

This equation is called the planar epipolar constraint or planar
homography constraint.
Again, we can cast this equation into the form

a
⊤Hs = 0,

where we have stacked the elements of H into a vector

Hs = (H11, H21, . . . , H33) ∈ R9,

and introduced the matrix

a ≡ x1 ⊗ x̂2 ∈ R9×3.
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The four point algorithm

Let us now assume we have n ≥ 4 pairs of corresponding 2D points
{xj

1, x
j
2}, j = 1, . . . , n in the two images. Each point pair induces a

matrix a
j , we integrate these into a larger matrix

χ ≡ (a1, . . . , an)⊤ ∈ R3n×9,

and obtain the system
χHs = 0.

As in the case of the essential matrix, the homography matrix can be
estimated up to a scale factor.

This gives rise to the four point algorithm:

■ For the point pairs, compute the matrix χ.

■ Compute a solution Hs for the above equation by singular value
decomposition of χ.

■ Extract the motion parameters from the homography matrix
H = R + 1

d
TN⊤.
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General comments

Clearly, the derivation of the four-point algorithm is in close analogy to
that of the eight-point algorithm.

Rather than estimating the essential matrix E one estimates the
homography matrix H to derive R and T . In the four-point algorithm,
the homography matrix is decomposed into R, N and T/d. In other
words, one can reconstruct the normal of the plane, but the translation
is only obtained in units of the offset d of the plane and the origin.

The 3D structure of the points can then be computed in the same
manner as before.

Since one uses the strong constraint that all points lie in a plane, the
four-point algorithm only requires four correspondences.

There exist numerous relations between the essential matrix E = T̂R
and the corresponding homography matrix H = R + Tu⊤ with some
u ∈ R3, in particular:

E = T̂H, H⊤E + E⊤H = 0.
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The case of an uncalibrated camera

The reconstruction algorithms introduced above all assume that the
camera is calibrated (K = 1). The general transformation from a 3D
point to the image is given by:

λx
′ = K Π0 g X = (KR, KT )X,

with the intrinsic parameter matrix or calibration matrix:

K =




fsx sθ ox

0 fsy oy

0 0 1


 ∈ R3×3.

The calibration matrix maps metric coordinates into image (pixel)
coordinates, using the focal length f , the optical center ox, oy, the pixel
size sx, sy and a skew factor sθ. If these parameters are known then
one can simply transform the pixel coordinates x

′ to normalized
coordinates x = K−1

x
′ to obtain the representation used in the

previous sections. This amounts to centering the coordinates with
respect to the optical center etc.
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The fundamental matrix

If the camera parameters K cannot be estimated in a calibration
procedure beforehand, then one has to deal with reconstruction from
uncalibrated views.

By transforming all image coordinates x
′ with the inverse calibration

matrix K−1 into metric coordinates x, we obtain the epipolar constraint
for uncalibrated cameras:

x
⊤

2 T̂Rx1 = 0 ⇔ x
′⊤

2 K−⊤T̂RK−1
x
′

1 = 0,

which can be written as
x
′⊤

2 Fx
′

1 = 0,

with the fundamental matrix defined as:

F ≡ K−⊤T̂RK−1 = K−⊤EK−1.

Since the invertible matrix K does not affect the rank of this matrix, we
know that F has an SVD F = UΣV ⊤ with Σ = diag(σ1, σ2, 0). In fact,
any matrix of rank 2 can be a fundamental matrix.
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Limitations

While it is straight-forward to extend the eight-point algorithm, such
that one can extract a fundamental matrix from a set of corresponding
image points, it is less straight forward how to proceed from there.

Firstly, one cannot impose a strong constraint on the specific structure
of the fundamental matrix (apart from the fact that the last singular
value is zero).

Secondly, for a given fundamental matrix F , there does not exist a
finite number of decompositions into extrinsic parameters R, T and
intrinsic parameters K (even apart from the global scale factor).

As a consequence, one can only determine so-called projective
reconstructions, i.e. reconstructions of geometry and camera position
which are defined up to a so-called projective transformation.

As a solution, one typically choses a canonical reconstruction from the
family of possible reconstructions.
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