Multiple View Geometry: Exercise Sheet 2

Exercise: 19 May 2010

Part I: Theory

The following exercises should be **solved at home**. You do not have to hand in your solutions, however, writing it down will help you present your answer during the tutorials.

- 1. Indicate the SE(3) matrices for the following transformations:
 - (a) Translation by the vector $T = (t_x t_y t_z)^{\top}$.
 - (b) Rotation by the rotation matrix R.
 - (c) Rotation by R followed by the translation T.
 - (d) Translation by T followed by the rotation R.
- 2. Let $M_1, M_2 \in \mathbb{R}^{3 \times 3}$. Please prove the following: $\mathbf{x}^T M_1 \mathbf{x} = \mathbf{x}^T M_2 \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^3$ iff $M_1 M_2$ is skew-symmetric (i.e. $M_1 M_2 \in so(3)$).
- 3. Let $A \in \mathbb{R}^{m \times n}$. Prove that $\ker(A^{\top}A) = \ker(A)$.

 Hint: Consider for $x \in \mathbb{R}^m$: $A^{\top}x = \begin{pmatrix} a_1x \\ \vdots \\ a_nx \end{pmatrix}$, where a_1, \dots, a_n are the columns of A. How does this relate to $\ker(A^{\top})$?

Part II: Practical Exercises

This exercise is to be solved **during the tutorial**.

- 1. Download the package mvg_ex02.tgz and use openOFF.m to load the 3D model model.off.
- 2. Write a function that rotates the model around its center (i.e. the mean of its vertices) for given rotation angles α , β and γ around the x-, y- and z-axis. Use homogeneous coordinates and describe the overall transformation by a single matrix. The rotation matrices around the respective axes are as follows:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{pmatrix} \quad \begin{pmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{pmatrix} \quad \begin{pmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- 3. Rotate the model first 5 degrees around the x-axis and then 25 degrees around the z-axis. Now start again by doing the same rotation around the z-axis first followed by the x-axis rotation. What do you observe?
- 4. Perform a translation in addition to the rotation. Find a suitable matrix from SE(3) for this purpose and add it to your function from 2. Translate the model by the vector $(0.5 \ 0.2 \ 0.1)^{\top}$.

Matlab-Tutorials:

http://www.math.utah.edu/lab/ms/matlab/matlab.html

http://www.math.ufl.edu/help/matlab-tutorial/

http://www.glue.umd.edu/~nsw/ench250/matlab.htm