Multiple View Geometry: Exercise Sheet 4 Solution of the theoretical exercises

1. Let $p=(X Y Z)$ be a point on the smaller object and $p^{\prime}=\left(X^{\prime} Y^{\prime} Z^{\prime}\right)$ a point on the larger object. Since the p^{\prime} is twice as far away, we have $Z^{\prime}=2 Z$, and twice as big we have $X^{\prime}=2 X$ and $Y^{\prime}=2 Y$. From the intercept theorem it follows that p and p^{\prime} lie on the same projection ray.

$$
\pi\left(p^{\prime}\right)=\pi\left(\begin{array}{c}
2 X \\
2 Y \\
2 Z
\end{array}\right)=\binom{2 X / 2 Z}{2 Y / 2 Z}=\binom{X / Z}{Y / Z}=\pi\left(\begin{array}{c}
X \\
Y \\
Z
\end{array}\right)=\pi(p)
$$

2.

$$
\begin{aligned}
& R=\left(\begin{array}{cc}
\bar{R} & 0 \\
0 & 1
\end{array}\right), T=\left(\begin{array}{cc}
I & \bar{T} \\
0 & 1
\end{array}\right), \Pi_{0}=\left(\begin{array}{cc}
I & 0
\end{array}\right), K=\left(\begin{array}{ccc}
f s_{x} & f s_{\theta} & o_{x} \\
0 & f s_{y} & o_{y} \\
0 & 0 & 1
\end{array}\right) \\
& P=K \cdot \Pi_{0} \cdot T \cdot R \\
&=K \cdot \Pi_{0} \cdot\left(\begin{array}{cc}
\bar{R} & \bar{T} \\
0 & 1
\end{array}\right) \\
&=K \cdot\left(\begin{array}{cc}
\bar{R} & \bar{T}
\end{array}\right) \\
&=\left(\begin{array}{ll}
K \bar{R} & K \bar{T}
\end{array}\right)
\end{aligned}
$$

3. (a)

$$
\begin{gathered}
\pi(P 1 \cdot X)=\pi\left(\begin{array}{lll}
-3 & 0 & 4
\end{array}\right)^{\top}=\left(\begin{array}{lll}
-0.75 & 0
\end{array}\right)^{\top} \\
\pi(P 2 \cdot X)=\pi\left(\begin{array}{lll}
1 & 0 & 4
\end{array}\right)^{\top}=\left(\begin{array}{ll}
0.25 & 0
\end{array}\right)^{\top}
\end{gathered}
$$

(b) $\hat{x}=\left(\begin{array}{ll}-1 & 0\end{array}\right)^{\top}, \hat{y}=\left(\begin{array}{ll}0 & 0\end{array}\right)^{\top}$

$$
\begin{gathered}
\text { Preimage }(\hat{x})=\left\{X_{0}=\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right): \pi\left(P_{1} X_{0}\right)=\hat{x}\right\} \\
\text { Preimage }(\hat{y})=\left\{X_{0}=\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right): \pi\left(P_{2} X_{0}\right)=\hat{y}\right\} \\
\pi\left(P_{1} X_{0}\right)=\hat{x} \wedge \pi\left(P_{2} X_{0}\right)=\hat{y} \\
\Rightarrow \quad(X-3) / Z
\end{gathered}=\hat{x_{1}}, \begin{aligned}
Y / Z & =\hat{x_{2}} \\
(X+1) / Z & =\hat{y_{1}} \\
Y / Z & =\hat{y_{2}}
\end{aligned}
$$

