Multiple View Geometry: Exercise Sheet 7 Exercise: 12 July 2011 ## Part I: Theory The following exercises should be **solved at home**. You do not have to hand in your solutions, however, writing it down will help you present your answer during the tutorials. - 1. Suppose p_1, p_2 are two points on the line L, and L_1, L_2 are two lines intersecting the point p. Let x, x_1, x_2 be the images of the points p, p_1, p_2 , respectively, and let l, l_1, l_2 be the coimages of the lines L, L_1, L_2 , respectively. - (a) Show that $$l \sim \hat{x_1} x_2, \qquad x \sim \hat{l_1} l_2,$$ where \sim means equivalence in the sense of homogeneous coordinates. (b) Show that for some $r, s, u, v \in \mathbb{R}^3$, $$l_1 \sim \hat{x}u, \qquad l_2 \sim \hat{x}v, \qquad x_1 \sim \hat{l}r, \qquad x_2 \sim \hat{l}s$$ - (c) Draw a picture and convince yourself of the above relationships. - 2. Let x_1 and x_2 be two image points with projection matrices Π_1 , Π_2 . Show that the rank constraint $$rank \left(\begin{array}{c} \hat{x_1} \Pi_1 \\ \hat{x_2} \Pi_2 \end{array} \right) \leqq 3$$ ensures that x_1 and x_2 are images of the same three-dimensional point. ## **Part II: Practical Exercises** This exercise is to be solved during the tutorial. - 1. Download the package mvg_ex07.tgz from the website. Extract the images batinria0.pgm and batinria1.pgm. Their corresponding camera calibration matrices can be found in the file calibration.txt. - 2. Show the two images with matlab and select a point in the first image. You can use the command [x,y] = ginput(n) to retrieve the image coordinates of a mouse click. - 3. Think about where the corresponding epipolar line L_2 in the second image could be. - 4. Now compute the epipolar line $L_2 = Fx_1$ in the second image corresponding to the point x_1 in the first image. To this end you will need to compute the fundamental matrix F between the two images. (Use the calibration data from the file calibration.txt.) - 5. Test your program for different points x_1 . What do you observe? - 6. If you have time left, determine the best matching point on the epipolar line via normalized cross correlation. ## **Matlab-Tutorials:** http://www.math.utah.edu/lab/ms/matlab/matlab.html http://www.math.ufl.edu/help/matlab-tutorial/ http://www.glue.umd.edu/~nsw/ench250/matlab.htm