Visual Navigation for Flying Robots

Exercise 2 - Kalman Filter

Dr. Jürgen Sturm

Nikolas Engelhard

Submissions

- 8 submissions
- Evaluation
- A few teams had minor (sign) errors
- Including our solution ;-)
- Correct solution is in this file
- Nice team pictures!

Team Pictures

Team Brezel

Team Roter Baron

Team Dragonsheep

Team Beer

Team Crash Pilots

Team Red One

Team Weisswurst

Coordinate Transforms

- Local coordinates
- Global coordinates

Coordinate Transforms

- Robot is located somewhere in space

Coordinate Transforms

- Robot is located somewhere in space
$X=\left(\begin{array}{cc}R & \mathbf{t} \\ \mathbf{0} & 1\end{array}\right)=\left(\begin{array}{ccc}\cos \psi & -\sin \psi & x \\ \sin \psi & \cos \psi & y \\ 0 & 0 & 1\end{array}\right) \in \mathrm{SE}(2) \subset \mathbb{R}^{3 x 3}$

Coordinate Transforms

- Robot is located at $x=0.7, y=0.5$, yaw=45deg

$$
X=\left(\begin{array}{ccc}
\cos 45 & -\sin 45 & 0.7 \\
\sin 45 & \cos 45 & 0.5 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
0.71 & -0.71 & 0.7 \\
0.71 & 0.71 & 0.5 \\
0 & 0 & 1
\end{array}\right)
$$

Vector Transformation

- Robot is located at $x=0.7, y=0.5$, yaw=45deg
- Robot observes an object with its sensors
- Observation happens in the local frame

What does the robot see?

- Robot observes marker in its local frame

What does the robot see?

- Robot observes marker in its local frame

What does the robot see?

- Robot observes marker at $\mathbf{z}=\left(0.4 m 0.0 m-45^{\circ}\right)^{\top}$

Where is the marker located in global

coordinates?

- Robot observes marker at $\mathbf{z}=(0.4 m 0.0 \mathrm{~m})^{\top}$
- Current (estimated) robot pose is
$X=\left(\begin{array}{ccc}\cos 45 & -\sin 45 & 0.7 \\ \sin 45 & \cos 45 & 0.5 \\ 0 & 0 & 1\end{array}\right)=\left(\begin{array}{ccc}0.71 & -0.71 & 0.7 \\ 0.71 & 0.71 & 0.5 \\ 0 & 0 & 1\end{array}\right)$
- Convert from local frame to global frame

$$
\tilde{\mathbf{z}}_{W}=X \tilde{\mathbf{z}}=\left(\begin{array}{c}
1.27 \\
1.07 \\
1
\end{array}\right)
$$

How to deal with orientations?

- Assume we observe the marker at -45deg
- Mathematical convention:
- Positive angles \rightarrow counter clock-wise
- Negative angles \rightarrow clock-wise

Transformation Matrix

- Turn this into a transformation matrix
$Z=\left(\begin{array}{ccc}\cos -45 & -\sin -45 & 0.4 \\ \sin -45 & \cos -45 & 0.0 \\ 0 & 0 & 1\end{array}\right)=\left(\begin{array}{ccc}0.71 & 0.71 & 0.4 \\ -0.71 & 0.71 & 0.0 \\ 0 & 0 & 1\end{array}\right)$
- Concatenate robot pose and marker obs.

$$
Z_{W}=X Z=\left(\begin{array}{ccc}
1 & 0 & 1.27 \\
0 & 1 & 1.07 \\
0 & 0 & 1
\end{array}\right)
$$

- Convert back to $\mathrm{x} / \mathrm{y} / \mathrm{yaw}$

$$
\mathbf{z}_{W}=\left(\begin{array}{lll}
1.27 & 1.07 & 0
\end{array}\right)
$$

Observation Function

- For the Kalman filter, we need to define the observation function

$$
h(\mathbf{x})=\mathbf{z}_{\text {pred }}
$$

which computes the expected marker pose $\mathbf{z}_{\text {pred }}$ given the current estimate of the state x (and given the fixed, global marker pose $\mathbf{z}_{\text {global }}$)

- This means that we need to transform the global marker pose into the ego-centric (local) frame of the robot!

Observation Function

- We have: $\mathbf{x}=\left(\begin{array}{lll}x_{x} & y_{x} & \psi_{x}\end{array}\right)^{\top}, \mathbf{z}_{\text {global }}=\left(x_{g} y_{g} \psi_{g}\right)^{\top}$
- We want: $\mathbf{z}_{\text {pred }}=\left(x_{p} y_{p} \psi_{p}\right)^{\top}$

Compute $\mathrm{h}(\mathrm{x})$ in two steps:

1. Compute angle $\psi_{p}=\psi_{g}-\psi_{x}$
2. Compute translation x_{p}, y_{p}

Local to Global Transform

- Convert robot pose $\mathbf{x}=\left(x_{x} y_{x} \psi_{x}\right)^{\top}$ into a homogeneous transformation matrix

$$
X=\left(\begin{array}{cc}
R & \mathbf{t} \\
\mathbf{0} & 1
\end{array}\right)=\left(\begin{array}{ccc}
\cos \psi_{x} & -\sin \psi_{x} & x_{x} \\
\sin \psi_{x} & \cos \psi_{x} & y_{x} \\
0 & 0 & 1
\end{array}\right)
$$

- Right-multiplication with a vector transforms from local coordinates to global coordinates

$$
\tilde{\mathbf{t}}_{\text {global }}=X \tilde{\mathbf{t}}_{\text {local }}
$$

Global to Local Transform

- We have the marker pose in global coordinates and we want to transform it into local coordinates \rightarrow We need the inverse

$$
X^{-1} \tilde{\mathbf{t}}_{\text {global }}=\tilde{\mathbf{t}}_{\text {local }}
$$

- There is an efficient way to compute the inverse of transformation matrices

$$
\left(\begin{array}{cc}
R & \mathbf{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right)^{-1}=\left(\begin{array}{cc}
R^{\top} & -R^{\top} \mathbf{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right)
$$

Observation Function

- This gives

$$
\begin{aligned}
X^{-1} & =\left(\begin{array}{cc}
R^{\top} & -R^{\top} \mathbf{t} \\
\mathbf{0} & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
\cos \psi_{x} & \sin \psi_{x} & -x_{x} \cos \psi_{x}-y_{x} \sin \psi_{x} \\
-\sin \psi_{x} & \cos \psi_{x} & x_{x} \sin \psi_{x}-y_{x} \cos \psi_{x} \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Observation Function

- We have the global marker position

$$
\mathbf{t}_{\text {global }}=\left(x_{g} y_{g}\right)^{\top}
$$

- We want the marker position in the local frame
$\tilde{\mathbf{t}}_{\text {local }}=X^{-1} \tilde{\mathbf{t}}_{\text {global }}$
$=\left(\begin{array}{ccc}\cos \psi_{x} & \sin \psi_{x} & -x_{x} \cos \psi_{x}-y_{x} \sin \psi_{x} \\ -\sin \psi_{x} & \cos \psi_{x} & x_{x} \sin \psi_{x}-y_{x} \cos \psi_{x} \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{c}x_{g} \\ y_{g} \\ 1\end{array}\right)$
$=\left(\begin{array}{c}\left(x_{g}-x_{x}\right) \cos \psi_{x}+\left(y_{g}-y_{x}\right) \sin \psi_{x} \\ -\left(x_{g}-x_{x}\right) \sin \psi_{x}+\left(y_{g}-y_{x}\right) \cos \psi_{x} \\ 1\end{array}\right)$

Observation Function

- Finally, we get

$$
h(\mathbf{x})=\left(\begin{array}{c}
\left(x_{g}-x_{x}\right) \cos \psi_{x}+\left(y_{g}-y_{x}\right) \sin \psi_{x} \\
-\left(x_{g}-x_{x}\right) \sin \psi_{x}+\left(y_{g}-y_{x}\right) \cos \psi_{x} \\
\psi_{g}-\psi_{x}
\end{array}\right)
$$

Jacobian of the Observation Function

- Now derive the observation function with respect to all components of its argument

$$
\begin{aligned}
H & =\frac{\partial h(\mathbf{x})}{\partial \mathbf{x}}=\left(\begin{array}{lll}
\frac{\partial h(\mathbf{x})}{\partial x_{x}} & \frac{\partial h(\mathbf{x})}{\partial y_{x}} & \left.\frac{\partial h(\mathbf{x})}{\partial \psi_{x}}\right) \\
& =\left(\begin{array}{ccc}
-\cos \psi_{x} & -\sin \psi_{x} & -\left(x_{g}-x_{x}\right) \sin \psi_{x}+\left(y_{g}-y_{x}\right) \cos \psi_{x} \\
\sin \psi_{x} & -\cos \psi_{x} & -\left(x_{g}-x_{x}\right) \cos \psi_{x}-\left(y_{g}-y_{x}\right) \sin \psi_{x} \\
0 & 0 & -1
\end{array}\right)
\end{array} . . \begin{array}{cc}
& -1
\end{array}\right)
\end{aligned}
$$

- That's it

Extended Kalman Filter

For each time step, do

1. Apply motion model

$$
\begin{aligned}
& \bar{\mu}_{t}=g\left(\mu_{t-1}, u_{t}\right) \\
& \bar{\Sigma}_{t}=G_{t} \Sigma G_{t}^{\top}+Q \quad \text { with } \quad G_{t}=\frac{\partial g\left(\mu_{t-1}, u_{t}\right)}{\partial x_{t-1}}
\end{aligned}
$$

2. Apply sensor model

$$
\begin{aligned}
\mu_{t} & =\bar{\mu}_{t}+K_{t}\left(z_{t}-h\left(\bar{\mu}_{t}\right)\right) \\
\Sigma_{t} & =\left(I-K_{t} H_{t}\right) \bar{\Sigma}_{t}
\end{aligned}
$$

with $K_{t}=\bar{\Sigma}_{t} H_{t}^{\top}\left(H_{t} \bar{\Sigma}_{t} H_{t}^{\top}+R\right)^{-1}$ and $H_{t}=\frac{\partial h\left(\bar{\mu}_{t}\right)}{\partial x_{t}}$

Sheet 2

- Fly the robot with a joystick
- Record own bag files
- You need WLAN
- Down-looking camera
- Markers on the floor, known positions
- Goal: Estimate robot position

Sheet 2

1. Fly the robot!

- Using a joystick
- Record your own bag file

2. Kalman Filter - Prediction step

- Will provide C++ framework
- Run on recorded bag files (or online)
- Change parameters and see what happens

3. Kalman Filter - Correction step

- Specify observation function and compute Jacobian
- Implement it

Sheet 3

- Markers on the floor, known positions
- Given: Full EKF code
- Goal: Implement P control

1. Try it on a recorded bag file and check steering commands in RVIZ
2. Try it on real quadrocopter
