

Visual Navigation for Flying
Robots – Project Proposal

Autonomous Landing on a Moving
Platform

presented by
Ross Kidson, Karol Hausman, Sebastian Nagel

Motivation

 Controlled landing in difficult environments
 Following the marker implicitly
 Control with the Android Smartphone

State Graph

Manual
Control

Estimate the
Position(EKF)

Find the
Marker

Control
Command
from the
mobile

Landing on
the

Marker(PID)

Following
the

Marker(PID)

Two parts of the project

 Project was split into two tasks:
 Android interface – Sebastian Nagel
 Controlling the ARDrone – Ross Kidson, Karol

Hausman

Android Interface

 User Interface for the mobile phone

Android Interface - Technologies

 Rosjava – ROS client library purely in Java

 Android_core – package developed by Google
to integrate Rosjava clients in Android projects

Android Interface - Rosjava

 Main differences to roscpp:
 Asynchronous:

 because of heavy dependence on network
communication

 More threads, fewer processes
 No spin() method!

 Many nodes in one JVM process – similar to
nodelets

 Use in memory communication

Android Interface - Android_core

 Android_core libraries:
 Classes to use Rosjava in Android applications

(Master chooser, RosActivity, …)

 Tutorial projects and sample implementations of
ROS nodes in Android Views (e.g. RosImageView)

Android Interface - Implementing

 ARDroneRemote node
 Publisher/Subscriber for communication with controller:

 Publisher/Subscriber for communication with ARDrone
driver:

// State publisher, autonomous availability subscriber
private Publisher<std_msgs.Int32> pubState;
private Subscriber<std_msgs.Bool> subAvailable;

// State publisher, autonomous availability subscriber
private Publisher<std_msgs.Int32> pubState;
private Subscriber<std_msgs.Bool> subAvailable;

// Manual control publishers
private Publisher<std_msgs.Empty> pubTakeOff, pubLand, pubEmergency;
private Publisher<geometry_msgs.Twist> pubVel;

// Manual control publishers
private Publisher<std_msgs.Empty> pubTakeOff, pubLand, pubEmergency;
private Publisher<geometry_msgs.Twist> pubVel;

Android Interface - Implementing

 Example code
 Creating new publisher in onStart() of NodeMain:

 Publishing a message:

@Override
public void onStart(ConnectedNode node) {
 // State control
 pubState = node.newPublisher("/visnav/state", std_msgs.Int32._TYPE);
 [...]
}

@Override
public void onStart(ConnectedNode node) {
 // State control
 pubState = node.newPublisher("/visnav/state", std_msgs.Int32._TYPE);
 [...]
}

public void setState(State state) {
 Int32 msg = pubState.newMessage();
 msg.setData(state.ordinal());
 pubState.publish(msg);
 [...]
}

public void setState(State state) {
 Int32 msg = pubState.newMessage();
 msg.setData(state.ordinal());
 pubState.publish(msg);
 [...]
}

Autonomous Part - Plan

 Use Kalman Filter for localization of the
ARDrone(detecting the first marker)

 Try to detect another marker and set it as the
goal for the PD controller

 Follow the detected moving marker
 Land on the moving marker if the quadrocopter

is stable enough

Autonomous Part - Following

 Two different marker following approaches:
 Use one marker for both EKF positioning and

moving marker tracking
 Use one marker for tracking and another one for

EKF positioning

Autonomous Part - Landing

 The same two approaches
 Procedure for ensuring marker tracking stability
 Height controller → reduce height while landing
 If the quadrocopter is too low to see the marker

→ stabilize the position → land

Autonomous Part - Evaluation

 Both approaches were compared
 Distance from landed position to marker used as

metric
 Static landing pad in this case
 15 Trials for both cases

Beta marker
(landing marker not used for
localization)

Zeta marker
(landing marker used for
localization)

Ave. dist 19.7cm 34.5cm

Ave. dist (exl. Misses) 11.1cm 18.1cm

st. dev (exl. Misses) 6.3cm 10.9cm

misses 3 6

Ave. time taken 31.14s 34.08s

Autonomous Part - Result

 Video 1

Combining two parts

 Architecture

 Problems

Final Result

 Video 2

Conclusions

 Possible improvements
 More stable controller
 Transfer the software to the cell phone
 Motion model
 Markerless tracking/landing

 Applications
 Autonomous re-charging
 Explore and return home

 Experience gained during the project

Autonomous Landing on the Moving
Platform

Questions?

Thank you for your attention.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide15
	Slide16
	Slide17
	Slide18
	Slide19
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

