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Agenda for Today 

 Planning under Uncertainty 

 Exploration with a single robot 

 Coordinated exploration with a team of robots 

 Coverage 
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Agenda For Next Week 

 First half: Good practices for experimentation, 
evaluation and benchmarking 

 Second half: Time for your questions on course 
material 

 

Prepare your questions (if you have) 
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Motivation: Planning under Uncertainty 

 Consider a robot with range-limited sensors 
and a feature-poor environment 

 Which route should the robot take? 
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maximum sensor range 



Reminder: Performance Metrics 

 Execution speed / path length 

 Energy consumption 

 Planning speed 

 Safety (minimum distance to obstacles) 

 Robustness against disturbances 

 Probability of success 

 … 
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Reminder: Belief Distributions 

 In general, actions of the robot are not carried 
out perfectly 

 Position estimation ability depends on map 

 Let’s look at the belief distributions… 
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Reminder: Belief Distributions 

 Actions increase the uncertainty (in general) 

 Observations decrease the uncertainty (always) 

 Observations are not always available 
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Solution 1: Shape The Environment To 
Decrease Uncertainty 

 Assume a robot without sensors 

 What is a good navigation plan? 

 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 8 

goal 



Solution 1: Shape The Environment To 
Decrease Uncertainty 

 Plan 1: Take the shortest path 

 What is the probability of success of plan 1? 
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goal 



Solution 1: Shape The Environment To 
Decrease Uncertainty 

 What is the probability of success of plan 2? 
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goal 



Solution 1: Shape The Environment To 
Decrease Uncertainty 

 Pro: Simple solution, need fewer/no sensors 

 Con: Requires task specific design/engineering 
of both the robot and the environment 

 Applications:  

 Docking station 

 Perception-less manipulation (on conveyer belts) 

 … 
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Solution 2: Add (More/Better) Sensors 
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Solution 3: POMDPs 

 Partially observable Markov decision process 
(POMDP) 

 Considers uncertainty of the motion model and 
sensor model 

 Finite/infinite time horizon 

 Resulting policy is optimal 

 One solution technique: Value iteration 

 Problem: In general (and in practice) 
computationally intractable (PSPACE-hard) 
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Continuum of Possible Approaches  
to Motion Planning 
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Conventional  
path planner POMDP 

intractable 
robust 

tractable 
not robust 

maybe we can find 
something in between… 



Remember: Motion Planning 
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start 

GOAL 

Goal: shortest path, subject to 
kinematic and environmental 
constraints Slides adopted from Nick Roy 



Remember: Motion Planning in High-
Dimensional Configuration Spaces 
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start 

GOAL 

Assumes a controller exists 
to transfer from xt to xt+1 

Remember: Probabilistic Roadmaps 

1. Add vertices (sampled in free space) 

2. Add edges between neighboring vertices 

(when line of sight is not obstructed) 

3. Find shortest path (Dijkstra, …) 
Slides adopted from Nick Roy 



Remember: Motion Planning in High-
Dimensional Configuration Spaces 

 Problem: The roadmap does not consider the 
sensor capabilities of the robot 

 Can the robot actually keep position at each 
vertex? 
 Can it localize at the vertex? 

 Given localization abilities, what is the probability 
of hitting into an obstacle? 

 Can the robot robustly navigate between two 
vertices? 
 Line of sight is not enough 

 Robot might get lost or hit into an obstacle 
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GOAL 

start 

Motion Planning in Information Space 
[Roy et al.] 

1. Sample vertices and localization distributions 
where p(xCobst) < e  

2. Add edges between points where  
p(xCobst) < e along path 

3. Perform graph search 



Motion Planning in Information Space 

 Problem: Posterior distribution depends also 
on the path taken to the vertex 

 Example 
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GOAL 

start 



Belief Roadmap 
[He et al., 2008] 
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GOAL 

start 

1. Sample vertices from Cfree, build graph and 
estimate belief dist. transfer functions 

2. Propagate covariances by performing graph 
search 

z1 z2 

z3 

z5 

z6 

z4 

z8 

z7 

z9 

z10 

Slides adopted from Nick Roy 



Planning in Information Spaces 
[He et al., 2008] 

 Given: Roadmap 

 

 Goal: Find path from start to goal nodes that 
results in minimum uncertainty at goal 

 

 Problem: How can we estimate the belief 
distribution at the goal (efficiently)? 
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Planning in Information Spaces 
[He et al., 2008] 

How can we propagate the belief distribution 
along an edge? 

1. Sample waypoints, use forward simulation to 
compute full posterior 

2. Linearize model and use Kalman filter 
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? 



Example: Belief Roadmap 
[He et al., 2008] 
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Belief Propagation 
[He et al., 2008] 

 The posterior distribution depends on the prior 
distribution 
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u0:T,z0:T 

u0:T,z0:T ? 

Initial 
Conditions 

Different initial 
Conditions 



Planning in Information Spaces 
[He et al., 2008] 

 The posterior distribution at a vertex depends 
on the prior distribution (and thus on path to 
the vertex) 

 Need to perform forward simulation (and belief 
prediction) along each edge for every start 
state 

 Computing minimum cost path of 30 edges: 
≈100 seconds 
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Summary: Planning Under Uncertainty 

 Actions and observations are inherently noisy 

 Planners neglecting this are not robust 

 Consider the uncertainty during planning to 
increase robustness 
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Local Obstacle Map 

Robot 

Mission Planning 
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Sensors Actuators 

Physical 
World 

Local Planner 

Localization Position Control 

.. .. 

Global Map (SLAM) Global Planner 

Mission Planner Task Planner 

User 



Mission Planning 

 Goal: Generate and execute a plan to 
accomplish a certain (navigation) task 

 Example tasks 

 Exploration 

 Coverage 

 Surveillance 

 Tracking 

 … 
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Task Planning 

 Goal: Generate and execute a high level plan to 
accomplish a certain task 

 Often symbolic reasoning (or hard-coded) 

 Propositional or first-order logic 

 Automated reasoning systems  

 Common programming languages: Prolog, LISP 

 Multi-agent systems, communication 

 Artificial Intelligence 
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Exploration and SLAM 

 SLAM is typically passive, because it consumes 
incoming sensor data 

 Exploration actively guides the robot to cover 
the environment with its sensors 

 Exploration in combination with SLAM: 
Acting under pose and map uncertainty 

 Uncertainty should/needs to be taken into 
account when selecting an action 
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Exploration 

 By reasoning about control, the mapping 
process can be made much more effective 

 Question: Where to move next? 

 

 

 

 

 

 This is also called the next-best-view problem 
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Exploration 

 Choose the action that maximizes utility 

 

 

 Question: How can we define utility? 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 32 



Example 

 Where should the robot go next? 
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empty 

occupied 

unexplored unknown 



Maximizing the Information Gain 

 Pick the action    that maximizes the 
information gain given a map m 
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Information Theory 

 Entropy is a general measure for the 
uncertainty of a probability distribution 

 Entropy = Expected amount of information 
needed to encode an outcome 
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Example: Binary Random Variable 

 Binary random variable 

 Probability distribution 

 How many bits do we need to transmit one 
sample of           ? 

 For p=0? 

 For p=0.5? 

 For p=1? 
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Example: Binary Random Variable 

 Binary random variable 

 Probability distribution 

 How many bits do we need to transmit one 
sample of           ? 

 Answer: 

 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 37 



Example: Map Entropy 
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Low entropy 

Low entropy 

High entropy 

The overall entropy is the sum of the individual entropy values 



Information Theory 

 Information gain = Uncertainty reduction 

 

 

 Conditional entropy 
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Maximizing the Information Gain 

 To compute the information gain one needs to 
know the observations obtained when carrying 
out an action 

 
 This quantity is not known! Reason about 

potential measurements 
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Example 
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Exploration Costs 

 So far, we did not consider the cost of 
executing an action (e.g., time, energy, …) 

 

 Utility = uncertainty reduction – cost 

 

 Select the action with the highest expected 
utility 
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Exploration 

 For each location <x,y> 

 Estimate the number of cells robot can sense (e.g., 
simulate laser beams using current map) 

 Estimate the cost of getting there 
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Exploration 

 Greedy strategy: Select the candidate location 
with the highest utility, then repeat… 
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Exploration Actions 

 So far, we only considered reduction in map 
uncertainty 

 In general, there are many sources of 
uncertainty that can be reduced by exploration 

 Map uncertainty (visit unexplored areas) 

 Trajectory uncertainty (loop closing) 

 Localization uncertainty (active re-localization by 
re-visiting known locations) 

 

 
Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 45 



Example: Active Loop Closing 
[Stachniss et al., 2005] 

 Reduce map uncertainty 

 
 

 
 Reduce map + path uncertainty 
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Example: Active Loop Closing 
[Stachniss et al., 2005] 
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Example: Active Loop Closing 
[Stachniss et al., 2005] 

 Entropy evolution 
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Example: Reduce uncertainty in  
map, path, and pose [Stachniss et al., 2005] 
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Selected 
target 
location 

 



Corridor Exploration  
[Stachniss et al., 2005] 

 The decision-theoretic approach leads to 
intuitive behaviors: “re-localize before getting 
lost” 

 Some animals show a similar behavior  
(dogs marooned in the tundra of north Russia)  
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Multi-Robot Exploration 

Given: Team of robots with communication 

Goal: Explore the environment as fast as possible 
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[Wurm et al., IROS 2011] 



Complexity 

 Single-robot exploration in known, graph-like 
environments is in general NP-hard  

 Proof: Reduce traveling salesman problem to 
exploration 

 Complexity of multi-robot exploration is 
exponential in the number of robots 
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Motivation: Why Coordinate? 

 Without coordination, two robots might 
choose the same exploration frontier 
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Robot 1 Robot 2 



Levels of Coordination 

1. No exchange of information 

2. Implicit coordination: Sharing a joint map 

 Communication of the individual maps and poses 

 Central mapping system  

3. Explicit coordination: Determine better target 
locations to distribute the robots 

 Central planner for target point assignment 

 Minimize expected path cost / information gain / … 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 54 



Typical Trajectories 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 55 

Implicit coordination: Explicit coordination: 



Exploration Time 
[Stachniss et al., 2006] 
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Coordination Algorithm 

In each time step: 

 Determine set of exploration targets 

 

 Compute for each robot      and each target      
the expected cost/utility 

 Assign robots to targets using the Hungarian 
algorithm 
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Hungarian Algorithm 
[Kuhn, 1955] 

 Combinatorial optimization algorithm 

 Solves the assignment problem in polynomial 
time 

 General idea: Algorithm modifies the cost 
matrix until there is zero cost assignment 
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Hungarian Algorithm: Example 

1. Compute the cost matrix (non-negative) 
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Hungarian Algorithm: Example 

2. Find minimum element in each row 
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Hungarian Algorithm: Example 

3. Subtract minimum from each row element 



Hungarian Algorithm: Example 
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4. Find minimum element in each column 



Hungarian Algorithm: Example 
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5. Subtract minimum from each column element 



Hungarian Algorithm: Example 
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6a. Assign (if possible) 
 



Hungarian Algorithm: Example 
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6b. If no assignment is possible: 

 Connect all 0’s by lines 

 Find the minimum in all 
remaining elements and 
subtract 

 Repeat step 2 – 6  



Hungarian Algorithm: Example 

If there are not enough 
targets: 
Copy targets to allow 
multiple assignments 
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Example: Segmentation-based Exploration 
[Wurm et al., IROS 2008] 

 Two-layer hierarchical role assignments using 
Hungarian algorithm (1: rooms, 2: targets in room) 

 Reduces exploration time and risk of interferences 
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Summary: Exploration 

 Exploration aims at generating robot motions 
so that an optimal map is obtained 

 Coordination reduces exploration time 

 Hungarian algorithm efficiently solves the 
assignment problem (centralized, 1-step 
lookahead) 

 Challenges (active research): 

 Limited bandwidth and unreliable communication 

 Decentralized planning and task assignment 
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Coverage Path Planning 

 Given: Known environment with obstacles 

 Wanted: The shortest trajectory that ensures 
complete (sensor) coverage 
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[images from Xu et al., ICRA 2011] 



Coverage Path Planning 
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Coverage Path Planning: Applications 

 For flying robots 
 Search and rescue 

 Area surveillance  

 Environmental inspection 

 Inspection of buildings (bridges) 

 For service robots 
 Lawn mowing 

 Vacuum cleaning 

 For manipulation robots 
 Painting 

 Automated farming 
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Coverage Path Planning 

 What is a good coverage strategy? 

 What would be a good cost function? 
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Coverage Path Planning 

 What is a good coverage strategy? 

 What would be a good cost function? 

 Amount of redundant traversals 

 Number of stops and rotations 

 Execution time 

 Energy consumption 

 Robustness 

 Probability of success 

 … 
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Coverage Path Planning 

 Related to the traveling salesman problem 
(TSP): 
“Given a weighted graph, compute a path that 
visits every vertex once” 

 In general NP-complete 

 Many approximations exist 

 Many approximate (and exact) solvers exist 
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Coverage of Simple Shapes 

 Approximately optimal solution often easy to 
compute for simple shapes (e.g., trapezoids) 
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Idea 
[Mannadiar and Rekleitis, ICRA 2011] 
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Idea 
[Mannadiar and Rekleitis, ICRA 2011] 
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Idea 
[Mannadiar and Rekleitis, ICRA 2011] 
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Coverage Based On Cell Decomposition 
[Mannadiar and Rekleitis, ICRA 2011] 

Approach: 

1. Decompose map into “simple” cells 

2. Compute connectivity between cells and build 
graph 

3. Solve coverage problem on reduced graph 
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Step 1: Boustrophedon Cellular 
Decomposition [Mannadiar and Rekleitis, ICRA 2011] 

 Similar to trapezoidal decomposition 

 Can be computed efficiently 
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cells 

critical points 
(=produce splits 
or joins) 



Step 2: Build Reeb Graph 
[Mannadiar and Rekleitis, ICRA 2011] 

 Vertices = Critical points (that triggered the split) 

 Edges = Connectivity between critical points 
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Step 3: Compute Euler Tour 
[Mannadiar and Rekleitis, ICRA 2011] 

 Extend graph so that vertices have even order 

 Compute Euler tour (linear time) 
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Resulting Coverage Plan 
[Mannadiar and Rekleitis, ICRA 2011] 

 Follow the Euler tour 

 Use simple coverage strategy for cells 

 Note: Cells are visited once or twice 
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Robotic Cleaning of 3D Surfaces 
[Hess et al., IROS 2012] 

 Goal: Cover entire surface  
while minimizing trajectory  
length in configuration  
space 

 

 Approach: 

 Discretize 3D environment into patches  

 Build a neighborhood graph 

 Formulate the problem as generalized TSP (GTSP) 

 

 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 84 



Robotic Cleaning of 3D Surfaces 
[Hess et al., IROS 2012] 
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Lessons Learned Today 

 How to generate plans that are robust to 
uncertainty in sensing and locomotion 

 How to explore an unknown environment 

 With a single robot 

 With a team of robots 

 How to generate plans that fully cover known 
environments 
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Video: SFLY Final Project Demo (2012) 
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