
Computer Vision Group
Prof. Daniel Cremers

Visual Navigation
for Flying Robots

Dr. Jürgen Sturm

Welcome

Organization

 Tue 10:15-11:45
 Lectures, discussions

 Lecturer: Jürgen Sturm

 Thu 14:15-15:45
 Lab course, homework & programming exercises

 Teaching assistant: Nikolas Engelhard

 Course website
 Dates, additional material

 Exercises, deadlines

 http://cvpr.in.tum.de/teaching/ss2012/visnav2012

Who are we?

 Computer Vision group:
1 Professor, 2 Postdocs, 7 PhD students

 Research topics:
Optical flow and motion estimation, 3D
reconstruction, image segmentation, convex
optimization

 My research goal:
Apply solutions from computer vision to real-
world problems in robotics.

Goal of this Course

 Provide an overview on problems/approaches
for autonomous quadrocopters

 Strong focus on vision as the main sensor

 Areas covered: Mobile Robotics and Computer
Vision

 Hands-on experience in lab course

Course Material

 Probabilistic Robotics. Sebastian
Thrun, Wolfram Burgard and Dieter
Fox. MIT Press, 2005.

 Computer Vision: Algorithms and
Applications. Richard Szeliski.
Springer, 2010.
http://szeliski.org/Book/

http://szeliski.org/Book/
http://szeliski.org/Book/

Lecture Plan

1. Introduction
2. Robots, sensor and motion models
3. State estimation and control
4. Guest talks
5. Feature detection and matching
6. Motion estimation
7. Simultaneous localization and mapping
8. Stereo correspondence
9. 3D reconstruction
10. Navigation and path planning
11. Exploration
12. Evaluation and Benchmarking

Basics on mobile
robotics

Camera-based
localization and
mapping

Advanced topics

Lab Course

 Thu 14:15 – 15:45, given by Nikolas Engelhard

 Exercises: room 02.09.23
(6x, obliged, homework discussion)

 Robot lab: room 02.09.34/36
(in weeks without exercises, in case you need help,
recommended!)

Exercises Plan

 Exercise sheets contain both theoretical and
programming problems

 3 exercise sheets + 1 mini-project

 Deadline: before lecture (Tue 10:15)

 Hand in by email (visnav2012@cvpr.in.tum.de)

Group Assignment and Schedule

 3 Ardrones (red/green/blue) + Joystick +
2x Batteries + Charger + PC

 20 students in the course, 2-3 students per
group 7-8 groups

 Either use lab computers or bring own laptop
(recommended)

 Will put up lists for groups and robot schedule
in robot lab (room 02.09.36)

VISNAV2012: Team Assignment

Team Name

Student Name

Student Name

Student Name

Team Name

Student Name

Student Name

Student Name

VISNAV2012: Robot Schedule

Red Green Blue

Thu 2pm – 3pm

Thu 3pm – 4pm

Thu 4pm – 5pm

 Each team gets one time slot with
programming support

 The robots/PCs are also available during the
rest of the week (but without programming
support)

Safety Warning

 Quadrocopters are dangerous objects

 Read the manual carefully before you start

 Always use the protective hull

 If somebody gets injured, report to us so that
we can improve safety guidelines

 If something gets damaged, report it to us so
that we can fix it

 NEVER TOUCH THE PROPELLORS

 DO NOT TRY TO CATCH THE QUADROCOPTER
WHEN IT FAILS – LET IT FALL/CRASH!

Agenda for Today

 History of mobile robotics

 Brief intro on quadrocopters

 Paradigms in robotics

 Architectures and middleware

General background

 Autonomous, automaton

 self-willed (Greek, auto+matos)

 Robot

 Karel Capek in 1923 play R.U.R. (Rossum’s Universal
Robots)

 labor (Czech or Polish, robota)

 workman (Czech or Polish, robotnik)

History

In 1966, Marvin Minsky at MIT asked his
undergraduate student Gerald Jay Sussman to
“spend the summer linking a camera to a
computer and getting the computer to describe
what it saw”. We now know that the problem is
slightly more difficult than that. (Szeliski 2009,
Computer Vision)

Shakey the Robot (1966-1972)

Shakey the Robot (1966-1972)

Stanford Cart (1961-80)

Rhino and Minerva (1998-99)

 Museum tour guide robots

 University of Bonn and CMU

 Deutsches Museum, Smithsonian Museum

Roomba (2002)

 Sensor: one contact sensor

 Control: random movements

 Over 5 million units sold

Neato XV-11 (2010)

 Sensors:

 1D range sensor for mapping and localization

 Improved coverage

Darpa Grand Challenge (2005)

Kiva Robotics (2007)

 Pick, pack and ship automation

Fork Lift Robots (2010)

Quadrocopters (2001-)

Aggressive Maneuvers (2010)

Autonomous Construction (2011)

Mapping with a Quadrocopter (2011)

Our Own Recent Work (2011-)

 RGB-D SLAM (Nikolas Engelhard)

 Visual odometry (Frank Steinbrücker)

 Camera-based navigation (Jakob Engel)

Current Trends in Robotics

Robots are entering novel domains

 Industrial automation

 Domestic service robots

 Medical, surgery

 Entertainment, toys

 Autonomous cars

 Aerial monitoring/inspection/construction

Flying Robots

 Recently increased interest in flying robots

 Shift focus to different problems (control is much
more difficult for flying robots, path planning is
simpler, …)

 Especially quadrocopters because

 Can keep position

 Reliable and compact

 Low maintenance costs

 Trend towards miniaturization

Application Domains of Flying Robots

 Stunts for action movies, photography,
sportscasts

 Search and rescue missions

 Aerial photogrammetry

 Documentation

 Aerial inspection of bridges, buildings, …

 Construction tasks

 Military

 Today, quadrocopters are often still controlled
by human pilots

Quadrocopter Platforms

 Commercial platforms

 Ascending Technologies

 Height Tech

 Parrot Ardrone

 …

 Community/open-source projects

 Mikrokopter

 Paparazzi

 …

For more, see http://multicopter.org/wiki/Multicopter_Table

Used in the
lab course

Flying Principles

 Fixed-wing airplanes

 generate lift through forward airspeed and the shape of
the wings

 controlled by flaps

 Helicopters/rotorcrafts

 main rotor for lift, tail rotor to compensate for torque

 controlled by adjusting rotor pitch

 Quadrocopter/quadrotor

 four rotors generate lift

 controlled by changing the speeds of rotation

Helicopter

 Swash plate adjusts pitch of propeller cyclically,
controls pitch and roll

 Yaw is controlled by tail rotor

Quadrocopter

Keep position:
 Torques of all four rotors sum to zero
 Thrust compensates for earth gravity

Quadrocopter: Basic Motions

Ascend Descend

Quadrocopter: Basic Motions

Turn Left Turn Right

Quadrocopter: Basic Motions

Accelerate
Forward

Accelerate
Backward

Quadrocopter: Basic Motions

Accelerate
to the Right

Accelerate
to the Left

Autonomous Flight

 Low level control (not covered in this course)
 Maintain attitude, stabilize

 Compensate for disturbances

 High level control
 Compensate for drift

 Avoid obstacles

 Localization and Mapping

 Navigate to point

 Return to take-off position

 Person following

Challenges

 Limited payload

 Limited computational power

 Limited sensors

 Limited battery life

 Fast dynamics, needs electronic stabilization

 Quadrocopter is always in motion

 Safety considerations

Robot Ethics

 Where does the responsibility for a robot lie?

 How are robots motivated?

 Where are humans in the control loop?

 How might society change with robotics?

 Should robots be programmed to follow a code
of ethics, if this is even possible?

Robot Ethics

Three Laws of Robotics (Asimov, 1942):

 A robot may not injure a human being or,
through inaction, allow a human being to come
to harm.

 A robot must obey the orders given to it by
human beings, except where such orders
would conflict with the First Law.

 A robot must protect its own existence as long
as such protection does not conflict with the
First or Second Laws.

Robot Design

Imagine that we want to build a robot that has to
perform navigation tasks…

How would you tackle this?

 What hardware would you choose?

 What software architecture would you choose?

Robot Hardware/Components

 Sensors

 Actuators

 Control Unit/Software

Evolution of Paradigms in Robotics

 Classical robotics (mid-70s)

 Exact models

 No sensing necessary

 Reactive paradigms (mid-80s)

 No models

 Relies heavily on good sensing

 Hybrid approaches (since 90s)

 Model-based at higher levels

 Reactive at lower levels

Classical / hierarchical paradigm

 Inspired by methods from Artificial Intelligence (70’s)

 Focus on automated reasoning and knowledge
representation

 STRIPS (Stanford Research Institute Problem Solver):
Perfect world model, closed world assumption

 Shakey: Find boxes and move them to designated
positions

Sense Plan Act

Classical paradigm: Stanford Cart

 Take nine images of the environment, identify
interesting points, estimate depth

 Integrate information into global world model

 Correlate images with previous image set to
estimate robot motion

 On basis of desired motion, estimated motion,
and current estimate of environment,
determine direction in which to move

 Execute motion

Classical paradigm as
horizontal/functional decomposition

Pe
rc

ep
ti

o
n

M
o

d
el

P
la

n

Ex
ec

u
te

M
o

to
r

C
o

n
tr

o
l

Sensing Acting

Environment

Characteristics of hierarchical paradigm

Good old-fashioned Artificial Intelligence (GOFAI):

 Symbolic approaches

 Robot perceives the world, plans the next
action, acts

 All data is inserted into a single, global world
model

 Sequential data processing

Reactive Paradigm

 Sense-act type of organization
 Multiple instances of stimulus-response loops

(called behaviors)
 Each behavior uses local sensing to generate the

next action
 Combine several behaviors to solve complex tasks
 Run behaviors in parallel, behavior can override

(subsume) output of other behaviors

Sense Act

Reactive Paradigm as
Vertical Decomposition

Sensing Acting

Environment

Avoid obstacles

Wander

Explore

…

Characteristics of Reactive Paradigm

 Situated agent, robot is integral part of the
world

 No memory, controlled by what is happening in
the world

 Tight coupling between perception and action
via behaviors

 Only local, behavior-specific sensing is
permitted (ego-centric representation)

Subsumption Architecture

 Introduced by Rodney Brooks in 1986

 Behaviors are networks of sensing and acting
modules (augmented finite state machines)

 Modules are grouped into layers of
competence

 Layers can subsume lower layers

Level 1: Avoid

sonar
sensors

feel force

collide

runaway

move
forward

turn

halt

heading

force

Level 2: Wander

sonar
sensors

feel force

collide

runaway

move
forward

turn

halt

heading

force

wander

avoid

Level 3: Follow Corridor

sonar
sensors

feel force

collide

runaway

move
forward

turn

halt

heading

force

wander

avoid stereo

integrate look
stay in the

middle

modified heading

distance, direction traveled

heading to middle

stop motion

Roomba Robot

 Exercise: Model the behavior of a Roomba
robot.

Navigation with Potential Fields

 Treat robot as a particle under the influence of
a potential field

 Robot travels along the derivative of the
potential

 Field depends on obstacles, desired travel
directions and targets

 Resulting field (vector) is given by the
summation of primitive fields

 Strength of field may change with distance to
obstacle/target

Primitive Potential Fields

Uniform Perpendicular

Attractive Repulsive Tangential

Example: reach goal and avoid obstacles

Corridor Following Robot

 Level 1 (collision avoidance)
add repulsive fields for the detected obstacles

 Level 2 (wander)
add a uniform field into a (random) direction

 Level 3 (corridor following)
replaces the wander field by three fields (two
perpendicular, one parallel to the walls)

Characteristics of Potential Fields

 Simple method which is often used

 Easy to visualize

 Easy to combine different fields (with
parameter tuning)

 But: Suffer from local minima
 Random motion to escape local

minimum

 Backtracking

 Increase potential of visited regions

 High-level planner Goal

Hybrid deliberative/reactive Paradigm

 Combines advantages of previous paradigms

 World model used in high-level planning

 Closed-loop, reactive low-level control

Sense Act

Plan

Modern Robot Architectures

 Robots became rather complex systems

 Often, a large set of individual capabilities is
needed

 Flexible composition of different capabilities
for different tasks

Best Practices for Robot Architectures

 Modular

 Robust

 De-centralized

 Facilitate software re-use

 Hardware and software abstraction

 Provide introspection

 Data logging and playback

 Easy to learn and to extend

Robotic Middleware

 Provides infrastructure

 Communication between modules

 Data logging facilities

 Tools for visualization

 Several systems available

 Open-source: ROS (Robot Operating System),
Player/Stage, CARMEN, YARP, OROCOS

 Closed-source: Microsoft Robotics Studio

Example Architecture for Navigation

Robot Hardware

Actuator driver(s) Sensor driver(s)

Sensor interface(s) Actuator interface(s)

Localization module
Local path planning +

collision avoidance

Global path planning

User interface /
mission planning

Stanley’s Software Architecture

Touareg interface

Laser mapper

Wireless E-Stop

Top level control

Laser 2 interface

Laser 3 interface

Laser 4 interface

Laser 1 interface

Laser 5 interface

Camera interface

Radar interface Radar mapper

Vision mapper

UKF Pose estimation

Wheel velocity

GPS position

GPS compass

IMU interface Surface assessment

Health monitor

Road finder

Touch screen UI

Throttle/brake control

Steering control

Path planner

laser map

vehicle state (pose, velocity)

velocity limit

map

vision map

vehicle
state

obstacle list

trajectory

RDDF database

driving mode

pause/disable command

Power server interface

clocks

emergency stop

power on/off

Linux processes start/stop heart beats

corridor

 SENSOR INTERFACE PERCEPTION PLANNING&CONTROL USER INTERFACE

VEHICLE
INTERFACE

RDDF corridor (smoothed and original)

Process controller

GLOBAL
SERVICES

health status

data

Data logger File system

Communication requests

vehicle state (pose, velocity)

Brake/steering

Communication channels

Inter-process communication (IPC) server Time server

road center

PR2 Software Architecture

 Two 7-DOF arms, grippers, torso, 2-DOF head

 7 cameras, 2 laser scanners

 Two 8-core CPUs, 3 network switches

 73 nodes, 328 message topics, 174 services

Communication Paradigms

 Message-based communication

 Direct (shared) memory access

A B
msg

var x
var y

A B

memory

var x
var y

Forms of Communication

 Push

 Pull

 Publisher/subscriber

 Publish to blackboard

 Remote procedure calls / service calls

 Preemptive tasks / actions

Push

 Broadcast

 One-way communication

 Send as the information is generated by the
producer P

P C
data

Pull

 Data is delivered upon request by the
consumer C (e.g., a map of the building)

 Useful if the consumer C controls the process
and the data is not required (or available) at
high frequency

P C

data

data request

Publisher/Subscriber

 The consumer C requests a subscription for the
data by the producer P (e.g., a camera or GPS)

 The producer P sends the subscribed data as it
is generated to C

 Data generated according to a trigger (e.g.,
sensor data, computations, other messages, …)

P C

data (t=0)

subscription request

data (t=1)

data (…)

Publish to Blackboard

 The producer P sends data to the blackboard
(e.g., parameter server)

 A consumer C pull data from the blackboard B

 Only the last instance of data is stored in the
blackboard B

B C

data

data request

P
data

Service Calls

 The client C sends a request to the server S

 The server returns the result

 The client waits for the result (synchronous
communication)

 Also called: Remote Procedure Call

C S

result

request + input data

Actions (Preemptive Tasks)

 The client requests the execution of an
enduring action (e.g., navigate to a goal
location)

 The server executes this action and sends
continuously status updates

 Task execution may be canceled from both
sides (e.g., timeout, new navigation goal,…)

Robot Operating System (ROS)

 We will use ROS in the lab course

 http://www.ros.org/

 Installation instructions, tutorials, docs

http://www.ros.org/
http://www.ros.org/
http://www.ros.org/

Concepts in ROS

 Nodes: programs that communicate with each
other

 Messages: data structure (e.g., “Image”)

 Topics: typed message channels to which
nodes can publish/subscribe (e.g.,
“/camera1/image_color”)

 Parameters: stored in a blackboard

face_detector camera_driver
Image

Software Management

 Package: atomic unit of building, contains one
or more nodes and/or message definitions

 Stack: atomic unit of releasing, contains several
packages with a common theme

 Repository: contains several stacks, typically
one repository per institution

Useful Tools

 roscreate-pkg

 rosmake

 roscore

 rosnode list/info

 rostopic list/echo

 rosbag record/play

 rosrun

Tutorials in ROS

Exercise Sheet 1

 On the course website

 Solutions are due in 2 weeks (May 1st)

 Theory part:
Define the motion model of a quadrocopter
(will be covered next week)

 Practical part:
Playback a bag file with data from
quadrocopter & plot trajectory

Summary

 History of mobile robotics

 Brief intro on quadrocopters

 Paradigms in robotics

 Architectures and middleware

Questions?

 See you next week!

