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Organization: Lecture 

 Student request to change lecture time to 
Tuesday afternoon due to time conflicts with 
other course 

 Problem: At least 3 students who are enrolled 
for this lecture have time Tuesday morning but 
not on Tuesday afternoon 

 Therefore: No change 

 Lectures are important, please choose which 
course to follow 

 Note: Still students on the waiting list 



Organization: Lab Course 

 Robot lab: room 02.09.38 (around the corner) 

 Exercises: room 02.09.23 (here) 

 You have to sign up for a team before May 1st 
(team list in student lab) 

 After May 1st, remaining places will be given to 
students on waiting list 

 This Thursday: Visual navigation demo at 2pm 
in the student lab (in conjunction with TUM 
Girls’ Day) 



Today’s Agenda 

 Linear algebra 

 2D and 3D geometry 

 Sensors 

 



Vectors 

 Vector and its coordinates 

 

 

 

 

 Vectors represent points 
in an n-dimensional space 

 

 

 

 

 

 



Vector Operations 

 Scalar multiplication 

 Addition/subtraction 

 Length 

 Normalized vector 

 Dot product 

 Cross product 
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Vector Operations 

 Scalar multiplication 

 Addition/subtraction 

 Length 
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Vector Operations 

 Scalar multiplication 

 Addition/subtraction 

 Length 

 Normalized vector 

 Dot product 

 Cross product 
 

    are orthogonal if                  

    is linearly dependent from                      if 



Vector Operations 

 Scalar multiplication 

 Addition/subtraction 

 Length 

 Normalized vector 

 Dot product 

 Cross product 
 



Cross Product 

 Definition 

 

 

 Matrix notation for the cross product 

 

 

 

 Verify that  



Matrices 

 Rectangular array of numbers 

 

 

 

 

 

 First index refers to row 

 Second index refers to column 

 

rows   columns 



Matrices 

 Column vectors of a matrix 

 

 

 

 

 

 

 Geometric interpretation: for example, column 
vectors can form basis of a coordinate system 



Matrices 

 Row vectors of a matrix 



Matrices 

 Square matrix 

 Diagonal matrix 

 Upper and lower triangular matrix 

 Symmetric matrix 

 Skew-symmetric matrix 

 (Semi-)positive definite matrix 

 Invertible matrix 

 Orthonormal matrix 

 Matrix rank 



Matrices 

 Square matrix 

 Diagonal matrix 
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 Skew-symmetric matrix 

 (Semi-)positive definite matrix 

 Invertible matrix 

 Orthonormal matrix 

 Matrix rank 



Matrix Operations 

 Scalar multiplication 

 Addition/subtraction 

 Transposition 

 Matrix-vector multiplication 

 Matrix-matrix multiplication 

 Inversion 

 



Matrix Operations 

 Scalar multiplication 

 Addition/subtraction 

 Transposition 

 Matrix-vector multiplication 

 Matrix-matrix multiplication 

 Inversion 

 



Matrix-Vector Multiplication 

 Definition 

 

 

 
 

 

 Geometric interpretation: 
a linear combination of the columns of X scaled 
by the coefficients of b 

column vectors 



Matrix-Vector Multiplication 

 

 

 

 
 

 

 Geometric interpretation: 
A linear combination of the columns of A 
scaled by the coefficients of b  
 coordinate transformation 

column vectors 



Matrix Operations 

 Scalar multiplication 

 Addition/subtraction 

 Transposition 

 Matrix-vector multiplication 

 Matrix-matrix multiplication 

 Inversion 

 



Matrix-Matrix Multiplication 

 Operator 

 Definition 

 

 

 Interpretation: transformation of coordinate 
systems 

 Can be used to concatenate transforms 

 



Matrix-Matrix Multiplication 

 Not commutative (in general) 

 

 Associative 

 

 Transpose 

 



Matrix Operations 

 Scalar multiplication 

 Addition/subtraction 

 Transposition 

 Matrix-vector multiplication 

 Matrix-matrix multiplication 

 Inversion 

 



Matrix Inversion 

 If    is a square matrix of full rank, then there is 
a unique matrix                 such that               .  

 Different ways to compute, e.g., Gauss-Jordan 
elimination, LU decomposition, … 

 When A is orthonormal, then 

 



Recap: Linear Algebra 

 Vectors 

 Matrices 

 Operators 

 

 Now let’s apply these concepts to 2D+3D 
geometry 



Geometric Primitives in 2D 

 2D point 

 

 

 Augmented vector 

 

 

 Homogeneous coordinates 

 



Geometric Primitives in 2D 

 Homogeneous vectors that differ only be scale 
represent the same 2D point 

 Convert back to inhomogeneous coordinates 
by dividing through last element 

 

 

 

 Points with             are called points at infinity 
or ideal points 

 



Geometric Primitives in 2D 

 2D line 

 

 2D line equation 



Geometric Primitives in 2D 

 Normalized line equation vector 
 
 
where     is the distance of the line to the origin 

with 



Geometric Primitives in 2D 

 Polar coordinates of a line:  
(e.g., used in Hough transform for finding lines) 



Geometric Primitives in 2D 

 Line joining two points 

 

 Intersection point of two lines 

 

 



Geometric Primitives in 3D 

 3D point 
(same as before) 

 
 Augmented vector 

 
 

 Homogeneous coordinates 

 



Geometric Primitives in 3D 

 3D plane 

 3D plane equation 

 

 Normalized plane 
with unit normal vector 
 
(              ) 
and distance d 

 

 



Geometric Primitives in 3D 

 3D line 
through points 

 

 Infinite line: 

 

 Line segment joining        : 



2D Planar Transformations 



2D Transformations 

 Translation 
 
 
 
 
 
 
 
where    is the identity matrix (2x2) 
and     is the zero vector  



2D Transformations 

 Rotation + translation (2D rigid body motion, or 
2D Euclidean transformation) 
 
                                    or 
 
 
where                                           
 
is an orthonormal rotation matrix, i.e.,  

 Distances (and angles) are preserved 



2D Transformations 

 Scaled rotation/similarity transform 
 
 
                                   or 
 

 

 Preserves angles between lines 



2D Transformations 

 Affine transform 
 
 
 
 

 

 Parallel lines remain parallel 



2D Transformations 

 Projective/perspective transform 
 
 
 
 

 Note that     is homogeneous (only defined up 
to scale) 

 Resulting coordinates are homogeneous 

 Parallel lines remain parallel 



2D Transformations 

 



3D Transformations 

 Translation 

 

 

 Euclidean transform (translation + rotation), 
(also called the Special Euclidean group SE(3)) 

 

 

 Scaled rotation, affine transform, projective 
transform… 

 

 



3D Transformations 

 



3D Rotations 

 Rotation matrix  
(also called the special orientation group SO(3)) 

 

 Euler angles 

 Axis/angle 

 Unit quaternion 



Rotation Matrix 

 Orthonormal 3x3 matrix 

 

 

 

 

 Column vectors correspond to coordinate axes 

 Special orientation group 

 Main disadvantage: Over-parameterized (9 
parameters instead of 3) 

 



Euler Angles 

 Product of 3 consecutive rotations 

 Roll-pitch-yaw convention is very common in 
aerial navigation (DIN 9300) 

 

 



Euler Angles 

 Yaw   , Pitch   ,  Roll     to rotation matrix 

 

 

 

 

 Rotation matrix to Yaw-Pitch-Roll 



Euler Angles 

 Advantage: 

 Minimal representation (3 parameters) 

 Easy interpretation 

 Disadvantages: 

 Many “alternative” Euler representations exist 
(XYZ, ZXZ, ZYX, …) 

 Singularities (gimbal lock) 



Gimbal Lock 

 When the axes align, one degree-of-freedom 
(DOF) is lost… 



Axis/Angle 

 Represent rotation by 

 rotation axis      and 

 rotation angle 

 4 parameters 

 3 parameters                 

 length is rotation angle 

 also called the angular velocity 

 minimal but not unique (why?) 



Derivation of Angular Velocities  

 Assume we have a rotational motion in SO(3) 

 

 As this rotations are orthonormal matrices, we 
have 

 Now take the derivative on both sides (w.r.t. t) 

 

 

 Thus,                   must be skew-symmetric, i.e., 



Derivation of Angular Velocities  

Linear ordinary differential equation (ODE) 

 

 

 

 Solution of this ODE 

 

 Conversions 

 



Derivation of Angular Velocities  

Linear ordinary differential equation (ODE) 

 

 

 

 The space of all skew-symmetric matrices is 
called the tangent space  

 

 Space of all rotations in 3D (Special orientation group) 



Conversion 

 Rodriguez’ formula 

 

 

 Inverse 
 
 
 
 
see: An Invitation to 3D Vision, Y. Ma, S. Soatto, J. Kosecka, S. Sastry, Chapter 2 
(available online) 

 

 

 

 



Exponential Twist 

 The exponential map can be generalized to 
Euclidean transformations (incl. translations) 

 Tangent space   

 (Special) Euclidean group 
(group of all Euclidean transforms) 

 Rigid body velocity 

 

 

 



Exponential Twist 

 Convert to homogeneous coordinates 

 

 

 

 

 Exponential map between se(3) and SE(3) 

 

 There are also direct formulas (similar to 
Rodriguez) 



Unit Quaternions 

 Quaternion 

 Unit quaternions have                  

 Opposite sign quaternions represent the same 
rotation 

 Otherwise unique 



Unit Quaternions 

 Advantage: multiplication and inversion 
operations are really fast 

 Quaternion-Quaternion Multiplication 

 

 

 Inverse (flip sign of v or w) 



Unit Quaternions 

 Quaternion-Vector multiplication (rotate point 
p with rotation q) 
 
 
with 

 Relation to Axis/Angle representation 



Spherical Linear Interpolation (SLERP) 

 Useful for interpolating between two rotations 



3D to 2D Projections 

 Orthographic projections 

 

 Perspective projections 



3D to 2D Perspective Projection 

 



3D to 2D Perspective Projection 



3D to 2D Perspective Projection 

 3D point     (in the camera frame) 

 2D point     (on the image plane) 

 Pin-hole camera model 

 
 

 

 Remember,     is homogeneous, need to 
normalize 



Camera Intrinsics 

 So far, 2D point is given in meters on image 
plane 

 But:  we want 2D point be measured in pixels 
(as the sensor does) 

 

 

 

 



Camera Intrinsics 

 Need to apply some scaling/offset  

 

 

 

 

 Focal length  

 Camera center 

 Skew 



Camera Extrinsics 

 Assume       is given in world coordinates 

 Transform from world to camera (also called 
the camera extrinsics) 

 

 

 Full camera matrix 

 



Recap: 2D/3D Geometry 

 points, lines, planes 

 2D and 3D transformations 

 Different representations for 3D orientations 

 Choice depends on application 

 Which representations do you remember? 

 3D to 2D perspective projections 

 

 You really have to know 2D/3D transformations 
by heart (read Szeliski, Chapter 2) 



C++ Libraries for Lin. Alg./Geometry 

 Many C++ libraries exist for linear algebra and 
3D geometry 

 Typically conversion necessary 

 Examples: 
 C arrays, std::vector (no linear alg. functions) 

 gsl (gnu scientific library, many functions, plain C) 

 boost::array (used by ROS messages) 

 Bullet library (3D geometry, used by ROS tf) 

 Eigen (both linear algebra and geometry, my 
recommendation) 



Example: Transform Trees in ROS 

 TF package represents 3D transforms between 
rigid bodies in the scene as a tree 

map 

base_link 

person 

camera 

rotor1 rotor2 



Example: Video from PR2 



Sensors 

 



Classification of Sensors 

 What: 
 Proprioceptive sensors 

 Measure values internally to the system (robot) 
 Examples: battery status, motor speed, accelerations, … 

 Exteroceptive sensors 
 Provide information about the environment 
 Examples: compass, distance to objects, … 

 How: 
 Passive sensors 

 Measure energy coming from the environment 

 Active sensors 
 Emit their proper energy and measure the reaction 
 Better performance, but influence on environment 

 



Classification of Sensors 

 Tactile sensors 
Contact switches, bumpers, proximity sensors, pressure 

 Wheel/motor sensors 
Potentiometers, brush/optical/magnetic/inductive/capacitive 
encoders, current sensors 

 Heading sensors 
Compass, infrared, inclinometers, gyroscopes, accelerometers 

 Ground-based beacons 
GPS, optical or RF beacons, reflective beacons 

 Active ranging 
Ultrasonic sensor, laser rangefinder, optical triangulation, structured 
light 

 Motion/speed sensors 
Doppler radar, Doppler sound 

 Vision-based sensors 
CCD/CMOS cameras, visual servoing packages, object tracking 
packages 



Example: Ardrone Sensors 

 Tactile sensors 
Contact switches, bumpers, proximity sensors, pressure 

 Wheel/motor sensors 
Potentiometers, brush/optical/magnetic/inductive/capacitive 
encoders, current sensors 

 Heading sensors 
Compass, infrared, inclinometers, gyroscopes, accelerometers 

 Ground-based beacons 
GPS, optical or RF beacons, reflective beacons 

 Active ranging 
Ultrasonic sensor, laser rangefinder, optical triangulation, structured 
light 

 Motion/speed sensors 
Doppler radar, Doppler sound 

 Vision-based sensors 
CCD/CMOS cameras, visual servoing packages, object tracking 
packages 



Characterization of Sensor Performance 

 Bandwidth or Frequency 

 Delay 

 Sensitivity 

 Cross-sensitivity (cross-talk) 

 Error (accuracy) 

 Deterministic errors (modeling/calibration possible) 

 Random errors 

 Weight, power consumption, … 

 

 



Sensors 

 Motor/wheel encoders 

 Compass 

 Gyroscope 

 Accelerometers 

 GPS 

 Range sensors 

 Cameras 



Motor/wheel encoders 

 Device for measuring angular motion 

 Often used in (wheeled) robots 

 Output: position, speed (possibly integrate 
speed to get odometry) 



Motor/wheel encoders 

 Working principle:  

 Regular: counts the number of transitions but 
cannot tell direction 

 Quadrature: uses two sensors in quadrature phase-
shift, ordering of rising edge tells direction 

 Sometimes: Reference pulse (or zero switch)  



Magnetic Compass 

 Measures earth’s magnetic field 

 Inclination angle approx. 60deg (Germany) 

 Does not work indoor/affected by metal 

 Alternative: gyro compass (spinning wheel, 
aligns with earth’s rotational poles, for ships) 

 



Magnetic Declination 

 Angle between magnetic north and true north 

 Varies over time 

 Good news ;-): by 2050, magnetic declination 
in central Europe will be zero  



Magnetic Compass 

 Sensing principle: Hall sensor 

 Construction: 3 orthogonal sensors 

 

 



Mechanical Gyroscope 

 Measures orientation (standard gyro) or angular 
velocity (rate gyro, needs integration for angle) 

 Spinning wheel mounted in a gimbal device (can move 
freely in 3 dimensions) 

 Wheel keeps orientation due to angular momentum 
(standard gyro) 



Modern Gyroscopes 

 Vibrating structure gyroscope (MEMS) 

 Based on Coriolis effect 

 “Vibration keeps its direction under rotation” 

 Implementations: Tuning fork, vibrating wheels, … 

 Ring laser / fibre optic gyro 

 Interference between counter-propagating beams in 
response to rotation 



Accelerometer 

 Measures all external forces acting upon them 
(including gravity) 

 Acts like a spring-damper system 

 To obtain inertial acceleration (due to motion 
alone), gravity must be subtracted 

 



MEMS Accelerometers 

 Micro Electro-Mechanical Systems (MEMS) 

 Spring-like structure with a proof mass 

 Damping results from residual gas 

 Implementations: capacitive, piezoelectric, … 



Inertial Measurement Unit 

 3-axes MEMS gyroscope  

 Provides angular velocity 

 Integrate for angular position 

 Problem: Drifts slowly over time (e.g., 1deg/hour), 
called the bias 

 3-axes MEMS accelerometer 

 Provides accelerations (including gravity) 

 Can we use these sensors to estimate our 
position? 



Inertial Measurement Unit 

 IMU: Device that uses gyroscopes and 
accelerometers to estimate (relative) position, 
orientation, velocity and accelerations 

 Integrate angular velocities to obtain absolute 
orientation 

 Subtract gravity from acceleration 

 Integrate acceleration to linear velocities 

 Integrate linear velocities to position 

 Note: All IMUs are subject to drift (position is 
integrated twice!), needs external reference 

 



Example: AscTec Autopilot Board 

 



GPS 

 



GPS 

 24+ satellites, 12 hour orbit, 20.190 km height 

 6 orbital planes, 4+ satellites per orbit, 60deg 
distance 

 

 

 

 

 Satellite transmits orbital location + time 

 50bits/s, msg has 1500 bits  12.5 minutes 



GPS 

 Position from pseudorange 

 Requires measurements of 4 different satellites 

 Low accuracy (3-15m) but absolute 

 Position from pseudorange + phase shift 

 Very precise (1mm) but highly ambiguous 

 Requires reference receiver (RTK/dGPS) to remove 
ambiguities 

 



Range Sensors 

 Sonar 

 

 Laser range finder 

 

 Time of flight camera 

 

 Structured light 
(will be covered later) 



Range Sensors 

 Emit signal to determine distance along a ray 

 Make use of propagation speed of 
ultrasound/light 

 Traveled distance is given by 

 Sound speed: 340m/s 

 Light speed: 300.000km/s 

 



Ultrasonic Range Sensors 

 Range between 12cm and 5m 

 Opening angle around 20 to 40 degrees 

 Soft surfaces absorb sound 

 Reflections  ghosts 

 Lightweight and cheap 

 



Laser Scanner 

 Measures phase shift 

 Pro: High precision, wide field of view, safety 
approved for collision detection 

 Con: Relatively expensive + heavy 



Laser Scanner 

 2D scanners 

 

 

 

 3D scanners 



Camera 

 Let’s design a camera 

 Idea 1:  put a piece of film in front of an object 

 Do we get a reasonable image? 



Camera 

 Add a barrier to block off most of the rays 

 This reduces blurring 

 The opening known as the aperture 

 How does this transform the image? 

 



Camera Lens 

 A lens focuses light onto the film  

 Rays passing through the optical center are not 
deviated  

 



Camera Lens 

 A lens focuses light onto the film  

 Rays passing through the center are not deviated  

 All rays parallel to the Optical Axis converge at the 
Focal Point  

 



Camera Lens 

 There is a specific distance at which objects are 
“in focus”  

 Other points project to a “blur circle” in the 
image  

 



Lens Distortions 

 Radial distortion of the image 

 Caused by imperfect lenses 

 Deviations are most noticeable for rays that pass 
through the edge of the lens 

 



Lens Distortions 

 Radial distortion of the image 

 Caused by imperfect lenses 

 Deviations are most noticeable for rays that pass 
through the edge of the lens 

 Typically compensated with a low-order 
polynomial 

 



Digital Cameras 

 Vignetting 

 De-bayering 

 Rolling shutter and motion blur 

 Compression (JPG) 

 Noise 

 



Dead Reckoning and Odometry 

 Estimating the position      based on the issued 
controls (or IMU) readings 

 Integrated over time 



Exercise Sheet 1 

 Odometry sensor on Ardrone is an integrated package 
 Sensors 

 Down-looking camera to estimate motion 
 Ultrasonic sensor to get height 
 3-axes gyroscopes 
 3-axes accelerometer 

 IMU readings 
 Horizontal speed (vx/vy) 
 Height (z) 
 Roll, Pitch, Yaw 

 Integrate these values to get robot pose 
 Position (x/y/z) 
 Orientation (e.g., r/p/y) 

 



Summary 

 Linear Algebra 

 2D/3D Geometry 

 Sensors 

 

 


