Computer Vision Group .- : TI.ITI

Prof. Daniel Cremers:

Technische Universitat Mianchen

Visual Navigation
for Flying Robots

3D Geometry and Sensors

Dr. Jurgen Sturm

Organization: Lecture

= Student request to change lecture time to
Tuesday afternoon due to time conflicts with
other course

= Problem: At least 3 students who are enrolled
for this lecture have time Tuesday morning but
not on Tuesday afternoon

" Therefore: No change

" |Lectures are important, please choose which
course to follow

= Note: Still students on the waiting list

Organization: Lab Course

= Robot lab: room 02.09.38 (around the corner)
= Exercises: room 02.09.23 (here)

" You have to sign up for a team before May 1
(team list in student lab)

= After May 15, remaining places will be given to
students on waiting list

® This Thursday: Visual navigation demo at 2pm
in the student lab (in conjunction with TUM
Girls” Day)

Today’s Agenda

" Linear algebra
= 2D and 3D geometry
= Sensors

Vectors

= \/ector and its coordinates

(1)

)

G R’TL

= Vectors represent points
in an n-dimensional space

Vector Operations

Scalar multiplication
Addition/subtraction
Length

Normalized vector
Dot product

Cross product

A

SX

Vector Operations

Scalar multiplication
Addition/subtraction
Length

Normalized vector
Dot product

Cross product

A

Vector Operations

Scalar multiplication
Addition/subtraction

Length

Normalized vector

Dot product
Cross product

Jzll2 = llzll = V2t + a3 + ...

Vector Operations

Scalar multiplication
Addition/subtraction
Length

Normalized vector
Dot product

Cross product

A

Vector Operations

A

= Scalar multiplication
= Addition/subtraction X

" Length y
= Normalized vector

>

= Dot product

Y = ¢
= Cross product x -y = [Ix][[[y|l cos

X,y are orthogonal if x-y =0

y is linearly dependent from {X1, X2, ...} if
Yy = Zg kix;

Vector Operations

Scalar multiplication
Addition/subtraction
Length

Normalized vector
Dot product

Cross product

x Xy = [|x[[[ly[| sin(6)n

Cross Product

= Definition
L2Ys — T3Y2

XXy = |T3Y1 — *1Y3
L1Y2 — L2Y1
= Matrix notation for the cross product
0 —x3 a9
x| =1 z3 0 —x
—Xo I 0

= Verify that x x y = [x]«y

Matrices

= Rectangular array of numbers

rows columns
/9311 L12 .- ﬂl'lm\ l l
o1 L29 ... Xom "
X — ' c Rnxm
\mnl Lp2 ... xnm/

= First index refers to row
= Second index refers to column

Matrices

= Column vectors of a matrix

€2
/5511 12| - |Tim 1
o1l 1 Too2l ... |Tom
X =

X

\xnl Lp2l « - |Lam 2
N =
— (X>k1 X*Q ¢ o e X*'Tn) X 1

= Geometric interpretation: for example, column
vectors can form basis of a coordinate system

Matrices

= Row vectors of a matrix

-
/&5‘11 L12 ... ﬂilm\ /Xl*\

LXo1 X292 ... Tom X9y

Tnl Ln2 --- LTom \Xn* /

Matrices

Square matrix

Diagonal matrix

Upper and lower triangular matrix
Symmetric matrix
Skew-symmetric matrix
(Semi-)positive definite matrix
Invertible matrix

Orthonormal matrix

Matrix rank

Matrices

Square matrix

Diagonal matrix

Upper and lower triangular matrix

Symmetric matrix X = X' 0 e o
Skew-symmetric matrix X=-X'(=| ws 0 wl))
(Semi-)positive definite matrix e 0
Invertible matrix a' Xa>0
Orthonormal matrix

Matrix rank

Matrix Operations

Scalar multiplication
Addition/subtraction
Transposition

Matrix-vector multiplication
Matrix-matrix multiplication
Inversion

Matrix Operations

Scalar multiplication
Addition/subtraction
Transposition

Matrix-vector multiplication Xb
Matrix-matrix multiplication
Inversion

Matrix-Vector Multiplication

= Definition
/$11 L12 - - $1m\ (51\
Lol Loz ... Tonm by t
X b= . . — Xxk bk:
: |-
\:Enl Tno2 ... mnm/ \bm/

column vectors

= Geometric interpretation:
a linear combination of the columns of X scaled
by the coefficients of b

Matrix-Vector Multiplication

egA
n
k=1 T Xo| *
column vectors \/Xl S
X €1

= Geometric interpretation:
A linear combination of the columns of A
scaled by the coefficients of b
— coordinate transformation

Matrix Operations

Scalar multiplication
Addition/subtraction
Transposition

Matrix-vector multiplication
Matrix-matrix multiplication
Inversion

Matrix-Matrix Multiplication

Operator R x RM*P — R?*P
Definition C =AB
=A (b*l b*Q "t b*p)

Interpretation: transformation of coordinate
systems

Can be used to concatenate transforms

Matrix-Matrix Multiplication

= Not commutative (in general)
AB # BA
= Associative
A(BC) = (AB)C
®= Transpose
(AB)' =B'"A"

Matrix Operations

Scalar multiplication
Addition/subtraction
Transposition

Matrix-vector multiplication
Matrix-matrix multiplication
Inversion

Matrix Inversion

= |[fAis a square matrix of full rank, then there is
a unique matrix B = A' such that AB = I.

= Different ways to compute, e.g., Gauss-Jordan
elimination, LU decomposition, ...

= When A is orthonormal, then
A_l _ AT

Recap: Linear Algebra

Vectors
Matrices
Operators

Now let’s apply these concepts to 2D+3D
geometry

Geometric Primitives in 2D

= 2D point X = (’;) c R?
h

= Augmented vector X=|y]| eR’
1

Geometric Primitives in 2D

= Homogeneous vectors that differ only be scale
represent the same 2D point

= Convert back to inhomogeneous coordinates
by dividing through last element

T /W x
% = — g/ | =a|y]| =ux
1 1

" Points with w = 0 are called points at infinity
or ideal points

S &

Geometric Primitives in 2D

= 2D line 1= (a,b,¢)7

= 2D line equation X-l=ax+by+c=0

Geometric Primitives in 2D

= Normalized line equation vector

1= (i, fry,d)T = (,d)T with [=1

where d is the distance of the line to the origin

Geometric Primitives in 2D

= Polar coordinates of a line: (6, d) "
(e.g., used in Hough transform for finding lines)

i = (cosf,sinf)’

Geometric Primitives in 2D
* Line joining two points =% X%

—

" |ntersection point of two lines % =1; x I

Geometric Primitives in 3D

h
= 3D point x= |y
(same as before) 2

= Augmented vector

K
|

= Homogeneous coordinates x =

c R?

e R*

Geometric Primitives in 3D

(a,b,c,d)’

= 3D plane m —
X-m=ar+by+cz+d=20

= 3D plane equation

= Normalized plane
with unit normal vector
m = (g, Ny, N, d) = (1, d)
(llnff = 1)

and distance d

Geometric Primitives in 3D

= 3Dliner=(1—)\)p+\q
through points p, q

= |nfinite line:

AeR
= Line segment joining p, q:

0< A<

2D Planar Transformations

yA / s1mllanty proj ecth €
translation
—Y

Euchdean aﬂme

2D Transformations

= Translation x =x+1
x = (I t) X
N——
2x3
- (L %)
—\0'" 1
N——
3x3

where 1 is the identity matrix (2x2)
and O is the zero vector

2D Transformations

Rotation + translation (2D rigid body motion, or
2D Euclidean transformation)

_ R t\ _

x' = Rx +t or X' = (0T l)x
where R = 0989 —sind
sinfl cost

is an orthonormal rotation matrix, i.e., RR' =1
Distances (and angles) are preserved

2D Transformations

= Scaled rotation/similarity transform

x' = sRx +t or X' = (SOIT{ 11:) X

" Preserves angles between lines

2D Transformations

= Affine transform

aipr a2 di3
_‘p‘ L - _
X' = AX = 21 U922 A923 | X

0 0 1

= Parallel lines remain parallel

2D Transformations

Projective/perspective transform

o

aijp aiz2 dis
if:H: 921 A9292 A3 i

azp asz2 ass

Note that H is homogeneous (only defined up
to scale)

Resulting coordinates are homogeneous
Parallel lines remain parallel

2D Transformations

Transformation Matrix # DoF Preserves Icon
translation [I ‘ t] 2 orientation
2> 3
rigid (Euclidean) [R ‘ t } 3 lengths O
2x3
similarity [sR ‘ t } 4 angles O
2x3
affine [A] 6 parallelism E
2x3
projective [H] 8 straight lines G
3x3

3D Transformations

/ I t)
X = OT 1 X
N——

4 x4
" EFuclidean transform (translation + rotation),
(also called the Special Euclidean group SE(3))

, (R t_
Xonlx

= Scaled rotation, affine transform, projective
transform...

" Translation

3D Transformations

Transformation Matrix # DoF Preserves Icon
translation [1 ‘ t] 3 orientation
3 x4
rigid (Euclidean) [R ‘ t } ¢ lengths O
3x4
similarity [sR ‘ t } 7 angles O
I x4
affine [A] 12 parallelism E
3 x4
projective [H] 15 straight lines G
4dx4

3D Rotations

= Rotation matrix
(also called the special orientation group SO(3))

= Euler angles
= Axis/angle
= Unit quaternion

Rotation Matrix

Orthonormal 3x3 matrix

11 T12 T13
R = o1 T922 T93

sy T32 T33

Column vectors correspond to coordinate axes
Special orientation group R € SO(3)

Main disadvantage: Over-parameterized (9
parameters instead of 3)

Euler Angles

= Product of 3 consecutive rotations

= Roll-pitch-yaw convention is very common in
aerial navigation (DIN 9300)

Center of
Gravity

Pitch Axis

+ Pitch

Roll Axis

Yaw Axis
b + Roll

Euler Angles

= Yaw ¥ Pitch©, Roll & to rotation matrix
R= Rz(V)Ry(©)Rx(®)

1 0 0 cos® (0 —sin® cosV sinv¥ 0
=10 cos® sind 0 1 0 —sinV¥ cosW¥ 0
0 —sin® cos® sin® 0 cos® 0 0 1

cos © cos ¥ cos O sin ¥ —sin®
= | sinPsin®cosW —cosPsinV sin®PsinOsinW + cosPcosV¥ sin P cos©
cosPsin®cosW +sin®PsinV cos®sin®OsinWV —sin®cosW¥ cos P cos©

= Rotation matrix to Yaw-Pitch-Roll

¢ = Atan2 (—7“31, \/T3 + r%l)

21 11
v Atz <cos<¢)’ cos(@)

L r'32 33
o= e (2 o)

Euler Angles

= Advantage:
= Minimal representation (3 parameters)
= Easy interpretation

= Disadvantages:

= Many “alternative” Euler representations exist
(XYZ, ZXZ, 7YX, ...)

= Singularities (gimbal lock)

Gimbal Lock

= When the axes align, one degree-of-freedom
(DOF) is lost...

1. Rotations in Euler angles 2. When all three circles are lined up,
can be defined like gimbal ' the whole system can only move :
system with three circles in two dimensions from this configuration,
this is a gimbal lock '

i 0 L 3.U f quaterni
YAW U " 1™ i i b vl i

situations

Axis/Angle

= Represent rotation by
= rotation axis 1N and
= rotation angle 6

= 4 parameters (1,0)

= 3 parameters w = i
" |ength is rotation angle
= also called the angular velocity
" minimal but not unique (why?)

Derivation of Angular Velocities

Assume we have a rotational motion in SO(3)
R(t) € SO(3) teR

As this rotations are orthonormal matrices, we
have RHOR'(t) =1
Now take the derivative on both sides (w.r.t. t)
ROR'(t)+ RHR"(t) =0
RR'(t) = —(R(HOR'(1)"
Thus, R(t)R' (t) must be skew-symmetric, i.e.,
w(t)]x = R(t)R' (1)

Derivation of Angular Velocities

—Linear ordinary differential equation (ODE)

0 —Ww3 Wy
R(t) = [w]R(t) = (wg 0 wl) R(t)

—Wy W 0

= Solution of this ODE
R(t) = exp([w]«)R(0)
= Conversions

R = exp(|w]«) w| =logR

Derivation of Angular Velocities

—Linear ordinary differential equation (ODE)

0 —Ww3 Wy
R(t) = [w]R(t) = (wg 0 wl) R(t)

—Wy W 0

" The space of all skew-symmetric matrices is
called the tangent space

s0(3) = {[w]x € R¥* | w e R?}

= Space of all rotations in 3D (Special orientation group)
SOB3)={ReR”?|R'R=1I,det R=1}

Conversion

= Rodriguez’ formula

R(f,0) = I +sin@[n], + (1 — cos0)[A]?

" |nverse

_, [trace(R) — 1Y\ 1 a2 T
= cos 2 T osing | 12T

re1 — 712
see: An Invitation to 3D Vision, Y. Ma, S. Soatto, J. Kosecka, S. Sastry, Chapter 2
(available online)

Exponential Twist

= The exponential map can be generalized to
Euclidean transformations (incl. translations)

= Tangent space se(3) = so(3) x R?

= (Special) Euclidean group SE(3) = SO(3) x R?
(group of all Euclidean transforms)

= Rigid body velocity
g — (wwiy;wz) (Umuyavz) 6 RG
N e N’

angular vel. linear vel.

Exponential Twist

= Convert to homogeneous coordinates

— 7| €se(3
3 w0 (3)

—W V.
\ 0 0 0 0/

= Exponential map between se(3) and SE(3)

5

M =expé & =log M

= There are also direct formulas (similar to
Rodriguez)

Unit Quaternions

= Quaternion q = (¢, 4y, ¢=- qw)' €R’
= Unit quaternions have ||q|| =1

= Opposite sigh quaternions represent the same
rotation q = —q

= Otherwise unique)
l4]l=1 qf\\

Unit Quaternions

= Advantage: multiplication and inversion
operations are really fast

= Quaternion-Quaternion Multiplication
Qo1 = (vo, wo) (v, wr)
= (Vo X V1 + woVvy + w1 Vg, wow, — VoVy)
" |Inverse (flip sign of v or w)
do/a1 = (vo,wo)/(V1,wr)

— (Voa ’wo)(Vlj —’wl)

— (VU X Vi + WoV] — W1Vp, —WoW1 — VUV1)

Unit Quaternions

= Quaternion-Vector multiplication (rotate point
p with rotation q)

P =vp/q
with p = (2,9, 2,0)'

= Relation to Axis/Angle representation
v, 0

q= (v,w) = (sin 511, Cos 5)

Spherical Linear Interpolation (SLERP)

= Useful for interpolating between two rotations

procedure slerp(q,, q,):
. ¢, =4q1/q) = (vr,wy)
2. if w, < Othengq, «— —q,
3. 0, =2tan"(||v,||/w,)
4. n,. = N(v,.) =v,/||v,]
5.0, =ab,

6. q, = (sin &, cos &)

3D to 2D Projections

= Orthographic projections

= Perspective projections

3D to 2D Perspective Projection

Q

3D to 2D Perspective Projection

3D to 2D Perspective Projection

3D point p (in the camera frame)

2D point x (on the image plane)

Pin-hole camera model

100 0
0100]p
0010

Remember, X is homogeneous, need to

X

normalize
X =

X

.

/7

~

)

Camera Intrinsics

= So far, 2D point is given in meters on image
plane

= But: we want 2D point be measured in pixels
(as the sensor does)

-
\\\\\\\{
NN %
VvV L\ o
bV
53
-
o
>
he

~_~
a
a
N
\
~

A\
o

H-1

<
=

Camera Intrinsics

Need to apply some scaling/offset

Jr 8 ¢
x=10 f, ¢
0O 0 1

intrinsics K
Focal length [, f,

Camera center c¢;, ¢y,
Skew s

projection

Camera Extrinsics

= Assume p,, is given in world coordinates

" Transform from world to camera (also called
the camera extrinsics)

. [R t).
p_ OT 1 p*u?

= Full camera matrix

Recap: 2D/3D Geometry

points, lines, planes
2D and 3D transformations
Different representations for 3D orientations

= Choice depends on application
= Which representations do you remember?

3D to 2D perspective projections

You really have to know 2D/3D transformations
by heart (read Szeliski, Chapter 2)

C++ Libraries for Lin. Alg./Geometry

= Many C++ libraries exist for linear algebra and
3D geometry

= Typically conversion necessary

= Examples:
= Carrays, std::vector (no linear alg. functions)
= gs| (gnu scientific library, many functions, plain C)
" boost::array (used by ROS messages)
= Bullet library (3D geometry, used by ROS tf)

" Eigen (both linear algebra and geometry, my
recommendation)

Example: Transform Trees in ROS

" TF package represents 3D transforms between
rigid bodies in the scene as a tree

base_link

camera

rotorl rotor2

person

map

Example: Video from PR2

Sensors

Classification of Sensors

= \What:

= Proprioceptive sensors
= Measure values internally to the system (robot)
= Examples: battery status, motor speed, accelerations, ...

= Exteroceptive sensors
= Provide information about the environment
= Examples: compass, distance to objects, ...

" How:
= Passive sensors
= Measure energy coming from the environment

= Active sensors

= Emit their proper energy and measure the reaction
= Better performance, but influence on environment

Classification of Sensors

Tactile sensors
Contact switches, bumpers, proximity sensors, pressure

Wheel/motor sensors
Potentiometers, brush/optical/magnetic/inductive/capacitive
encoders, current sensors

Heading sensors
Compass, infrared, inclinometers, gyroscopes, accelerometers

Ground-based beacons
GPS, optical or RF beacons, reflective beacons

Active ranging

Ultrasonic sensor, laser rangefinder, optical triangulation, structured
light

Motion/speed sensors

Doppler radar, Doppler sound

Vision-based sensors
CCD/CMOS cameras, visual servoing packages, object tracking
packages

Example: Ardrone Sensors

Tactile sensors
Contact switches, bumpers, proximity sensors, pressure

Wheel/motor sensors
Potentiometers, brush/optical/magnetic/inductive/capacitive
encoders, current sensors

Heading sensors
Compass, infrared, inclinometers, gyroscopes, accelerometers

Ground-based beacons
GPS, optical or RF beacons, reflective beacons

Active ranging

Ultrasonic sensor, laser rangefinder, optical triangulation, structured
light

Motion/speed sensors

Doppler radar, Doppler sound

Vision-based sensors
CCD/CMOS cameras, visual servoing packages, object tracking
packages

Characterization of Sensor Performance

= Bandwidth or Frequency

= Delay

= Sensitivity

" Cross-sensitivity (cross-talk)

" Error (accuracy)
= Deterministic errors (modeling/calibration possible)

= Random errors

= Weight, power consumption, ...

Sensors

Motor/wheel encoders
Compass

Gyroscope
Accelerometers

GPS

Range sensors
Cameras

Motor/wheel encoders

= Device for measuring angular motion
= Often used in (wheeled) robots

= Qutput: position, speed (possibly integrate
speed to get odometry)

Motor/wheel encoders

= Working principle:
= Regular: counts the number of transitions but
cannot tell direction

= Quadrature: uses two sensors in quadrature phase-
shift, ordering of rising edge tells direction

= Sometimes: Reference pulse (or zero switch)

State ChA Chb

Sy High Low

S5 High High

L Sy Low High

Sy Low Low

Magnetic Compass

Measures earth’s magnetic field
Inclination angle approx. 60deg (Germany)
Does not work indoor/affected by metal

Alternative: gyro compass (spinning wheael,
aligns with earth’s rotational poles, for ships)

Morth Pole

Magnetic Declination

= Angle between magnetic north and true north
= Varies over time

" Good news ;-): by 2050, magnetic declination
in central Europe WI|| be Zero

Magnetic Compass

= Sensing principle: Hall sensor
= Construction: 3 orthogonal sensors

Directional
Magnetic
Field (H)

"._\‘- I"'_,- [T s
sl -~
"-_-"" i
= N =
RN .

Constant Hall
Current Flow + | vol tage
f WV
P-type
Semiconducto

Hall Elemen

DC Supply

Mechanical Gyroscope

= Measures orientation (standard gyro) or angular
velocity (rate gyro, needs integration for angle)

= Spinning wheel mounted in a gimbal device (can move
freely in 3 dimensions)

= Wheel keeps orientation due to angular momentum
(standard gyro)

Modern Gyroscopes

= Vibrating structure gyroscope (MEMS)

= Based on Coriolis effect

= “Vibration keeps its direction under rotation”

* Implementations: Tuning fork, vibrating wheels, ...
= Ring laser / fibre optic gyro

* |nterference between counter-propagating beams in
response to rotation

Mirror

Laser excitation

e" Beam sampling

ddddd

Accelerometer

= Measures all external forces acting upon them
(including gravity)

= Acts like a spring-damper system

= To obtain inertial acceleration (due to motion
alone), gravity must be subtracted

29 19 0 19 29
Lo il

I

Sensitivity axis

Fig. 1. Schematic structure of an accelerometer

MEMS Accelerometers

"= Micro Electro-Mechanical Systems (MEMS)

= Spring-like structure with a proof mass

= Damping results from residual gas

" Implementations: capacitive, piezoelectric, ...

=y

Aol
3
=
==
—
L —
-
l l -

/l

Bes =
| — .
"

Inertial Measurement Unit

= 3-axes MEMS gyroscope
= Provides angular velocity
" Integrate for angular position

= Problem: Drifts slowly over time (e.g., 1deg/hour),
called the bias

= 3-axes MEMS accelerometer

" Provides accelerations (including gravity)

= Can we use these sensors to estimate our
position?

Inertial Measurement Unit

IMU: Device that uses gyroscopes and
accelerometers to estimate (relative) position,
orientation, velocity and accelerations

Integrate angular velocities to obtain absolute
orientation

Subtract gravity from acceleration
Integrate acceleration to linear velocities
Integrate linear velocities to position

Note: All IMUs are subject to drift (position is
integrated twice!), needs external reference

Example: AscTec Autopilot Board

Compass

connector 4

LL Serial 0

A o o o o

rrrrr

»eLL

LL Serial 1/ HL Serial 1/
R/C receiver || HL JTAG GPS
HL Serial 0
l: pressure sensor 3: yaw gyro

2: acceleration sensor 4: nick gyro
5: roll gyro

GPS

GPS C§> 7
satellites * S
& ’ g
\ I /
\ I

/ -

monttor
stations

master
stiations

;i uploading
station

GPS

24+ satellites, 12 hour orbit, 20.190 km height

6 orbital planes, 4+ satellites per orbit, 60deg
distance

Satellite transmits orbital location + time
50bits/s, msg has 1500 bits = 12.5 minutes

GPS

= Position from pseudorange
= Requires measurements of 4 different satellites
= Low accuracy (3-15m) but absolute

= Position from pseudorange + phase shift
= Very precise (1mm) but highly ambiguous

= Requires reference receiver (RTK/dGPS) to remove
ambiguities

Range Sensors

Sonar
Laser range finder
Time of flight camera

Structured light
(will be covered later)

Range Sensors

Emit signal to determine distance along a ray

Make use of propagation speed of
ultrasound/light

Traveled distance is given by d =c¢ - ¢
Sound speed: 340m/s
Light speed: 300.000km/s

Ultrasonic Range Sensors

= Range between 12cm and 5m

= Opening angle around 20 to 40 degrees
= Soft surfaces absorb sound

= Reflections = ghosts

= Lightweight and cheap

35 1N a cone (approx.)
120 to 40 degrees oe e Measurement cone
h
ere for 30)

Amplimde [4E]

Laser Scanner

= Measures phase shift

= Pro: High precision, wide field of view, safety
approved for collision detection

= Con: Relatively expensive + heavy

Transmitter

’4* lambda a‘

At
7/
q /\ . /\\ . Phase
i ri -
- >

Amplitude [V]

L J ») ; WTarget U ~ v y

Phase Transmitted Beam
Measurement| oo --- Reflected Beam

Laser Scanner

Reflected light

= 2D scanners

Reflected light
2D/ Laser
=
Detector
= 3D
scanners

Laser Emitters

(Groups of 16)
Housing
(Entire unit spins
at 5-15 Hz)

Laser Receivers ™ Motor
(Groupsof 32) Housing

Camera

= Let’s design a camera

" |[dea 1: put a piece of film in front of an object
"= Do we get a reasonable image?

object @ film

= Ado
= T

Camera

a barrier to block off most of the rays

nis reduces blurring

. T
" H

ne opening known as the aperture
ow does this transform the image?

object @ barrier film

Camera Lens

= A lens focuses light onto the film

= Rays passing through the optical center are not
deviated

object @ Lens film

Camera Lens

= A lens focuses light onto the film
= Rays passing through the center are not deviated

= All rays parallel to the Optical Axis converge at the
Focal Point

object @ Le:ns

Focal Point

Optical Axis

Focal Length: f

Camera Lens

" There is a specific distance at which objects are
“in focus”

= Other points project to a “blur circle” in the
Image

object @ Lens film

Optical Axis

“Circle of Confusion”
4 or
~ "Blur Circle”

Lens Distortions

= Radial distortion of the image

= Caused by imperfect lenses

= Deviations are most noticeable for rays that pass
through the edge of the lens

Lens Distortions

= Radial distortion of the image
= Caused by imperfect lenses

= Deviations are most noticeable for rays that pass
through the edge of the lens

= Typically compensated with a low-order
polynomial

~

Te = xo(1 + K72 + Korh)

~,

Ye — yt:(l T !{1?"3 T ’%27“;4:)

Digital Cameras

Vignetting

De-bayering
Rolling shutter and motion blur
Compression (JPG)

Noise

Dead Reckoning and Odometry

= Estimating the position x; based on the issued
controls (or IMU) readings u,

" |[ntegrated over time x; = f(x;_1, W)

Exercise Sheet 1

Odometry sensor on Ardrone is an integrated package

Sensors
= Down-looking camera to estimate motion
= Ultrasonic sensor to get height
= 3-axes gyroscopes
= 3-axes accelerometer
IMU readings u;
= Horizontal speed (vx/vy)
" Height (z)
= Roll, Pitch, Yaw
Integrate these values to get robot pose x; = f(xt_l, ut)
= Position (x/y/z)
= QOrientation (e.g., r/p/y)

Summary

" Linear Algebra
= 2D/3D Geometry
= Sensors

