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Organization: Lecture 

 Student request to change lecture time to 
Tuesday afternoon due to time conflicts with 
other course 

 Problem: At least 3 students who are enrolled 
for this lecture have time Tuesday morning but 
not on Tuesday afternoon 

 Therefore: No change 

 Lectures are important, please choose which 
course to follow 

 Note: Still students on the waiting list 



Organization: Lab Course 

 Robot lab: room 02.09.38 (around the corner) 

 Exercises: room 02.09.23 (here) 

 You have to sign up for a team before May 1st 
(team list in student lab) 

 After May 1st, remaining places will be given to 
students on waiting list 

 This Thursday: Visual navigation demo at 2pm 
in the student lab (in conjunction with TUM 
Girls’ Day) 



Today’s Agenda 

 Linear algebra 

 2D and 3D geometry 

 Sensors 

 



Vectors 

 Vector and its coordinates 

 

 

 

 

 Vectors represent points 
in an n-dimensional space 

 

 

 

 

 

 



Vector Operations 

 Scalar multiplication 

 Addition/subtraction 

 Length 

 Normalized vector 

 Dot product 

 Cross product 
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Vector Operations 

 Scalar multiplication 

 Addition/subtraction 

 Length 

 Normalized vector 

 Dot product 

 Cross product 
 



Cross Product 

 Definition 

 

 

 Matrix notation for the cross product 

 

 

 

 Verify that  



Matrices 

 Rectangular array of numbers 

 

 

 

 

 

 First index refers to row 

 Second index refers to column 

 

rows   columns 



Matrices 

 Column vectors of a matrix 

 

 

 

 

 

 

 Geometric interpretation: for example, column 
vectors can form basis of a coordinate system 



Matrices 

 Row vectors of a matrix 



Matrices 

 Square matrix 

 Diagonal matrix 

 Upper and lower triangular matrix 

 Symmetric matrix 

 Skew-symmetric matrix 

 (Semi-)positive definite matrix 

 Invertible matrix 

 Orthonormal matrix 

 Matrix rank 
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Matrix Operations 

 Scalar multiplication 
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 Transposition 
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Matrix-Vector Multiplication 

 Definition 

 

 

 
 

 

 Geometric interpretation: 
a linear combination of the columns of X scaled 
by the coefficients of b 

column vectors 



Matrix-Vector Multiplication 

 

 

 

 
 

 

 Geometric interpretation: 
A linear combination of the columns of A 
scaled by the coefficients of b  
 coordinate transformation 

column vectors 



Matrix Operations 

 Scalar multiplication 

 Addition/subtraction 

 Transposition 

 Matrix-vector multiplication 

 Matrix-matrix multiplication 

 Inversion 

 



Matrix-Matrix Multiplication 

 Operator 

 Definition 

 

 

 Interpretation: transformation of coordinate 
systems 

 Can be used to concatenate transforms 

 



Matrix-Matrix Multiplication 

 Not commutative (in general) 

 

 Associative 

 

 Transpose 

 



Matrix Operations 

 Scalar multiplication 

 Addition/subtraction 

 Transposition 

 Matrix-vector multiplication 

 Matrix-matrix multiplication 

 Inversion 

 



Matrix Inversion 

 If    is a square matrix of full rank, then there is 
a unique matrix                 such that               .  

 Different ways to compute, e.g., Gauss-Jordan 
elimination, LU decomposition, … 

 When A is orthonormal, then 

 



Recap: Linear Algebra 

 Vectors 

 Matrices 

 Operators 

 

 Now let’s apply these concepts to 2D+3D 
geometry 



Geometric Primitives in 2D 

 2D point 

 

 

 Augmented vector 

 

 

 Homogeneous coordinates 

 



Geometric Primitives in 2D 

 Homogeneous vectors that differ only be scale 
represent the same 2D point 

 Convert back to inhomogeneous coordinates 
by dividing through last element 

 

 

 

 Points with             are called points at infinity 
or ideal points 

 



Geometric Primitives in 2D 

 2D line 

 

 2D line equation 



Geometric Primitives in 2D 

 Normalized line equation vector 
 
 
where     is the distance of the line to the origin 

with 



Geometric Primitives in 2D 

 Polar coordinates of a line:  
(e.g., used in Hough transform for finding lines) 



Geometric Primitives in 2D 

 Line joining two points 

 

 Intersection point of two lines 

 

 



Geometric Primitives in 3D 

 3D point 
(same as before) 

 
 Augmented vector 

 
 

 Homogeneous coordinates 

 



Geometric Primitives in 3D 

 3D plane 

 3D plane equation 

 

 Normalized plane 
with unit normal vector 
 
(              ) 
and distance d 

 

 



Geometric Primitives in 3D 

 3D line 
through points 

 

 Infinite line: 

 

 Line segment joining        : 



2D Planar Transformations 



2D Transformations 

 Translation 
 
 
 
 
 
 
 
where    is the identity matrix (2x2) 
and     is the zero vector  



2D Transformations 

 Rotation + translation (2D rigid body motion, or 
2D Euclidean transformation) 
 
                                    or 
 
 
where                                           
 
is an orthonormal rotation matrix, i.e.,  

 Distances (and angles) are preserved 



2D Transformations 

 Scaled rotation/similarity transform 
 
 
                                   or 
 

 

 Preserves angles between lines 



2D Transformations 

 Affine transform 
 
 
 
 

 

 Parallel lines remain parallel 



2D Transformations 

 Projective/perspective transform 
 
 
 
 

 Note that     is homogeneous (only defined up 
to scale) 

 Resulting coordinates are homogeneous 

 Parallel lines remain parallel 



2D Transformations 

 



3D Transformations 

 Translation 

 

 

 Euclidean transform (translation + rotation), 
(also called the Special Euclidean group SE(3)) 

 

 

 Scaled rotation, affine transform, projective 
transform… 

 

 



3D Transformations 

 



3D Rotations 

 Rotation matrix  
(also called the special orientation group SO(3)) 

 

 Euler angles 

 Axis/angle 

 Unit quaternion 



Rotation Matrix 

 Orthonormal 3x3 matrix 

 

 

 

 

 Column vectors correspond to coordinate axes 

 Special orientation group 

 Main disadvantage: Over-parameterized (9 
parameters instead of 3) 

 



Euler Angles 

 Product of 3 consecutive rotations 

 Roll-pitch-yaw convention is very common in 
aerial navigation (DIN 9300) 

 

 



Euler Angles 

 Yaw   , Pitch   ,  Roll     to rotation matrix 

 

 

 

 

 Rotation matrix to Yaw-Pitch-Roll 



Euler Angles 

 Advantage: 

 Minimal representation (3 parameters) 

 Easy interpretation 

 Disadvantages: 

 Many “alternative” Euler representations exist 
(XYZ, ZXZ, ZYX, …) 

 Singularities (gimbal lock) 



Gimbal Lock 

 When the axes align, one degree-of-freedom 
(DOF) is lost… 



Axis/Angle 

 Represent rotation by 

 rotation axis      and 

 rotation angle 

 4 parameters 

 3 parameters                 

 length is rotation angle 

 also called the angular velocity 

 minimal but not unique (why?) 



Derivation of Angular Velocities  

 Assume we have a rotational motion in SO(3) 

 

 As this rotations are orthonormal matrices, we 
have 

 Now take the derivative on both sides (w.r.t. t) 

 

 

 Thus,                   must be skew-symmetric, i.e., 



Derivation of Angular Velocities  

Linear ordinary differential equation (ODE) 

 

 

 

 Solution of this ODE 

 

 Conversions 

 



Derivation of Angular Velocities  

Linear ordinary differential equation (ODE) 

 

 

 

 The space of all skew-symmetric matrices is 
called the tangent space  

 

 Space of all rotations in 3D (Special orientation group) 



Conversion 

 Rodriguez’ formula 

 

 

 Inverse 
 
 
 
 
see: An Invitation to 3D Vision, Y. Ma, S. Soatto, J. Kosecka, S. Sastry, Chapter 2 
(available online) 

 

 

 

 



Exponential Twist 

 The exponential map can be generalized to 
Euclidean transformations (incl. translations) 

 Tangent space   

 (Special) Euclidean group 
(group of all Euclidean transforms) 

 Rigid body velocity 

 

 

 



Exponential Twist 

 Convert to homogeneous coordinates 

 

 

 

 

 Exponential map between se(3) and SE(3) 

 

 There are also direct formulas (similar to 
Rodriguez) 



Unit Quaternions 

 Quaternion 

 Unit quaternions have                  

 Opposite sign quaternions represent the same 
rotation 

 Otherwise unique 



Unit Quaternions 

 Advantage: multiplication and inversion 
operations are really fast 

 Quaternion-Quaternion Multiplication 

 

 

 Inverse (flip sign of v or w) 



Unit Quaternions 

 Quaternion-Vector multiplication (rotate point 
p with rotation q) 
 
 
with 

 Relation to Axis/Angle representation 



Spherical Linear Interpolation (SLERP) 

 Useful for interpolating between two rotations 



3D to 2D Projections 

 Orthographic projections 

 

 Perspective projections 



3D to 2D Perspective Projection 

 



3D to 2D Perspective Projection 



3D to 2D Perspective Projection 

 3D point     (in the camera frame) 

 2D point     (on the image plane) 

 Pin-hole camera model 

 
 

 

 Remember,     is homogeneous, need to 
normalize 



Camera Intrinsics 

 So far, 2D point is given in meters on image 
plane 

 But:  we want 2D point be measured in pixels 
(as the sensor does) 

 

 

 

 



Camera Intrinsics 

 Need to apply some scaling/offset  

 

 

 

 

 Focal length  

 Camera center 

 Skew 



Camera Extrinsics 

 Assume       is given in world coordinates 

 Transform from world to camera (also called 
the camera extrinsics) 

 

 

 Full camera matrix 

 



Recap: 2D/3D Geometry 

 points, lines, planes 

 2D and 3D transformations 

 Different representations for 3D orientations 

 Choice depends on application 

 Which representations do you remember? 

 3D to 2D perspective projections 

 

 You really have to know 2D/3D transformations 
by heart (read Szeliski, Chapter 2) 



C++ Libraries for Lin. Alg./Geometry 

 Many C++ libraries exist for linear algebra and 
3D geometry 

 Typically conversion necessary 

 Examples: 
 C arrays, std::vector (no linear alg. functions) 

 gsl (gnu scientific library, many functions, plain C) 

 boost::array (used by ROS messages) 

 Bullet library (3D geometry, used by ROS tf) 

 Eigen (both linear algebra and geometry, my 
recommendation) 



Example: Transform Trees in ROS 

 TF package represents 3D transforms between 
rigid bodies in the scene as a tree 

map 

base_link 

person 

camera 

rotor1 rotor2 



Example: Video from PR2 



Sensors 

 



Classification of Sensors 

 What: 
 Proprioceptive sensors 

 Measure values internally to the system (robot) 
 Examples: battery status, motor speed, accelerations, … 

 Exteroceptive sensors 
 Provide information about the environment 
 Examples: compass, distance to objects, … 

 How: 
 Passive sensors 

 Measure energy coming from the environment 

 Active sensors 
 Emit their proper energy and measure the reaction 
 Better performance, but influence on environment 

 



Classification of Sensors 

 Tactile sensors 
Contact switches, bumpers, proximity sensors, pressure 

 Wheel/motor sensors 
Potentiometers, brush/optical/magnetic/inductive/capacitive 
encoders, current sensors 

 Heading sensors 
Compass, infrared, inclinometers, gyroscopes, accelerometers 

 Ground-based beacons 
GPS, optical or RF beacons, reflective beacons 

 Active ranging 
Ultrasonic sensor, laser rangefinder, optical triangulation, structured 
light 

 Motion/speed sensors 
Doppler radar, Doppler sound 

 Vision-based sensors 
CCD/CMOS cameras, visual servoing packages, object tracking 
packages 



Example: Ardrone Sensors 

 Tactile sensors 
Contact switches, bumpers, proximity sensors, pressure 

 Wheel/motor sensors 
Potentiometers, brush/optical/magnetic/inductive/capacitive 
encoders, current sensors 

 Heading sensors 
Compass, infrared, inclinometers, gyroscopes, accelerometers 

 Ground-based beacons 
GPS, optical or RF beacons, reflective beacons 

 Active ranging 
Ultrasonic sensor, laser rangefinder, optical triangulation, structured 
light 

 Motion/speed sensors 
Doppler radar, Doppler sound 

 Vision-based sensors 
CCD/CMOS cameras, visual servoing packages, object tracking 
packages 



Characterization of Sensor Performance 

 Bandwidth or Frequency 

 Delay 

 Sensitivity 

 Cross-sensitivity (cross-talk) 

 Error (accuracy) 

 Deterministic errors (modeling/calibration possible) 

 Random errors 

 Weight, power consumption, … 

 

 



Sensors 

 Motor/wheel encoders 

 Compass 

 Gyroscope 

 Accelerometers 

 GPS 

 Range sensors 

 Cameras 



Motor/wheel encoders 

 Device for measuring angular motion 

 Often used in (wheeled) robots 

 Output: position, speed (possibly integrate 
speed to get odometry) 



Motor/wheel encoders 

 Working principle:  

 Regular: counts the number of transitions but 
cannot tell direction 

 Quadrature: uses two sensors in quadrature phase-
shift, ordering of rising edge tells direction 

 Sometimes: Reference pulse (or zero switch)  



Magnetic Compass 

 Measures earth’s magnetic field 

 Inclination angle approx. 60deg (Germany) 

 Does not work indoor/affected by metal 

 Alternative: gyro compass (spinning wheel, 
aligns with earth’s rotational poles, for ships) 

 



Magnetic Declination 

 Angle between magnetic north and true north 

 Varies over time 

 Good news ;-): by 2050, magnetic declination 
in central Europe will be zero  



Magnetic Compass 

 Sensing principle: Hall sensor 

 Construction: 3 orthogonal sensors 

 

 



Mechanical Gyroscope 

 Measures orientation (standard gyro) or angular 
velocity (rate gyro, needs integration for angle) 

 Spinning wheel mounted in a gimbal device (can move 
freely in 3 dimensions) 

 Wheel keeps orientation due to angular momentum 
(standard gyro) 



Modern Gyroscopes 

 Vibrating structure gyroscope (MEMS) 

 Based on Coriolis effect 

 “Vibration keeps its direction under rotation” 

 Implementations: Tuning fork, vibrating wheels, … 

 Ring laser / fibre optic gyro 

 Interference between counter-propagating beams in 
response to rotation 



Accelerometer 

 Measures all external forces acting upon them 
(including gravity) 

 Acts like a spring-damper system 

 To obtain inertial acceleration (due to motion 
alone), gravity must be subtracted 

 



MEMS Accelerometers 

 Micro Electro-Mechanical Systems (MEMS) 

 Spring-like structure with a proof mass 

 Damping results from residual gas 

 Implementations: capacitive, piezoelectric, … 



Inertial Measurement Unit 

 3-axes MEMS gyroscope  

 Provides angular velocity 

 Integrate for angular position 

 Problem: Drifts slowly over time (e.g., 1deg/hour), 
called the bias 

 3-axes MEMS accelerometer 

 Provides accelerations (including gravity) 

 Can we use these sensors to estimate our 
position? 



Inertial Measurement Unit 

 IMU: Device that uses gyroscopes and 
accelerometers to estimate (relative) position, 
orientation, velocity and accelerations 

 Integrate angular velocities to obtain absolute 
orientation 

 Subtract gravity from acceleration 

 Integrate acceleration to linear velocities 

 Integrate linear velocities to position 

 Note: All IMUs are subject to drift (position is 
integrated twice!), needs external reference 

 



Example: AscTec Autopilot Board 

 



GPS 

 



GPS 

 24+ satellites, 12 hour orbit, 20.190 km height 

 6 orbital planes, 4+ satellites per orbit, 60deg 
distance 

 

 

 

 

 Satellite transmits orbital location + time 

 50bits/s, msg has 1500 bits  12.5 minutes 



GPS 

 Position from pseudorange 

 Requires measurements of 4 different satellites 

 Low accuracy (3-15m) but absolute 

 Position from pseudorange + phase shift 

 Very precise (1mm) but highly ambiguous 

 Requires reference receiver (RTK/dGPS) to remove 
ambiguities 

 



Range Sensors 

 Sonar 

 

 Laser range finder 

 

 Time of flight camera 

 

 Structured light 
(will be covered later) 



Range Sensors 

 Emit signal to determine distance along a ray 

 Make use of propagation speed of 
ultrasound/light 

 Traveled distance is given by 

 Sound speed: 340m/s 

 Light speed: 300.000km/s 

 



Ultrasonic Range Sensors 

 Range between 12cm and 5m 

 Opening angle around 20 to 40 degrees 

 Soft surfaces absorb sound 

 Reflections  ghosts 

 Lightweight and cheap 

 



Laser Scanner 

 Measures phase shift 

 Pro: High precision, wide field of view, safety 
approved for collision detection 

 Con: Relatively expensive + heavy 



Laser Scanner 

 2D scanners 

 

 

 

 3D scanners 



Camera 

 Let’s design a camera 

 Idea 1:  put a piece of film in front of an object 

 Do we get a reasonable image? 



Camera 

 Add a barrier to block off most of the rays 

 This reduces blurring 

 The opening known as the aperture 

 How does this transform the image? 

 



Camera Lens 

 A lens focuses light onto the film  

 Rays passing through the optical center are not 
deviated  

 



Camera Lens 

 A lens focuses light onto the film  

 Rays passing through the center are not deviated  

 All rays parallel to the Optical Axis converge at the 
Focal Point  

 



Camera Lens 

 There is a specific distance at which objects are 
“in focus”  

 Other points project to a “blur circle” in the 
image  

 



Lens Distortions 

 Radial distortion of the image 

 Caused by imperfect lenses 

 Deviations are most noticeable for rays that pass 
through the edge of the lens 

 



Lens Distortions 

 Radial distortion of the image 

 Caused by imperfect lenses 

 Deviations are most noticeable for rays that pass 
through the edge of the lens 

 Typically compensated with a low-order 
polynomial 

 



Digital Cameras 

 Vignetting 

 De-bayering 

 Rolling shutter and motion blur 

 Compression (JPG) 

 Noise 

 



Dead Reckoning and Odometry 

 Estimating the position      based on the issued 
controls (or IMU) readings 

 Integrated over time 



Exercise Sheet 1 

 Odometry sensor on Ardrone is an integrated package 
 Sensors 

 Down-looking camera to estimate motion 
 Ultrasonic sensor to get height 
 3-axes gyroscopes 
 3-axes accelerometer 

 IMU readings 
 Horizontal speed (vx/vy) 
 Height (z) 
 Roll, Pitch, Yaw 

 Integrate these values to get robot pose 
 Position (x/y/z) 
 Orientation (e.g., r/p/y) 

 



Summary 

 Linear Algebra 

 2D/3D Geometry 

 Sensors 

 

 


