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Conference Paper 

Conference Paper 

Conference Paper 

Conference Paper 

… 

Journal Article 

ICRA, IROS, CVPR,  
ICCV, NIPS, … 

Journal Article 
PhD Thesis 

T-RO, AURO,  
RAS, PAMI, … 



Guest Talks 

 An Evaluation of the RGB-D SLAM System (F. 
Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, 
W. Burgard), In Proc. of the IEEE Int. Conf. on 
Robotics and Automation (ICRA), 2012.  

 Real-Time Visual Odometry from Dense RGB-D 
Images (F. Steinbruecker, J. Sturm, D. Cremers), In 
Workshop on Live Dense Reconstruction with 
Moving Cameras at the Intl. Conf. on Computer 
Vision (ICCV), 2011. 

 Camera-Based Navigation of a Low-Cost 
Quadrocopter (J. Engel, J. Sturm, D. Cremers), 
Submitted to International Conference on Robotics 
and Systems (IROS), under review. 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 3 



Perception 

 Perception and models are strongly linked 
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Perception 

 Perception and models are strongly linked 

 Example: Human Perception 
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more on http://michaelbach.de/ot/index.html 
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Models in Human Perception 

 Count the black dots 
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State Estimation 

 Cannot observe world state directly 

 Need to estimate the world state 

 Robot maintains belief about world state 

 Update belief according to observations and 
actions using models 

 Sensor observations + sensor model 

 Executed actions + action/motion model 
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State Estimation 

What parts of the world state are (most) relevant 
for a flying robot? 
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State Estimation 

What parts of the world state are (most) relevant 
for a flying robot? 

 Position 

 Velocity 

 Obstacles 

 Map 

 Positions and intentions of other 
robots/humans 

 … 
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Sensor 
Model 

Models and State Estimation 
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Perception Plan Execution 

Sensing Acting 

Physical 
World 

Belief /  
State Estimate 

Motion 
Model 



(Deterministic) Sensor Model 

 Robot perceives the environment through its 
sensors 

 
 

 

 

 Goal: Infer the state of the world from sensor 
readings 

sensor 
reading 

world 
state 

observation 
function 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 12 



(Deterministic) Motion Model 

 Robot executes an action  
(e.g., move forward at 1m/s) 

 

 Update belief state according to motion model 
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current state previous 
state 

transition 
function 

executed 
action 



Probabilistic Robotics 

 Sensor observations are noisy, partial, 
potentially missing (why?) 

 All models are partially wrong and incomplete 
(why?) 

 Usually we have prior knowledge (why?) 
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Probabilistic Robotics 

 Probabilistic sensor and motion models 

 

 Integrate information from multiple sensors 
(multi-modal) 

 
 Integrate information over time (filtering) 
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Agenda for Today 

 Motivation  

 Bayesian Probability Theory 

 Bayes Filter 

 Normal Distribution 

 Kalman Filter 
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The Axioms of Probability Theory 
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Notation:            refers to the probability that 
proposition     holds 

 

1.   

 

2.   

 

3.   



A Closer Look at Axiom 3 
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Discrete Random Variables 

     denotes a random variable 

     can take on a countable number of values  
in  

                    is the probability that the random 
variable      takes on value 

         is called the probability mass function 

 

 Example:  
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Continuous Random Variables 

      takes on continuous values 

                   or         is called the probability 
density function (PDF) 

 

 

 Example 
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Proper Distributions Sum To One 

 Discrete case 

 

 

 

 Continuous case 
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Joint and Conditional Probabilities 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 22 

   

 

 If      and     are independent then 

 

                is the probability of x given y 

 

 If      and     are independent then 



Conditional Independence 
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 Definition of conditional independence 

 

 

 Equivalent to 

 

 

 Note: this does not necessarily mean that 



Marginalization 

 Discrete case 

 

 

 

 Continuous case 
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Example: Marginalization 
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Law of Total Probability 

 Discrete case 

 

 

 

 Continuous case 
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 Discrete case 

 

 Continuous case 

 

 The expected value is the weighted average of 
all values a random variable can take on. 

 Expectation is a linear operator 

Expected Value of a Random Variable 
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Covariance of a Random Variable 

 Measures the squared expected deviation from 
the mean 
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The State Estimation Problem 

We want to estimate the world state 

 From sensor measurements 

 and controls (or odometry readings) 

 

We need to model the relationship between 
these random variables, i.e., 
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Causal vs. Diagnostic Reasoning 

               is diagnostic 

               is causal 

 Often causal knowledge is easier to obtain 

 Bayes rule allows us to use causal knowledge: 
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observation likelihood prior on world state 

prior on sensor observations 



Bayes Formula 
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 Direct computation of           can be difficult 

 Idea: Compute improper distribution, 
normalize afterwards 

 Step 1: 

 

 Step 2:  

 

 Step 3: 

 

 

Normalization 
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(Law of total  
probability) 



Bayes Rule with Background Knowledge 
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Example: Sensor Measurement 

 Quadrocopter seeks the landing zone 

 Landing zone is marked with many bright lamps 

 Quadrocopter has a brightness sensor 
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Example: Sensor Measurement 

 Binary sensor 

 Binary world state 

 Sensor model 

 

 Prior on world state 

 Assume: Robot observes light, i.e.,  

 What is the probability  
that the robot is above the landing zone? 
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Example: Sensor Measurement 

 Sensor model 

 

 Prior on world state 

 Probability after observation (using Bayes) 
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Example: Sensor Measurement 

 Sensor model 

 

 Prior on world state 

 Probability after observation (using Bayes) 
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Combining Evidence 

 Suppose our robot obtains another  
observation      (either from the same or a 
different sensor) 

 How can we integrate this new information? 

 More generally, how can we estimate 
                          ? 
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Combining Evidence 

 Suppose our robot obtains another  
observation      (either from the same or a 
different sensor) 

 How can we integrate this new information? 

 More generally, how can we estimate 
                          ? 

 Bayes formula gives us: 
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Recursive Bayesian Updates 
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Recursive Bayesian Updates 
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 Markov Assumption: 
    is independent of                     if we know 



Recursive Bayesian Updates 
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 Markov Assumption: 
    is independent of                     if we know 



Example: Second Measurement 

 Sensor model 

 

 Previous estimate 

 Assume robot does not observe marker 

 What is the probability of being home? 
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Example: Second Measurement 

 Sensor model 

 

 Previous estimate 

 Assume robot does not observe marker 

 What is the probability of being home? 
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The second observation lowers the probability 
that the robot is above the landing zone! 



Actions (Motions) 

 Often the world is dynamic since 

 actions carried out by the robot… 

 actions carried out by other agents… 

 or just time passing by… 

…change the world 

 

 How can we incorporate actions? 
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Typical Actions 

 Quadrocopter accelerates by changing the 
speed of its motors 

 Position also changes when quadrocopter does 
“nothing” (and drifts..) 

 

 Actions are never carried out with absolute 
certainty 

 In contrast to measurements, actions generally 
increase the uncertainty of the state estimate 
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Action Models 

 To incorporate the outcome of an action     into 
the current state estimate (“belief”), we use 
the conditional pdf 

 

 

 This term specifies the probability that 
executing the action u in state x will lead to 
state x’    
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Example: Take-Off 

 Action: 

 World state: 
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ground 

air 

0.1 

0.99 

0.01 0.9 



Integrating the Outcome of Actions 

 Discrete case 

 

 

 Continuous case 
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Example: Take-Off 
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 Prior belief on robot state: 
(robot is located on the ground) 

 Robot executes “take-off” action 

 What is the robot’s belief after one time step? 

 

 
 

 

 Question: What is the probability at t=2? 



Markov Chain 

 A Markov chain is a stochastic process where, 
given the present state, the past and the future 
states are independent 
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Markov Assumption 

 Observations depend only on current state 

 

 Current state depends only on previous state 
and current action 

 

 Underlying assumptions 

 Static world 

 Independent noise 

 Perfect model, no approximation errors 
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Bayes Filter 
 Given: 

 Stream of observations    and actions    : 

 

 Sensor model 

 Action model 

 Prior probability of the system state 

 Wanted: 

 Estimate of the state     of the dynamic system 

 Posterior of the state is also called belief 
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Bayes Filter 

For each time step, do 

1. Apply motion model 
 
 

 

2. Apply sensor model 

 

 

Note: Bayes filters also work on continuous state 
spaces (replace sum by integral) 
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Example: Localization 

 Discrete state  

 Belief distribution can be represented as a grid 

 This is also called a histogram filter 
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P = 1.0 

P = 0.0 



Example: Localization 

 Action 

 Robot can move one cell in each time step 

 Actions are not perfectly executed 
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Example: Localization 

 Action 

 Robot can move one cell in each time step 

 Actions are not perfectly executed 

 Example: move east  
 
 
 
60% success rate, 10% to stay/move too far/ 
move one up/move one down 
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Example: Localization 

 Observation 

 One (special) location has a marker 

 Marker is sometimes also detected in 
neighboring cells 
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Example: Localization 

 Let’s start a simulation run… (shades are hand-
drawn, not exact!) 
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Example: Localization 

 t=0 

 Prior distribution (initial belief) 

 Assume we know the initial location (if not, we 
could initialize with a uniform prior) 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 60 



Example: Localization 

 t=1, u=east, z=no-marker 

 Bayes filter step 1: Apply motion model  
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Example: Localization 

 t=1, u=east, z=no-marker 

 Bayes filter step 2: Apply observation model  
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Example: Localization 

 t=2, u=east, z=marker 

 Bayes filter step 2: Apply motion model  
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Example: Localization 

 t=2, u=east, z=marker 

 Bayes filter step 1: Apply observation model  
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Bayes Filter - Summary 

 Markov assumption allows efficient recursive 
Bayesian updates of the belief distribution 

 Useful tool for estimating the state of a dynamic 
system 

 Bayes filter is the basis of many other filters 
 Kalman filter 

 Particle filter 

 Hidden Markov models 

 Dynamic Bayesian networks 

 Partially observable Markov decision processes 
(POMDPs) 
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Kalman Filter 

 Bayes filter with continuous states  

 State represented with a normal distribution 

 Developed in the late 1950’s 

 Kalman filter is very efficient (only requires a 
few matrix operations per time step) 

 Applications range from economics, weather 
forecasting, satellite navigation to robotics and 
many more 

 Most relevant Bayes filter variant in practice  
 exercise sheet 2 
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Normal Distribution 

 Univariate normal distribution 
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Normal Distribution 

 Multivariate normal distribution 

 

 

 

 Example: 2-dimensional normal distribution 
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pdf iso lines 
 



Properties of Normal Distributions 

 Linear transformation  remains Gaussian 

 

 

 

 Intersection of two Gaussians  remains 
Gaussian 
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Linear Process Model 

 Consider a time-discrete stochastic process 
(Markov chain) 

 

 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 70 



Linear Process Model 

 Consider a time-discrete stochastic process 

 Represent the estimated state (belief) by a 
Gaussian 
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Linear Process Model 

 Consider a time-discrete stochastic process 

 Represent the estimated state (belief) by a 
Gaussian 

 Assume that the system evolves linearly over 
time, then 
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Linear Process Model 

 Consider a time-discrete stochastic process 

 Represent the estimated state (belief) by a 
Gaussian 

 Assume that the system evolves linearly over 
time and depends linearly on the controls 
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Linear Process Model 

 Consider a time-discrete stochastic process 

 Represent the estimated state (belief) by a 
Gaussian 

 Assume that the system evolves linearly over 
time, depends linearly on the controls, and has 
zero-mean, normally distributed process noise 
 
 
with  
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Linear Observations 

 Further, assume we make observations that 
depend linearly on the state 
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Linear Observations 

 Further, assume we make observations that 
depend linearly on the state and that are 
perturbed by zero-mean, normally distributed 
observation noise 
 
 
with 
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Kalman Filter 

Estimates the state      of a discrete-time 
controlled process that is governed by the linear 
stochastic difference equation 
 

 

and (linear) measurements of the state 
 
 
with                        and  
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Variables and Dimensions 

 State 

 Controls 

 Observations  

 Process equation 

 

 

 Measurement equation 
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Kalman Filter 

 Initial belief is Gaussian 

 

 

 Next state is also Gaussian (linear 
transformation) 

 

 

 Observations are also Gaussian 
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From Bayes Filter to Kalman Filter 

For each time step, do 

1. Apply motion model 
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From Bayes Filter to Kalman Filter 

For each time step, do 

1. Apply motion model 
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From Bayes Filter to Kalman Filter 

For each time step, do 

2. Apply sensor model 
 
 
 
 
 
 

 
with  
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Kalman Filter 

For each time step, do 

1. Apply motion model 
 
 

 

2. Apply sensor model 

 
 
with 
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For the interested readers: 
See Probabilistic Robotics for 
full derivation (Chapter 3) 



Kalman Filter 

 Highly efficient: Polynomial in the 
measurement dimensionality k and state 
dimensionality n: 

 

 

 Optimal for linear Gaussian systems! 

 Most robotics systems are nonlinear! 
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Nonlinear Dynamical Systems 

 Most realistic robotic problems involve 
nonlinear functions 

 Motion function 

 

 

 Observation function 
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Taylor Expansion 

 Solution: Linearize both functions 

 Motion function 

 

 

 

 Observation function 
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Extended Kalman Filter 

For each time step, do 

1. Apply motion model 
 

 
                                           with 

2. Apply sensor model 

 
 

with                                                  and 
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For the interested readers: 
See Probabilistic Robotics for 
full derivation (Chapter 3) 



Example 

 2D case 

 State 

 Odometry 

 Observations of visual marker  
(relative to robot pose) 
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Example 

 Motion Function and its derivative 
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Example 

 Observation Function ( Sheet 2) 
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Example 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 91 

 Dead reckoning (no observations) 

 Large process noise in x+y 



Example 
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 Dead reckoning (no observations) 

 Large process noise in x+y+yaw 



Example 

 Now with observations (limited visibility) 

 Assume robot knows correct starting pose 
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Example 

 What if the initial pose (x+y) is wrong? 
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Example 

 What if the initial pose (x+y+yaw) is wrong? 
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Example 
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 If we are aware of a bad initial guess, we set 
the initial sigma to a large value (large 
uncertainty) 



Example 
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Summary 

 Observations and actions are inherently noisy 

 Knowledge about state is inherently uncertain 

 Probability theory 

 Probabilistic sensor and motion models 

 Bayes Filter, Histogram Filter, Kalman Filter, 
Examples 
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