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Organization 

 Next week: Three scientific guest talks 

 Recent research results from our group 
(2011/12) 
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R
esearch

 

Conference Paper 

Conference Paper 

Conference Paper 

Conference Paper 

… 

Journal Article 

ICRA, IROS, CVPR,  
ICCV, NIPS, … 

Journal Article 
PhD Thesis 

T-RO, AURO,  
RAS, PAMI, … 



Guest Talks 

 An Evaluation of the RGB-D SLAM System (F. 
Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, 
W. Burgard), In Proc. of the IEEE Int. Conf. on 
Robotics and Automation (ICRA), 2012.  

 Real-Time Visual Odometry from Dense RGB-D 
Images (F. Steinbruecker, J. Sturm, D. Cremers), In 
Workshop on Live Dense Reconstruction with 
Moving Cameras at the Intl. Conf. on Computer 
Vision (ICCV), 2011. 

 Camera-Based Navigation of a Low-Cost 
Quadrocopter (J. Engel, J. Sturm, D. Cremers), 
Submitted to International Conference on Robotics 
and Systems (IROS), under review. 
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Perception 

 Perception and models are strongly linked 
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Perception 

 Perception and models are strongly linked 

 Example: Human Perception 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 5 



more on http://michaelbach.de/ot/index.html 
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Models in Human Perception 

 Count the black dots 
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State Estimation 

 Cannot observe world state directly 

 Need to estimate the world state 

 Robot maintains belief about world state 

 Update belief according to observations and 
actions using models 

 Sensor observations + sensor model 

 Executed actions + action/motion model 

 

 

 
Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 8 



State Estimation 

What parts of the world state are (most) relevant 
for a flying robot? 
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State Estimation 

What parts of the world state are (most) relevant 
for a flying robot? 

 Position 

 Velocity 

 Obstacles 

 Map 

 Positions and intentions of other 
robots/humans 

 … 
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Sensor 
Model 

Models and State Estimation 
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Perception Plan Execution 

Sensing Acting 

Physical 
World 

Belief /  
State Estimate 

Motion 
Model 



(Deterministic) Sensor Model 

 Robot perceives the environment through its 
sensors 

 
 

 

 

 Goal: Infer the state of the world from sensor 
readings 

sensor 
reading 

world 
state 

observation 
function 
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(Deterministic) Motion Model 

 Robot executes an action  
(e.g., move forward at 1m/s) 

 

 Update belief state according to motion model 
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current state previous 
state 

transition 
function 

executed 
action 



Probabilistic Robotics 

 Sensor observations are noisy, partial, 
potentially missing (why?) 

 All models are partially wrong and incomplete 
(why?) 

 Usually we have prior knowledge (why?) 
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Probabilistic Robotics 

 Probabilistic sensor and motion models 

 

 Integrate information from multiple sensors 
(multi-modal) 

 
 Integrate information over time (filtering) 
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Agenda for Today 

 Motivation  

 Bayesian Probability Theory 

 Bayes Filter 

 Normal Distribution 

 Kalman Filter 
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The Axioms of Probability Theory 
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Notation:            refers to the probability that 
proposition     holds 

 

1.   

 

2.   

 

3.   



A Closer Look at Axiom 3 
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Discrete Random Variables 

     denotes a random variable 

     can take on a countable number of values  
in  

                    is the probability that the random 
variable      takes on value 

         is called the probability mass function 

 

 Example:  
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Continuous Random Variables 

      takes on continuous values 

                   or         is called the probability 
density function (PDF) 

 

 

 Example 
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Proper Distributions Sum To One 

 Discrete case 

 

 

 

 Continuous case 
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Joint and Conditional Probabilities 
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   

 

 If      and     are independent then 

 

                is the probability of x given y 

 

 If      and     are independent then 



Conditional Independence 
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 Definition of conditional independence 

 

 

 Equivalent to 

 

 

 Note: this does not necessarily mean that 



Marginalization 

 Discrete case 

 

 

 

 Continuous case 
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Example: Marginalization 
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Law of Total Probability 

 Discrete case 

 

 

 

 Continuous case 
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 Discrete case 

 

 Continuous case 

 

 The expected value is the weighted average of 
all values a random variable can take on. 

 Expectation is a linear operator 

Expected Value of a Random Variable 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 27 



Covariance of a Random Variable 

 Measures the squared expected deviation from 
the mean 
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The State Estimation Problem 

We want to estimate the world state 

 From sensor measurements 

 and controls (or odometry readings) 

 

We need to model the relationship between 
these random variables, i.e., 
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Causal vs. Diagnostic Reasoning 

               is diagnostic 

               is causal 

 Often causal knowledge is easier to obtain 

 Bayes rule allows us to use causal knowledge: 
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observation likelihood prior on world state 

prior on sensor observations 



Bayes Formula 
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 Direct computation of           can be difficult 

 Idea: Compute improper distribution, 
normalize afterwards 

 Step 1: 

 

 Step 2:  

 

 Step 3: 

 

 

Normalization 
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(Law of total  
probability) 



Bayes Rule with Background Knowledge 
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Example: Sensor Measurement 

 Quadrocopter seeks the landing zone 

 Landing zone is marked with many bright lamps 

 Quadrocopter has a brightness sensor 
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Example: Sensor Measurement 

 Binary sensor 

 Binary world state 

 Sensor model 

 

 Prior on world state 

 Assume: Robot observes light, i.e.,  

 What is the probability  
that the robot is above the landing zone? 
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Example: Sensor Measurement 

 Sensor model 

 

 Prior on world state 

 Probability after observation (using Bayes) 
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Example: Sensor Measurement 

 Sensor model 

 

 Prior on world state 

 Probability after observation (using Bayes) 
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Combining Evidence 

 Suppose our robot obtains another  
observation      (either from the same or a 
different sensor) 

 How can we integrate this new information? 

 More generally, how can we estimate 
                          ? 
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Combining Evidence 

 Suppose our robot obtains another  
observation      (either from the same or a 
different sensor) 

 How can we integrate this new information? 

 More generally, how can we estimate 
                          ? 

 Bayes formula gives us: 
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Recursive Bayesian Updates 
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Recursive Bayesian Updates 
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 Markov Assumption: 
    is independent of                     if we know 



Recursive Bayesian Updates 
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 Markov Assumption: 
    is independent of                     if we know 



Example: Second Measurement 

 Sensor model 

 

 Previous estimate 

 Assume robot does not observe marker 

 What is the probability of being home? 
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Example: Second Measurement 

 Sensor model 

 

 Previous estimate 

 Assume robot does not observe marker 

 What is the probability of being home? 
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The second observation lowers the probability 
that the robot is above the landing zone! 



Actions (Motions) 

 Often the world is dynamic since 

 actions carried out by the robot… 

 actions carried out by other agents… 

 or just time passing by… 

…change the world 

 

 How can we incorporate actions? 
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Typical Actions 

 Quadrocopter accelerates by changing the 
speed of its motors 

 Position also changes when quadrocopter does 
“nothing” (and drifts..) 

 

 Actions are never carried out with absolute 
certainty 

 In contrast to measurements, actions generally 
increase the uncertainty of the state estimate 
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Action Models 

 To incorporate the outcome of an action     into 
the current state estimate (“belief”), we use 
the conditional pdf 

 

 

 This term specifies the probability that 
executing the action u in state x will lead to 
state x’    

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 47 



Example: Take-Off 

 Action: 

 World state: 
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ground 

air 

0.1 

0.99 

0.01 0.9 



Integrating the Outcome of Actions 

 Discrete case 

 

 

 Continuous case 
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Example: Take-Off 
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 Prior belief on robot state: 
(robot is located on the ground) 

 Robot executes “take-off” action 

 What is the robot’s belief after one time step? 

 

 
 

 

 Question: What is the probability at t=2? 



Markov Chain 

 A Markov chain is a stochastic process where, 
given the present state, the past and the future 
states are independent 
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Markov Assumption 

 Observations depend only on current state 

 

 Current state depends only on previous state 
and current action 

 

 Underlying assumptions 

 Static world 

 Independent noise 

 Perfect model, no approximation errors 
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Bayes Filter 
 Given: 

 Stream of observations    and actions    : 

 

 Sensor model 

 Action model 

 Prior probability of the system state 

 Wanted: 

 Estimate of the state     of the dynamic system 

 Posterior of the state is also called belief 
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Bayes Filter 

For each time step, do 

1. Apply motion model 
 
 

 

2. Apply sensor model 

 

 

Note: Bayes filters also work on continuous state 
spaces (replace sum by integral) 
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Example: Localization 

 Discrete state  

 Belief distribution can be represented as a grid 

 This is also called a histogram filter 
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P = 1.0 

P = 0.0 



Example: Localization 

 Action 

 Robot can move one cell in each time step 

 Actions are not perfectly executed 
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Example: Localization 

 Action 

 Robot can move one cell in each time step 

 Actions are not perfectly executed 

 Example: move east  
 
 
 
60% success rate, 10% to stay/move too far/ 
move one up/move one down 
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Example: Localization 

 Observation 

 One (special) location has a marker 

 Marker is sometimes also detected in 
neighboring cells 
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Example: Localization 

 Let’s start a simulation run… (shades are hand-
drawn, not exact!) 

 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 59 



Example: Localization 

 t=0 

 Prior distribution (initial belief) 

 Assume we know the initial location (if not, we 
could initialize with a uniform prior) 
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Example: Localization 

 t=1, u=east, z=no-marker 

 Bayes filter step 1: Apply motion model  
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Example: Localization 

 t=1, u=east, z=no-marker 

 Bayes filter step 2: Apply observation model  
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Example: Localization 

 t=2, u=east, z=marker 

 Bayes filter step 2: Apply motion model  
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Example: Localization 

 t=2, u=east, z=marker 

 Bayes filter step 1: Apply observation model  
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Bayes Filter - Summary 

 Markov assumption allows efficient recursive 
Bayesian updates of the belief distribution 

 Useful tool for estimating the state of a dynamic 
system 

 Bayes filter is the basis of many other filters 
 Kalman filter 

 Particle filter 

 Hidden Markov models 

 Dynamic Bayesian networks 

 Partially observable Markov decision processes 
(POMDPs) 
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Kalman Filter 

 Bayes filter with continuous states  

 State represented with a normal distribution 

 Developed in the late 1950’s 

 Kalman filter is very efficient (only requires a 
few matrix operations per time step) 

 Applications range from economics, weather 
forecasting, satellite navigation to robotics and 
many more 

 Most relevant Bayes filter variant in practice  
 exercise sheet 2 
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Normal Distribution 

 Univariate normal distribution 
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Normal Distribution 

 Multivariate normal distribution 

 

 

 

 Example: 2-dimensional normal distribution 
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pdf iso lines 
 



Properties of Normal Distributions 

 Linear transformation  remains Gaussian 

 

 

 

 Intersection of two Gaussians  remains 
Gaussian 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 69 



Linear Process Model 

 Consider a time-discrete stochastic process 
(Markov chain) 
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Linear Process Model 

 Consider a time-discrete stochastic process 

 Represent the estimated state (belief) by a 
Gaussian 
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Linear Process Model 

 Consider a time-discrete stochastic process 

 Represent the estimated state (belief) by a 
Gaussian 

 Assume that the system evolves linearly over 
time, then 
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Linear Process Model 

 Consider a time-discrete stochastic process 

 Represent the estimated state (belief) by a 
Gaussian 

 Assume that the system evolves linearly over 
time and depends linearly on the controls 
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Linear Process Model 

 Consider a time-discrete stochastic process 

 Represent the estimated state (belief) by a 
Gaussian 

 Assume that the system evolves linearly over 
time, depends linearly on the controls, and has 
zero-mean, normally distributed process noise 
 
 
with  
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Linear Observations 

 Further, assume we make observations that 
depend linearly on the state 
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Linear Observations 

 Further, assume we make observations that 
depend linearly on the state and that are 
perturbed by zero-mean, normally distributed 
observation noise 
 
 
with 
 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 76 



Kalman Filter 

Estimates the state      of a discrete-time 
controlled process that is governed by the linear 
stochastic difference equation 
 

 

and (linear) measurements of the state 
 
 
with                        and  
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Variables and Dimensions 

 State 

 Controls 

 Observations  

 Process equation 

 

 

 Measurement equation 
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Kalman Filter 

 Initial belief is Gaussian 

 

 

 Next state is also Gaussian (linear 
transformation) 

 

 

 Observations are also Gaussian 
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From Bayes Filter to Kalman Filter 

For each time step, do 

1. Apply motion model 
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From Bayes Filter to Kalman Filter 

For each time step, do 

1. Apply motion model 
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From Bayes Filter to Kalman Filter 

For each time step, do 

2. Apply sensor model 
 
 
 
 
 
 

 
with  
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Kalman Filter 

For each time step, do 

1. Apply motion model 
 
 

 

2. Apply sensor model 

 
 
with 
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For the interested readers: 
See Probabilistic Robotics for 
full derivation (Chapter 3) 



Kalman Filter 

 Highly efficient: Polynomial in the 
measurement dimensionality k and state 
dimensionality n: 

 

 

 Optimal for linear Gaussian systems! 

 Most robotics systems are nonlinear! 
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Nonlinear Dynamical Systems 

 Most realistic robotic problems involve 
nonlinear functions 

 Motion function 

 

 

 Observation function 
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Taylor Expansion 

 Solution: Linearize both functions 

 Motion function 

 

 

 

 Observation function 
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Extended Kalman Filter 

For each time step, do 

1. Apply motion model 
 

 
                                           with 

2. Apply sensor model 

 
 

with                                                  and 
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For the interested readers: 
See Probabilistic Robotics for 
full derivation (Chapter 3) 



Example 

 2D case 

 State 

 Odometry 

 Observations of visual marker  
(relative to robot pose) 
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Example 

 Motion Function and its derivative 
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Example 

 Observation Function ( Sheet 2) 
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Example 
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 Dead reckoning (no observations) 

 Large process noise in x+y 



Example 
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 Dead reckoning (no observations) 

 Large process noise in x+y+yaw 



Example 

 Now with observations (limited visibility) 

 Assume robot knows correct starting pose 
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Example 

 What if the initial pose (x+y) is wrong? 
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Example 

 What if the initial pose (x+y+yaw) is wrong? 
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Example 
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 If we are aware of a bad initial guess, we set 
the initial sigma to a large value (large 
uncertainty) 



Example 
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Summary 

 Observations and actions are inherently noisy 

 Knowledge about state is inherently uncertain 

 Probability theory 

 Probabilistic sensor and motion models 

 Bayes Filter, Histogram Filter, Kalman Filter, 
Examples 

 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 98 


