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Organization - Exam 

 Oral exams in teams (2-3 students)  

 At least 15 minutes per student  
 individual grades 

 Questions will address 

 Material from the lecture 

 Material from the exercise sheets 

 Your mini-project 
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Control Architecture 
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DC Motors 

 Maybe you built one in school 

 Stationary permanent magnet 

 Electromagnet induces torque 

 Split ring switches direction of current 
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Brushless Motors 

 Used in most quadrocopters 

 Permanent magnets on the axis 

 Electromagnets on the outside 

 Requires motor controller to switch currents 

 Does not require brushes (less maintenance) 
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Attitude + Motor Controller Boards 

 Example: Mikrokopter Platform 
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Pulse Width Modulation (PWM) 

 Protocol used to control motor speed 

 Remote controls typically output PWM 
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I2C Protocol 

 Serial data line (SDA) + serial clock line (SCL) 

 All devices connected in parallel 

 7-10 bit address, 100-3400 kbit/s speed 

 Used by Mikrocopter for motor control 
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Kinematics and  Dynamics 

 Kinematics 

 Integrate acceleration to get velocity 

 Integrate velocity to get position 

 Dynamics 

 Actuators induce forces and torques 

 Forces induce linear acceleration 

 Torques induce angular acceleration 

 What types of forces do you know? 

 What types of torques do you know? 
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Example: 1D Kinematics 

 State 

 Action 

 Process model 

 

 

 

 Kalman filter 

 How many states do we need for 3D? 
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Dynamics - Essential Equations 

 Force (Kraft) 

 

 

 

 Torque (Drehmoment) 
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Forces 

 Gravity 

 Friction 

 Stiction (static friction) 

 Damping (viscous friction)  

 Spring 

 Magnetic force 

 … 
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Example: Spring-Damper System 

 Combination of spring and damper 

 Forces 

 Resulting dynamics 
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 Definition 

 Torques sum up 

 Torque results in angular acceleration 
(with              ,     moment of inertia) 

 Friction same as before… 

Torques 
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Dynamics of a Quadrocopter 

 Each propeller induces force and torque by 
accelerating air 

 Gravity pulls quadrocopter downwards 
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Vertical Acceleration 

 Thrust 
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Vertical and Horizontal Acceleration 

 Thrust 
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Vertical and Horizontal Acceleration 

 Thrust 

 Acceleration 
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attitude 



Pitch (and Roll) 
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Side view of  
quadrocopter 

 Attitude changes when opposite motors 
generate unequal thrust 

 Induced torque 

 Induced angular acceleration 

 



Yaw 

 Each propeller induces torque due to rotation 
and the interaction with the air 

 Induced torque 

 Induced angular acceleration 

 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 21 



Localization 

Robot 
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Assumptions of Cascaded Control 

 Dynamics of inner loops is so fast that it is not 
visible from outer loops 

 Dynamics of outer loops is so slow that it 
appears as static to the inner loops 
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Cascaded Control Example 

 Motor control happens on motor boards 
(controls every motor tick) 

 Attitude control implemented on micro-
controller with hard real-time (at 1000 Hz) 

 Position control (at 10 – 250 Hz) 

 Trajectory (waypoint) control (at 0.1 – 1 Hz) 
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Feedback Control - Generic Idea 
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Desired  
value 
35° 



Feedback Control - Generic Idea 
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Plant (Regelstrecke) 

Desired  
value 
35° 

Controller (Regler) 



Feedback Control - Generic Idea 
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Desired  
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Sensor 

Controller (Regler) 



Feedback Control - Generic Idea 
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Plant (Regelstrecke) 

Desired  
value 
35° 

How hot is it? 
Measured  
temperature 

25° 

35° 

45° 

Sensor 

Controller (Regler) 

25° 

35° 

45° 

Error 

How can we correct? 

Turn hotter (not colder) 



Feedback Control - Example 
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Controller Plant 

Measurement 



Measurement Noise 

 What effect has noise in the measurements? 

 

 

 

 

 

 

 Poor performance for K=1 

 How can we fix this? 
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Proper Control with Measurement Noise 

 Lower the gain… (K=0.15) 
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What do High Gains do? 

 High gains are always problematic (K=2.15) 
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What happens if sign is messed up? 

 Check K=-0.5 
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Saturation 

 In practice, often the set of admissible controls 
u is bounded 

 This is called (control) saturation 
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Measurement 

Block Diagram 
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Controller 
– 

Plant 



Delays 

 In practice most systems have delays 

 Can lead to overshoots/oscillations/de-
stabilization 

 

 
 

 

 

 One solution: lower gains (why is this bad?) 
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 What is the total dead time of this system? 

 

 

 

 
 

 

 

Measurement 

Delays 
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Controller 
– 

Plant 

100ms delay 
in water pipe 

50ms delay 
in sensing 



 What is the total dead time of this system? 

 

 

 

 
 

 

 Can we distinguish delays in the measurement 
from delays in actuation? 

 

Measurement 

Delays 
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Controller 
– 

Plant 

100ms delay 
in water pipe 

50ms delay 
in sensing 



 What is the total dead time of this system? 

 

 

 

 
 

 

 Can we distinguish delays in the measurement 
from delays in actuation? No! 

 

Delays 
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Controller 
– 

Plant (and 
measurement) 



Smith Predictor 

 Allows for higher gains 

 Requires (accurate) model of plant 
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Controller 
– 

Plant with delay 

Delay-free 
plant model 

Delay model 
– 

– 



Smith Predictor 

 Plant model is available 

 5 seconds delay 

 Results in perfect compensation 

 Why is this unrealistic in practice? 
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Smith Predictor 

 Time delay (and plant model) is often not 
known accurately (or changes over time) 

 What happens if time delay is overestimated? 
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Smith Predictor 

 Time delay (and plant model) is often not 
known accurately (or changes over time) 

 What happens if time delay is underestimated? 
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Position Control 
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Rigid Body Kinematics 

 Consider a rigid body 

 Free floating in 1D space, no gravity 

 How does this system evolve over time? 
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Rigid Body Kinematics 

 Consider a rigid body 

 Free floating in 1D space, no gravity 

 How does this system evolve over time? 

 Example:  
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Rigid Body Kinematics 

 Consider a rigid body 

 Free floating in 1D space, no gravity 

 How does this system evolve over time? 

 Example:  
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Rigid Body Kinematics 

 Consider a rigid body 

 Free floating in 1D space, no gravity 

 In each time instant, we can apply a force F 

 Results in acceleration  

 Desired position 
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P Control 

 What happens for this control law? 

 

 This is called proportional control 
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P Control 

 What happens for this control law? 

 

 This is called proportional control 
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PD Control 

 What happens for this control law? 

 

 Proportional-Derivative control 
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PD Control 

 What happens for this control law? 

 

 What if we set higher gains?  
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PD Control 

 What happens for this control law? 

 

 What if we set lower gains?  
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PD Control 

 What happens when we add gravity? 
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Gravity compensation 

 Add as an additional term in the control law 

 

 Any known (inverse) dynamics can be included 
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PD Control 

 What happens when we have systematic 
errors? (noise with non-zero mean) 

 Example: unbalanced quadrocopter, wind, … 

 Does the robot ever reach its desired location? 
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add example plot 



PID Control 

 Idea: Estimate the system error (bias) by 
integrating the error 

 
 Proportional+Derivative+Integral Control 
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add example plot 



PID Control 

 Idea: Estimate the system error (bias) by 
integrating the error 

 
 Proportional+Derivative+Integral Control 

 For steady state systems, this can be 
reasonable 

 Otherwise, it may create havoc or even disaster 
(wind-up effect) 
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Example: Wind-up effect 

 Quadrocopter gets stuck in a tree  does not 
reach steady state 

 What is the effect on the I-term? 
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De-coupled Control 

 So far, we considered only single-input, single-
output systems (SISO) 

 Real systems have multiple inputs + outputs 

 MIMO (multiple-input, multiple-output) 

 In practice, control is often de-coupled 
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Controller 1 

Controller 2 

Plant 



How to Choose the Coefficients? 

 Gains too large: overshooting, oscillations 

 Gains too small: long time to converge 

 Heuristic methods exist 

 In practice, often tuned manually 
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Cascaded control 

 Inner loop runs on embedded PC and stabilizes 
flight 

 Outer loop runs externally and implements 
position control 

 

Example: Ardrone 
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Inner loop Plant Outer loop 

Ardrone (=seen as the plant by the outer loop) Laptop 

wireless, approx. 15Hz 

onboard, 1000Hz 



Ardrone: Inner Control Loop 

 Plant input: motor torques 

 

 

 Plant output: roll, pitch, yaw rate, z velocity 
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attitude 
(measured using gyro +  

accelerometer) 

z velocity 
(measured using ultrasonic 
distance sensor + attitude) 



Ardrone: Outer Control Loop 

 Outer loop sees inner loop as a plant (black 
box) 

 Plant input: roll, pitch, yaw rate, z velocity 

 

 Plant output:  
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Mechanical Equivalent 

 PD Control is equivalent to adding spring-
dampers between the desired values and the 
current position 
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PID Control – Summary 

PID is the most used control technique in practice 

 P control  simple proportional control, often 
enough 

 PI control  can compensate for bias (e.g., 
wind) 

 PD control  can be used to reduce overshoot 
(e.g., when acceleration is controlled) 

 PID control  all of the above 
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Optimal Control 

What other control techniques do exist? 

 Linear-quadratic regulator (LQR) 

 Reinforcement learning 

 Inverse reinforcement learning 

 ... and many more 
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Optimal Control 

 Find the controller that provides the best 
performance 

 Need to define a measure of performance 

 What would be a good performance measure? 

 Minimize the error? 

 Minimize the controls? 

 Combination of both? 
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Linear Quadratic Regulator 

Given: 

 Discrete-time linear system 
 

 

 Quadratic cost function 

 
 

Goal: Find the controller with the lowest cost  
LQR control 
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Reinforcement Learning 

 In principle, any measure can be used 

 Define reward for each state-action pair 

 

 Find the policy (controller) that maximizes the 
expected future reward 

 Compute the expected future reward based on 

 Known process model 

 Learned process model (from demonstrations) 
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Inverse Reinforcement Learning 

 Parameterized reward function 

 Learn these parameters from expert 
demonstrations and refine 

 Example: [Abbeel and Ng, ICML 2010] 
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Interesting Papers at ICRA 2012 

 Flying robots are a hot topic in the robotics 
community 

 4 (out of 27) sessions on flying robots, 4 
sessions on localization and mapping 

 Robots: quadrocopters, nano quadrocopters, 
fixed-wing airplanes 

 Sensors: monocular cameras, Kinect, motion 
capture, laser-scanners 
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Autonomous Indoor 3D Exploration  
with a Micro-Aerial Vehicle 

Shaojie Shen, Nathan Michael, and Vijay Kumar 
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 Map a previously unknown building 

 Find good exploration frontiers in partial map 



Decentralized Formation Control with 
Variable Shapes for Aerial Robots 

Matthew Turpin, Nathan Michael, and Vijay Kumar 
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 Move in formation (e.g., to traverse a window) 

 Avoid collisions 

 Dynamic role switching 

 



Versatile Distributed Pose Estimation and Sensor 
Self-Calibration for an Autonomous MAV 

Stephan Weiss, Markus W. Achtelik, Margarita Chli, Roland Siegwart 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 75 

 IMU, camera 

 EKF for pose, velocity, 
sensor bias, scale, inter-
sensor calibration 

 

 



On-board Velocity Estimation and Closed-loop 
Control of a Quadrotor UAV based on Optical Flow 

Volker Grabe, Heinrich H. Bülthoff, and Paolo Robuffo Giordano 
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 Ego-motion from optical flow using homography 
constraint 

 Use for velocity control 



Autonomous Landing of a VTOL UAV on a Moving 
Platform Using Image-based Visual Servoing 

Daewon Lee, Tyler Ryan and H. Jin. Kim 
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 Tracking and landing on a moving platform 

 Switch between tracking and landing behavior 



Resonant Wireless Power Transfer to 
Ground Sensors from a UAV 

Brent Griffin and Carrick Detweiler 

 Quadrocopter transfers power to light a LED 
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Using Depth in Visual Simultaneous 
Localisation and Mapping 

Sebastian A. Scherer, Daniel Dube and Andreas Zell 

 Combine PTAM with Kinect 

 Monocular SLAM: scale drift 

 Kinect: has small maximum range 
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ICRA Papers 

 Will put them in our paper repository 

 Remember password (or ask by mail) 

 See course website 
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