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Organization - Exam 

 Oral exams in teams (2-3 students)  

 At least 15 minutes per student  
 individual grades 

 Questions will address 

 Material from the lecture 

 Material from the exercise sheets 

 Your mini-project 
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DC Motors 

 Maybe you built one in school 

 Stationary permanent magnet 

 Electromagnet induces torque 

 Split ring switches direction of current 
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Brushless Motors 

 Used in most quadrocopters 

 Permanent magnets on the axis 

 Electromagnets on the outside 

 Requires motor controller to switch currents 

 Does not require brushes (less maintenance) 
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Attitude + Motor Controller Boards 

 Example: Mikrokopter Platform 
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Pulse Width Modulation (PWM) 

 Protocol used to control motor speed 

 Remote controls typically output PWM 
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I2C Protocol 

 Serial data line (SDA) + serial clock line (SCL) 

 All devices connected in parallel 

 7-10 bit address, 100-3400 kbit/s speed 

 Used by Mikrocopter for motor control 
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Kinematics and  Dynamics 

 Kinematics 

 Integrate acceleration to get velocity 

 Integrate velocity to get position 

 Dynamics 

 Actuators induce forces and torques 

 Forces induce linear acceleration 

 Torques induce angular acceleration 

 What types of forces do you know? 

 What types of torques do you know? 
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Example: 1D Kinematics 

 State 

 Action 

 Process model 

 

 

 

 Kalman filter 

 How many states do we need for 3D? 
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Dynamics - Essential Equations 

 Force (Kraft) 

 

 

 

 Torque (Drehmoment) 
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Forces 

 Gravity 

 Friction 

 Stiction (static friction) 

 Damping (viscous friction)  

 Spring 

 Magnetic force 

 … 
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Example: Spring-Damper System 

 Combination of spring and damper 

 Forces 

 Resulting dynamics 
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 Definition 

 Torques sum up 

 Torque results in angular acceleration 
(with              ,     moment of inertia) 

 Friction same as before… 

Torques 
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Dynamics of a Quadrocopter 

 Each propeller induces force and torque by 
accelerating air 

 Gravity pulls quadrocopter downwards 
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Vertical Acceleration 

 Thrust 
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Vertical and Horizontal Acceleration 

 Thrust 
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Vertical and Horizontal Acceleration 

 Thrust 

 Acceleration 
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attitude 



Pitch (and Roll) 
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Side view of  
quadrocopter 

 Attitude changes when opposite motors 
generate unequal thrust 

 Induced torque 

 Induced angular acceleration 

 



Yaw 

 Each propeller induces torque due to rotation 
and the interaction with the air 

 Induced torque 

 Induced angular acceleration 
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Assumptions of Cascaded Control 

 Dynamics of inner loops is so fast that it is not 
visible from outer loops 

 Dynamics of outer loops is so slow that it 
appears as static to the inner loops 
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Cascaded Control Example 

 Motor control happens on motor boards 
(controls every motor tick) 

 Attitude control implemented on micro-
controller with hard real-time (at 1000 Hz) 

 Position control (at 10 – 250 Hz) 

 Trajectory (waypoint) control (at 0.1 – 1 Hz) 
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Feedback Control - Generic Idea 
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Desired  
value 
35° 



Feedback Control - Generic Idea 
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Plant (Regelstrecke) 

Desired  
value 
35° 

Controller (Regler) 



Feedback Control - Generic Idea 
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Feedback Control - Generic Idea 
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Plant (Regelstrecke) 

Desired  
value 
35° 

How hot is it? 
Measured  
temperature 

25° 

35° 

45° 

Sensor 

Controller (Regler) 

25° 

35° 

45° 

Error 

How can we correct? 

Turn hotter (not colder) 



Feedback Control - Example 
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Measurement Noise 

 What effect has noise in the measurements? 

 

 

 

 

 

 

 Poor performance for K=1 

 How can we fix this? 
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Proper Control with Measurement Noise 

 Lower the gain… (K=0.15) 
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What do High Gains do? 

 High gains are always problematic (K=2.15) 
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What happens if sign is messed up? 

 Check K=-0.5 
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Saturation 

 In practice, often the set of admissible controls 
u is bounded 

 This is called (control) saturation 
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Measurement 

Block Diagram 
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Controller 
– 

Plant 



Delays 

 In practice most systems have delays 

 Can lead to overshoots/oscillations/de-
stabilization 

 

 
 

 

 

 One solution: lower gains (why is this bad?) 
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 What is the total dead time of this system? 

 

 

 

 
 

 

 

Measurement 

Delays 
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Controller 
– 

Plant 

100ms delay 
in water pipe 

50ms delay 
in sensing 



 What is the total dead time of this system? 

 

 

 

 
 

 

 Can we distinguish delays in the measurement 
from delays in actuation? 

 

Measurement 

Delays 
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Controller 
– 

Plant 

100ms delay 
in water pipe 

50ms delay 
in sensing 



 What is the total dead time of this system? 

 

 

 

 
 

 

 Can we distinguish delays in the measurement 
from delays in actuation? No! 

 

Delays 
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Controller 
– 

Plant (and 
measurement) 



Smith Predictor 

 Allows for higher gains 

 Requires (accurate) model of plant 
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Controller 
– 

Plant with delay 

Delay-free 
plant model 

Delay model 
– 

– 



Smith Predictor 

 Plant model is available 

 5 seconds delay 

 Results in perfect compensation 

 Why is this unrealistic in practice? 
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Smith Predictor 

 Time delay (and plant model) is often not 
known accurately (or changes over time) 

 What happens if time delay is overestimated? 
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Smith Predictor 

 Time delay (and plant model) is often not 
known accurately (or changes over time) 

 What happens if time delay is underestimated? 
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Rigid Body Kinematics 

 Consider a rigid body 

 Free floating in 1D space, no gravity 

 How does this system evolve over time? 
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Rigid Body Kinematics 

 Consider a rigid body 

 Free floating in 1D space, no gravity 

 How does this system evolve over time? 

 Example:  
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Rigid Body Kinematics 

 Consider a rigid body 

 Free floating in 1D space, no gravity 

 How does this system evolve over time? 

 Example:  
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Rigid Body Kinematics 

 Consider a rigid body 

 Free floating in 1D space, no gravity 

 In each time instant, we can apply a force F 

 Results in acceleration  

 Desired position 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 48 



P Control 

 What happens for this control law? 

 

 This is called proportional control 
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P Control 

 What happens for this control law? 

 

 This is called proportional control 
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PD Control 

 What happens for this control law? 

 

 Proportional-Derivative control 
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PD Control 

 What happens for this control law? 

 

 What if we set higher gains?  
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PD Control 

 What happens for this control law? 

 

 What if we set lower gains?  
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PD Control 

 What happens when we add gravity? 
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Gravity compensation 

 Add as an additional term in the control law 

 

 Any known (inverse) dynamics can be included 
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PD Control 

 What happens when we have systematic 
errors? (noise with non-zero mean) 

 Example: unbalanced quadrocopter, wind, … 

 Does the robot ever reach its desired location? 
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add example plot 



PID Control 

 Idea: Estimate the system error (bias) by 
integrating the error 

 
 Proportional+Derivative+Integral Control 
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add example plot 



PID Control 

 Idea: Estimate the system error (bias) by 
integrating the error 

 
 Proportional+Derivative+Integral Control 

 For steady state systems, this can be 
reasonable 

 Otherwise, it may create havoc or even disaster 
(wind-up effect) 
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Example: Wind-up effect 

 Quadrocopter gets stuck in a tree  does not 
reach steady state 

 What is the effect on the I-term? 
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De-coupled Control 

 So far, we considered only single-input, single-
output systems (SISO) 

 Real systems have multiple inputs + outputs 

 MIMO (multiple-input, multiple-output) 

 In practice, control is often de-coupled 
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Controller 1 

Controller 2 

Plant 



How to Choose the Coefficients? 

 Gains too large: overshooting, oscillations 

 Gains too small: long time to converge 

 Heuristic methods exist 

 In practice, often tuned manually 
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Cascaded control 

 Inner loop runs on embedded PC and stabilizes 
flight 

 Outer loop runs externally and implements 
position control 

 

Example: Ardrone 
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Inner loop Plant Outer loop 

Ardrone (=seen as the plant by the outer loop) Laptop 

wireless, approx. 15Hz 

onboard, 1000Hz 



Ardrone: Inner Control Loop 

 Plant input: motor torques 

 

 

 Plant output: roll, pitch, yaw rate, z velocity 
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attitude 
(measured using gyro +  

accelerometer) 

z velocity 
(measured using ultrasonic 
distance sensor + attitude) 



Ardrone: Outer Control Loop 

 Outer loop sees inner loop as a plant (black 
box) 

 Plant input: roll, pitch, yaw rate, z velocity 

 

 Plant output:  

 

 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 64 



Mechanical Equivalent 

 PD Control is equivalent to adding spring-
dampers between the desired values and the 
current position 
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PID Control – Summary 

PID is the most used control technique in practice 

 P control  simple proportional control, often 
enough 

 PI control  can compensate for bias (e.g., 
wind) 

 PD control  can be used to reduce overshoot 
(e.g., when acceleration is controlled) 

 PID control  all of the above 
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Optimal Control 

What other control techniques do exist? 

 Linear-quadratic regulator (LQR) 

 Reinforcement learning 

 Inverse reinforcement learning 

 ... and many more 
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Optimal Control 

 Find the controller that provides the best 
performance 

 Need to define a measure of performance 

 What would be a good performance measure? 

 Minimize the error? 

 Minimize the controls? 

 Combination of both? 
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Linear Quadratic Regulator 

Given: 

 Discrete-time linear system 
 

 

 Quadratic cost function 

 
 

Goal: Find the controller with the lowest cost  
LQR control 
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Reinforcement Learning 

 In principle, any measure can be used 

 Define reward for each state-action pair 

 

 Find the policy (controller) that maximizes the 
expected future reward 

 Compute the expected future reward based on 

 Known process model 

 Learned process model (from demonstrations) 
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Inverse Reinforcement Learning 

 Parameterized reward function 

 Learn these parameters from expert 
demonstrations and refine 

 Example: [Abbeel and Ng, ICML 2010] 

 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 71 



Interesting Papers at ICRA 2012 

 Flying robots are a hot topic in the robotics 
community 

 4 (out of 27) sessions on flying robots, 4 
sessions on localization and mapping 

 Robots: quadrocopters, nano quadrocopters, 
fixed-wing airplanes 

 Sensors: monocular cameras, Kinect, motion 
capture, laser-scanners 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 72 



Autonomous Indoor 3D Exploration  
with a Micro-Aerial Vehicle 

Shaojie Shen, Nathan Michael, and Vijay Kumar 
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 Map a previously unknown building 

 Find good exploration frontiers in partial map 



Decentralized Formation Control with 
Variable Shapes for Aerial Robots 

Matthew Turpin, Nathan Michael, and Vijay Kumar 
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 Move in formation (e.g., to traverse a window) 

 Avoid collisions 

 Dynamic role switching 

 



Versatile Distributed Pose Estimation and Sensor 
Self-Calibration for an Autonomous MAV 

Stephan Weiss, Markus W. Achtelik, Margarita Chli, Roland Siegwart 
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 IMU, camera 

 EKF for pose, velocity, 
sensor bias, scale, inter-
sensor calibration 

 

 



On-board Velocity Estimation and Closed-loop 
Control of a Quadrotor UAV based on Optical Flow 

Volker Grabe, Heinrich H. Bülthoff, and Paolo Robuffo Giordano 
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 Ego-motion from optical flow using homography 
constraint 

 Use for velocity control 



Autonomous Landing of a VTOL UAV on a Moving 
Platform Using Image-based Visual Servoing 

Daewon Lee, Tyler Ryan and H. Jin. Kim 
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 Tracking and landing on a moving platform 

 Switch between tracking and landing behavior 



Resonant Wireless Power Transfer to 
Ground Sensors from a UAV 

Brent Griffin and Carrick Detweiler 

 Quadrocopter transfers power to light a LED 
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Using Depth in Visual Simultaneous 
Localisation and Mapping 

Sebastian A. Scherer, Daniel Dube and Andreas Zell 

 Combine PTAM with Kinect 

 Monocular SLAM: scale drift 

 Kinect: has small maximum range 
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ICRA Papers 

 Will put them in our paper repository 

 Remember password (or ask by mail) 

 See course website 
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