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Organization: Exam

= Registration deadline: June 30
= Course ends: July 19

= Examination dates: t.b.a. (mid August)
" Oral team exam
= Sign up for a time slot starting from Mid July

= List will be placed on blackboard in front of our
secretary
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Motivation
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Visual Motion Estimation

" Quick geometry recap

" Image filters

= 2D image alignment

= Corner detectors

= Kanade-Lucas-Tomasi tracker
= 3D motion estimation
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Angular and linear velocities

= Linear velocity v = (v,,v,,v.)" € R’

= Angular velocity w = (w,,w,,w.)' € R’

" Linear and angular velocity together form a
twist £ = (v',w')’
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Angular and linear velocities

= Linear velocity v = (v,,v,,v.)" € R?
= Angular velocity w = (w,,w,,w.)' € R’

= Now consider a 3D point p € R* of a rigid
TN T
)

body moving with twist ¢ = (v',w

Visual Navigation for Flying Robots 6 Dr. Jirgen Sturm, Computer Vision Group, TUM



Angular and linear velocities

= Linear velocity v = (v,,v,,v.)" € R?

= Angular velocity w = (w,,w,,w.)' € R’

= Now consider a 3D point p € R* of a rigid
TN T
)

body moving with twist ¢ = (v',w
= What is the velocity p at point p?
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Angular and linear velocities

= Linear velocity v = (v,,v,,v.)" € R?
= Angular velocity w = (w,,w,,w.)' € R’

= Now consider a 3D point p € R* of a rigid
body moving with twist ¢ = (v, w ')’

= What is the velocity p at point p?
p(t) = R(t)p(0) + t(¢) v p
= exp(|w]«t)p(0) + vt
wxt)p(0) 5

Z
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Angular and linear velocities

= Linear velocity v = (v,,v,,v.)" € R?
= Angular velocity w = (w,,w,,w.)' € R’

= Now consider a 3D point p € R* of a rigid
body moving with twist ¢ = (v, w ')’

= What is the velocity p at point p?

p(1) = ROP(O) + (1) 4 P
= exp(|w]xt)p(0) + vt 5
= p(t) = exp(|w]xt)|w|xp(0) + v : "
p(0) = [w]xp(0) +v
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Recap: Perspective Projection

7>

Visual Navigation for Flying Robots 10 Dr. Jirgen Sturm, Computer Vision Group, TUM



Recap: Perspective Projection

_—Ix
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3D to 2D Perspective Projection

= 3D point p (in the camera frame)
= 2D point x (on the image plane)
" Pin-hole camera model

X=AX=Dp

= Remember, X is homogeneous, need to

normalize
L ("‘E/f)
]z
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Camera Intrinsics

= So far, 2D point is given in meters on image
plane

= But: we want 2D point be measured in pixels
(as the sensor does)
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Camera Intrinsics

Need to apply some scaling/offset

Jr 8 ¢
x=10 f, ¢
0O 0 1

intrinsics K
Focal length [, f,

Camera center c¢;, ¢y,
Skew s
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Image Plane

= Pixel coordinates x €
= |mage plane Q c R?

= Example:

= Discrete case x € [0, W) x [0, H) C N7
(default in this course)

= Continuous case x € [0,1] x [0,1] C R
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Image Functions

= We can think of an image as a function f: QO — R
= f(x) gives the intensity at position x
= Color images are vector-valued functions
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Image Functions

= Realistically, the image function is only defined

on a rectangle and has finite range

fol00W—=1] x[0,H — 1| — [0, 1]
" Image can be represented as a matrix

= Alternative notations

Fij, f(i,9), f(2,9), f(x),. ..

11 ]
often (row,column)

often (column,row)
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Digital Images

= Light intensity is sampled by CCD/CMOS sensor
on a regular grid

= Electric charge of each cell is quantized and
gamma compressed (for historical reasons)

V = B> with v =22
= CRTs / monitors do the inverse B = V7
= Almost all images are gamma compressed

— Double brightness results only in a 37% higher
intensity value (!)
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Aliasing

= High frequencies in the scene and a small fill
factor on the chip can lead to (visually)
unpleasing effects

= Examples
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Rolling Shutter

= Most CMOS sensors have a rolling shutter
= Rows are read out sequentially

= Sensitive to camera and object motion

= Can we correct for this?
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Image Filtering

= \We want to remove unwanted sources of
variation, and keep the information relevant for
whatever task we need to solve

f(i.7) g(2,7)

> >

= Example tasks:
de-noising, (de-)blurring, computing
derivatives, edge detection, ...
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Linear Filtering

= Each output is a linear combination of all the
input values

g(i,7) = thg,kl f(k, D)

" |n matrix form

Visual Navigation for Flying Robots 23 Dr. Jirgen Sturm, Computer Vision Group, TUM



Spatially Invariant Filtering

= We are often interested in spatially invariant
operations

g(i,j) = fxh="> h(i—k,j—1)f(k1)
k.l
= Example

163|168 188|196 206|202 206|207 1 2 1
180|184 206 |219|202]200(195]193

ﬂ< -1 2 -1 p—
189193214 |216

112 | -1 o

1912012171220

195[205(216 1222

1991203223228
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Spatially Invariant Filtering

= We are often interested in spatially invariant
operations

g(i,j) = frh=> h(i—k,j—1)f(k1)
k.l

= Example

196|206|202|206|207 1 2 1
180|184 ]206(219|202]200]195]|193
X 1] 2|1 —
189|193|214|216
191|201|217|220 1 2 1

195[205(216 1222

1991203223228
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Important Filters

" Impulses
= Shifts

= Blur
= Gaussian
= Bilateral filter
= Motion blur
" Edges
= Finite difference filter
= Derivative filter
= QOriented filters
= Gabor filter
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Impulse

g(i,j) = frh=> h(i—k,j—1)f(k1)
k.l

O |loOo|]O|O| O
O |lOoOo|]O|O| O
O |loOo|]O|O| O

e e
E— h(i, ) p—

f(?’a]) g(z’,j)
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Image shift (translation)

g(i,j) = frh=> h(i—k,j—1)f(k1)
k.l

2 pixels
e

Y e

o |lOoOo|O|O|O

O |]OoO | ]|]O|O
o |loOoO|]O|O|O

— | )| p—

f(?’a]) g(z’,j)
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Image rotation

g(i,j) = frh=> h(i—k,j—1)f(k1)
k.l

IS,
I h(i, j)

£i.) 96,7)
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Image rotation

g(i,j) = frh=> h(i—k,j—1)f(k1)
k.l

Image rotation is a linear operator (why?), but not a spatially
invariant operation (why?). There is no convolution.

f(?’a]) g(z’,j)
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Rectangular Filter

g(i,j) = fxh="> h(i—k,j—1)f(k1)
k.l

A f%}j) g(1,7)
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Rectangular Filter

g(i,j) = fxh="> h(i—k,j—1)f(k1)
k.l

fG. ) 9(i, §)
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Rectangular Filter

g(i,j) = fxh="> h(i—k,j—1)f(k1)
k.l

fG. ) 9(i, j)
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Gaussian Blur

= Gaussian distribution

. 1 2+ 52
90(1,1) = 2Am o2 b 202

= Example of resulting kernel
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Gaussian Blur
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Image Gradient

T

= The image gradient Vf = (g"; ggj) points in

the direction of increasing intensity (steepest
ascend)

—tzv. ' -

Visual Navigation for Flying Robots 36 Dr. Jirgen Sturm, Computer Vision Group, TUM



Image Gradient

or Oy
the direction of increasing intensity (steepest

ascend)

F [T K
vi=(#o0) vi=(0g) vi=($5)
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Image Gradient

" Gradient direction (related to edge orientation)

B of Of
f = atan?2 (ayj 8:1’:)

" Gradient magnitude (edge strength)

sl =/ (%) + (%)
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Image Gradient

How can we differentiate a digital image f(z,y)?

= Option 1: Reconstruct a continuous image, then
take gradient

= Option 2: Take discrete derivative (finite
difference filter)

= Option 3: Convolve with derived Gaussian
(derivative filter)
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Finite difference

= First-order central difference

8f o Nf($+1?y)_f($_1ﬁy)
%(:’Eny)"“" 9

= Corresponding convolution kernel: |-s]o]s

>

X
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Finite difference

" First-order central difference (half pixel)

G
a_i(x’ y) ~ f(z+0.5,y) — f(z —0.5,9)

= Corresponding convolution kernel: [+]:

>

X
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Second-order Derivative

= Differentiate again to get second-order central
difference

of (x)
0x?

~ flo+1) —2f(x) + fz — 1)

Corresponding convolution kernel: [1]2]:
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Example

g(i,j) = fxh="> h(i—k,j—1)f(k1)
k.l

- o Y s

o B

T Al
e A
5 ﬁf' —
. l.ll) l g"i,_ £
i - -
’ ’ H :
- . ‘

g(i,j)
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Example

g(i,j) = fxh="> h(i—k,j—1)f(k1)
k.l

- o W ]

e

- ’ -
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0 s———
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(Dense) Motion Estimation

= 2D motion

= 3D motion
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Problem Statement

= Given: two camera images fo, fi
= Goal: estimate the camera motion u

fo

= For the moment, let’s assume that the camera
only moves in the xy-plane, i.e., u= (uv)'

= Extension to 3D follows

Visual Navigation for Flying Robots 46 Dr. Jirgen Sturm, Computer Vision Group, TUM



General Idea

1. Define an error metric F(u) that defines how
well the two images match given a motion

vector
2. Find the motion vector with the lowest error

u” = arg min F(u)

h
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Error Metrics for Image Comparison

= Sum of Squared Differences (SSD)

Essp(u) = Z (J1(xi +u) — fo(xi)) Z :
with displacement u = (v v)'

and residual errors ¢; = fi(x; +u) — fo(x;)
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Robust Error Metrics

= SSD metric is sensitive to outliers
= Solution: apply a (more) robust error metric

ESRD ZIO fl X?,_I_U— fU Xz Zp
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Robust Error Metrics

= Sum of Absolute Differences
psap(e) = |e|
= Sum of truncated errors

Prrunc(€) = {

e? if |e| < b
b? otherwise

= Geman-McClure function (Huber norm)

82

1t e? /b
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Robust Error Metrics

62_

204 ptrunc(e) T

phuber(e) .
e| —
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Windowed SSD

" Images (and image patches) have finite size

= Standard SSD has a bias towards smaller
overlaps (less error terms)

= Solution: divide by the overlap area
" Root mean square error

Ervs(u) = /Fsgp/A
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Exposure Differences

" Images might be taken with different exposure
(auto shutter, white balance, ...)

= Bias and gain model
filx+u) = (1+a)fo(x)+f
= With SSD we get
Epc(u) = Z (fr(xi +u) = (1 + ) fo(x:) + B)°

—Z(}ffo +,8—€
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Cross-Correlation

" Maximize the product (instead of minimizing
the differences)

Ecc(u Zfo X;) f1(x; +u)
= Normalized cross-correlation (between -1..1)
Exce(u) =
B Z (fo(x;) — meanfy)(fi(x; +u) — meanfi)

vvar fovar fi
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General Idea

1. Define an error metric F(u) that defines how
well the two images match given a motion

vector
2. Find the motion vector with the lowest error

u” = arg min F(u)

h
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Finding the minimum

" Full search (e.g., £16 pixels)
= Gradient descent
= Hjerarchical motion estimation
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Hierarchical motion estimation

= Construct image pyramid ~~\f(2)

V) e %) L

= Estimate motion on coarse level
= Use as initialization for next finer level

a1 « 2u®
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Gradient Descent

= Perform gradient descent on the SSD energy
function (Lucas and Kanade, 1981)

= Taylor expansion of energy function

ELK—SSD (11 -+ AU) = Z(fl (X.?; u All) — fU(Xi))Q

1

~ Z filx; +u)+ Ji(x+u)Au — fg(XZ))

—Z (Ji(x + u)Au + ;)3

df1 0
with ]1(Xe +u) =V/fi(x; +u) = (8J;1 a{;)(xi
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Least Squares Problem

= Goal: Minimize
FE(u+ Au) = Z(Jl (x; + u)Au + ¢;)°

= Solution: Compute derivative (and set to zero)

OF(u+ Au)

A — 2AAu + 2b

with A = Z J! (x;i +u)Ji(x+u)

and b = Zeﬂf(xi + u)
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Least Squares Problem

1. Compute A,b from image gradients using

A ( > I fofu) b — (S: fzﬂf;f)

> fely 2.1y > 1ot
with 1, = “5 1, = S
9, (x
and /i = fi( )[g f1(x) = fo(x)]

ot

2. Solve AAu= —-b
= Au=-A"1p

All of these computation
are super fast!
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Covariance of the Estimated Motion

= Assuming (small) Gaussian noise in the images
fobs (X@) — ftruc (X-?ﬁ) + €;
with ¢ ~ N(0,07)

= .. results in uncertainty in the motion estimate
with covariance (e.g., useful for Kalman filter)

Y, =o0’A"}
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Optical Computer Mouse (since 1999)

= E.g., ADNS3080 from Agilent
Technologies, 2005
= 6400 fps
= 30x30 pixels
= 4 USD

HDNS-2200 (CLIP)

HLMP-ED80 (LED)
HDNS-2000 (SENSOR)

=+—— CUSTOMER SUPPLIED PCB

HDNS-2100 (LENS)

-=—— CUSTOMER SUPPLIED BASE PLATE
WITH RECOMMENDED ALIGNMENT
FEATURES PER IGES DRAWING

Visual Navigation for Flying Robots
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CONNECTOR
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REGULATOR
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J B
+5V (4) 2
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s DATA(1)
GND (3)

BUTTONS R nﬁ\ f\

Vv VW

R1VALUE LED
(OHMS)  BIN
1 68.9 K
1.0 pF 68.9 L
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R1| 689 N
78.9 P
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z 0.1 pF e R
Voo3 169 T
VoDs
VoDs HLMP-ED80
MODE/XA 0 —
SURFACE
Ps2 C xv_Lenfé 2N3904
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5 AVX KBR-1843-MSA or
LB NRESET MURATA  CSA18.43MXZ040
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HDNS-2000
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Image Patches

= Sometimes we are interested of the motion of
a small image patches

" Problem: some patches are easier to track than
others

= What patches are easy/difficult to track?
= How can we recognize “good” patches?
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Image Patches

= Sometimes we are interested of the motion of
a small image patches

" Problem: some patches are easier to track than
others
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Example

= Let’s look at the shape of the energy functional

ag g B EELEDN
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Corner Detection

A (T S5
> [ty 21,
" |dea: Inspect eigenvalues A;, A2 of Hessian A
= A1, A2 small = no point of interest
= )\, large, Ao small 2> edge
= A1, A2 large = corner
= Harris detector (does not need eigenvalues)
Mg > k(A + Ag)? & det(A) > & trace®(A)

= Shi-Tomasi (or Kanade-Lucas) min(Aj, \s) > &
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Corner Detection

For all pixels, computer corner strength

2. Non-maximal suppression
(E.g., sort by strength, strong corner
suppresses weaker corners in circle of radius r)

strongest responses non-maximal suppression
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Other Detectors

= Forstner detector (localize corner with sub-
pixel accuracy)

= FAST corners (learn decision tree, minimize
number of tests = super fast)

= Difference of Gaussians / DoG (scale-invariant
detector)
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Kanade-Lucas-Tomasi (KLT) Tracker

= Algorithm

1. Find (Shi-Tomasi) corners in first frame and
initialize tracks

Track from frame to frame

Delete track if error exceeds threshold
Initialize additional tracks when necessary
Repeat step 2-4

= KLT tracker is highly efficient (real-time on CPU)
but provides only sparse motion vectors

= Dense optical flow methods require GPU

VR W N
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3D Motion Estimation

(How) Can we recover the camera motion from
the estimated flow field?

= Research paper: Grabe et al., ICRA 2012

http://www?9.in.tum.de/~sturmju/dirs/icra2012/data/papers/2025.pdf

On-board Velocity Estimation and Closed-loop Control of a Quadrotor
UAV based on Optical Flow

Volker Grabe, Heinrich H. Biilthoff, and Paolo Robuffo Giordano

Abstract— Robot vision became a field of increasing im-
portance in micro aerial vehicle robotics with the availability
of small and light hardware. While most approaches rely on
external ground stations because of the need of high compu-
tational power, we will present a full autonomous setup using
only on-board hardware, Our work is based on the confinuous
homography constraint to recover ego-motion from optical flow.
Thus we are able to provide an efficient fall back routine for
any kind of UAV (Unmanned Aerial Vehicles) since we rely
solely on a monocular camera and on on-board computation.
In particular, we devised two variants of the classical continuous
4-point algorithm and provided an extensive experimental
evaluation against a known ground truth. The results show
that our approach is able to recover the ego-motion of a flying
UAV in realistic conditions and by only relying on the limited
on-board computational power. Furthermore, we exploited the
velocity estimation for closing the loop and controlling the
motion of the UAY online.

I. INTRODUCTION

In the recent vears, vertical take-off and landing vehicles
ular focus of research among robotic

approaches were recently presented [4], [5]. [6]. However,
all of these visnal SLAM (simultaneous localization and
mapping) setups rely on the possibility to forward demanding
large portions (if not all) of the needed computations to an
ad-hoc ground station. This, however, greatly reduces the
flexibility of the robotic system at hand. Additionally, they
usually do not include a reliable emergency backup behavior
in case of lost tracking, an unwanted but common situation
when dealing with artificial vision.

Up to now, only a few real-time approaches are able to
cope with the limited processing power available on current
on-board hardware. However, one of the first system with
all processing done on-board uses a laser scanner as main
data source to detect the environment [7]. A camera is
used only with a frequency of 2 Hz to detect loop closures.
Unfortunately, compared to cameras, laser scanners can only
observe a two dimensional slice of the world and are much
more demanding for on-board use in terms of weight and
energy consumption. To the best of our knowledge, onl



http://www9.in.tum.de/~sturmju/dirs/icra2012/data/papers/2025.pdf
http://www9.in.tum.de/~sturmju/dirs/icra2012/data/papers/2025.pdf
http://www9.in.tum.de/~sturmju/dirs/icra2012/data/papers/2025.pdf

Approach [Grabe et al., ICRA’12]

= Compute optical flow

= Estimate homography between images

" Extract angular and (scaled) linear velocity
= Additionally employ information from IMU
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Assumptions

1. The quadrocopter moves slowly relative to the
sampling rate
-2 limited search radius

2. The environment is planar with normal N
- image transformation is a homography

®>§\<®::
o -
O
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Apparent Velocity of a Point

= Stationary 3D point feature, given in camera
frame

p € R’
= Moving camera with twist
£ _ (VT, (.;.JT)T c RG
= Apparent velocity of the point in camera frame

15: [w}xp—'—v
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Continuous Homography Matrix

= Assumption: All feature points are located on a

plane
N'p=d

with plane normal N ¢ R?
and distance d € R
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Continuous Homography Matrix

= Rewrite thisto *N'p =1 and plug it into the
equation for the apparent velocity, we obtain

1 1
P = [W]XP—F’UENTP — ([“"]x ""UENT) p=Hp

W
HERHX?}

= H is called the continuous homography matrix

= Note: H contains both the linear/angular
velocity (v,w) and the scene structure (&, d)
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Continuous Homography Constraint

= The camera observes point p € R’ at pixel x € R?
(assuming K = [ for simplicity)

X=AX=D
" The KLT tracker estimates the motion u of the
feature track in the image

= Constraint: u=x

IN
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Continuous Homography Constraint

= \We now have
1. p=Hp

2. p=\X+ \i (time derivative of p = AX and
the optical flow constraint u = x)

= | et’s combine these two formulas...
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Continuous Homography Constraint

= Combining these formulas gives us
AX + \i = Hp
A= Hp — AX

u=Hx—3X

= Multiply both sides with [X]« gives us
%], = [R] HR — [%] 4%
=0

= [X|u = [X]| HX
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Approach

= Result: For all observed motions in the image,
the continuous homography constraint holds

X0 = [X|«HX
= How can we use this to estimate the camera
motion?!
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Approach

= Result: For all observed motions in the image,
the continuous homography constraint holds

X| 0= |X| HX
= How can we use this to estimate the camera
motion?
1. Estimate / from at least 4 feature tracks
2. Recover (v,w)and (N,d) from H

Remember: H = [w], +viN'
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Step 1: Estimate H

= Continuous homography constraint
x| HX = [X]| 1
= Stack matrix H as a vector h € R’ and rewrite
M'h =[],
—Linear system of equations
" For several feature tracks
M X, 1,
M, | h=|[x.0
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Step 1: Estimate H

" Linear set of equations

M, X].a;
My | h= | [X]x1y

W N -~ >
A b

= Solve for h using least squares
Ah=Db
= h=(A"A)""'A"b
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Step 2: Recover camera motion

Grabe et al. investigated three alternatives:

1. Recover (w, 5, N)from H = [w], +viN'
using the 8-point algorithm (not yet explained)

2. Use angular velocity w from IMU to de-rotate
observed feature tracks beforehand, then:

H=viN'

3. Additionally use gravity vector from IMU as

plane normal N = Ny, then

v = H(N'N)"!
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Evaluation

= Comparison of estimated velocities with
ground truth from motion capture system

Pure vision 0.134 = 0.094 =
Ang. vel. known 0.117 = 0.093 ~
Normal known 0.113 ? 0.088 ?

= Comparison of actual velocity with desired
velocity (closed-loop control)

Pure vision 0.084 * 0.139 ~
Ang. vel. known 0.039 0.042 7
Normal known 0.028 0.031 ”
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Visual Velocity Control

= All computations are carried out on-board (18fps)

[Grabe et al., ICRA ‘12]
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Landing on a Moving Platform

= Similar approach, but with offboard computation

[Herissé et al., T-RO ’12]
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Commercial Solutions

= Helicommand 3D from Robbe
2(?) cameras, IMU, air pressure sensor, 450 EUR

= Parrot Mainboard + Navigation board
1 camera, IMU, ultrasound sensor, 210 USD
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Lessons Learned Today

= How to estimate the translational motion from
camera images

= Which image patches are easier to track than
others

= How to estimate 3D motion from multiple
feature tracks (and IMU data)
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A Few ldeas for Your Mini-Project

= Person following (colored shirt or wearing a marker)

" Flying camera for taking group pictures (possibly using
the OpenCV face detector)

" Fly through a hula hoop (brightly colored, white
background)

= Navigate through a door (brightly colored)

= Navigate from one room to another (using ground
markers)

= Avoid obstacles using optical flow
" Landing on a moving platform
= Your own idea here — be creative!
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Joggobot

" Follows a person wearing a visual marker

| o
[http://exertiongameslab.org/projects/joggobot]
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