
Computer Vision Group  
Prof. Daniel Cremers 

Visual Navigation  
for Flying Robots 

Dr. Jürgen Sturm 

Bundle Adjustment  

and Stereo Correspondence 

TexPoint fonts used in EMF.  
Read the TexPoint manual before you delete this box.: AAAAAAAAAA 



Project Proposal Presentations 

 This Thursday 

 Don’t forget to put title, team name, team 
members on first slide 

 Pitch has to fit in 5 minutes (+5 minutes 
discussion) 

 9 x (5+5) = 90 minutes 

 Recommendation: use 3-5 slides 
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Agenda for Today 

 Map optimization 

 Graph SLAM 

 Bundle adjustment 

 Depth reconstruction 

 Laser triangulation 

 Structured light (Kinect) 

 Stereo cameras 
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Remember: 3D Transformations 

 Representation as a homogeneous matrix 

 

 

 

 Representation as a twist coordinates 
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Pro: easy to concatenate  
and invert 
Con: not minimal 

Pro: minimal 
Con: need to convert 
to matrix for concat- 
enation and inversion 



Remember: 3D Transformations 

 From twist coordinates to twist 

 

 

 

 

 Exponential map between se(3) and SE(3) 
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alternative notation: 



Remember: Rodrigues’ formula 

 Given: Twist coordinates 

 

 

 Return: Homogeneous transformation 
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with 



Notation 

 Camera poses in a minimal representation 
(e.g., twists) 

 

 … as transformation matrices 

 

 … as rotation matrices and translation vectors 
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Incremental Motion Estimation 

 Idea: Estimate camera motion from frame to 
frame 
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Incremental Motion Estimation 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 9 

 Idea: Estimate camera motion from frame to 
frame 

 Motion concatenation (for twists) 

 

 Motion composition operator (in general) 



Incremental Motion Estimation 

 Idea: Estimate camera motion from frame to 
frame 
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Incremental Motion Estimation 

 Idea: Estimate camera motion from frame to 
frame 
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Loop Closures 

 Idea: Estimate camera motion from frame to 
frame 

 Problem: 

 Estimates are inherently noisy 

 Error accumulates over time  drift 
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Incremental Motion Estimation 

 Idea: Estimate camera motion from frame to 
frame 
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Incremental Motion Estimation 

 Idea: Estimate camera motion from frame to 
frame 

 Two ways to compute     : 
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Loop Closures 

 Solution: Use loop-closures to minimize the 
drift / minimize the error over all constraints 
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Graph SLAM 
[Thrun and Montemerlo, 2006; Olson et al., 2006] 

 Use a graph to represent the model 

 Every node in the graph corresponds to a pose 
of the robot during mapping 

 Every edge between two nodes corresponds to 
a spatial constraint between them 

 Graph-based SLAM: Build the graph and find 
the robot poses that minimize the error 
introduced by the constraints 
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Example: Graph SLAM on Intel Dataset 
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Graph SLAM Architecture 

 Interleaving process of front-end and back-end 

 A consistent map helps to determine new 
constraints by reducing the search space 
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Constraint/graph 
generation 
(Front-end) 

Graph optimization 
(Back-end) graph 

(nodes and edges) 

camera poses 

raw sensor  
data 

map 

Focus of today 



Problem Definition 

 Given: Set of observations 

 

 Wanted: Set of camera poses 
 State vector 
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Map Error 

 Real observation 

 Expected observation 

 

 Difference between observation and expectation 

 

 

 Given the correct map, this difference is the 
result of sensor noise… 
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Error Function 

 Assumption: Sensor noise is normally 
distributed 
 

 

 Error term for one observation  
(proportional to negative loglikelihood) 

 

 

 Note: error is a scalar 
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Error Function 

 Map error (over all observations) 

 

 
 

 Minimize this error by optimizing the camera 
poses 

 

 

 How can we solve this optimization problem? 
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Non-Linear Optimization Techniques 

 Gradient descend 

 Gauss-Newton 

 Levenberg-Marquardt 
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Gauss-Newton Method 

1. Linearize the error function 

2. Compute its derivative 

3. Set the derivative to zero 

4. Solve the linear system 

5. Iterate this procedure until convergence 
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Step 1: Linearize the Error Function 

 Error function 

 
 

 

 Evaluate the error function around the initial 
guess 
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Let’s derive this term first… 



Linearize the Error Function 

 Approximate the error function around an 
initial guess      using Taylor expansion 
 
 
with 
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Derivatives of the Error Terms 

 Does one error function            depend on all 
state variables in     ? 
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Derivatives of the Error Terms 

 Does one error function            depend on all 
state variables in     ? 

 No,               depends only on       and   
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Derivatives of the Error Terms 

 Does one error function            depend on all 
state variables in     ? 

 No,               depends only on       and   

 Is there any consequence on the structure of 
the Jacobian? 
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Derivatives of the Error Terms 

 Does one error function            depend on all 
state variables in     ? 

 No,               depends only on       and   

 Is there any consequence on the structure of 
the Jacobian? 

 Yes, it will be non-zero only in the columns 
corresponding to       and 

 Jacobian is sparse 
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Linearizing the Error Function 

Linearize 

 
 
 

with 

 
 

 What is the structure of       and     ? 
(Remember: all       ‘s are sparse) 
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Illustration of the Structure 

Non-zero only  
at       and  



Illustration of the Structure 

Non-zero only  
at       and  

Non-zero on the main  
diagonal at       and 



Illustration of the Structure 

Non-zero on the main  
diagonal at       and 

... and 
at the 
blocks  
ij,ji 

Non-zero only  
at       and  



Illustration of the Structure 

+ + … + 

+ + … + 

b: dense vector 

H: sparse block structure  
with main diagonal 



(Linear) Least Squares Minimization 

1. Linearize error function 

 

2. Compute the derivative 

 
 

3. Set derivative to zero 

 

4. Solve this linear system of equations, e.g.,  
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Gauss-Newton Method 

Problem:          is non-linear! 

Algorithm: Repeat until convergence 

1. Compute the terms of the linear system 

 

2. Solve the linear system to get new increment 

 

3. Update previous estimate 
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Sparsity of the Hessian 

 The Hessian is  

 positive semi-definit 

 symmetric 

 sparse 

 This allows the use of efficient solvers 

 Sparse Cholesky decomposition (~100M matrix 
elements) 

 Preconditioned conjugate gradients (~1.000M 
matrix elements) 

 … many others 
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Example in 1D 

 Two camera poses 

 State vector 

 One (distance) observation 

 

 Initial guess 

 Observation 

 Sensor noise 
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Example in 1D 

 Error 

 

 Jacobian 

  Build linear system of equations 

 

 
 Solve the system 
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but ??? 



What Went Wrong? 

 The constraint only specifies a relative 
constraint between two nodes 

 Any poses for the nodes would be fine as long 
as their relative coordinates fit 

 One node needs to be fixed 

 Option 1: Remove one row/column corresponding 
to the fixed pose 

 Option 2: Add to          a linear constraint 

 Option 3: Add the identity matrix to       (Levenberg-
Marquardt) 
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Fixing One Node 

 The constraint only specifies a relative 
constraint between two nodes 

 Any poses for the nodes would be fine as long 
as their relative coordinates fit 

 One node needs to be fixed (here: Option 2) 
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additional constraint 
that sets  



Levenberg-Marquardt Algorithm 

 Idea: Add a damping factor 

 

 

 What is the effect of this damping factor? 

 Small    ? 

 Large    ? 
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Levenberg-Marquardt Algorithm 

 Idea: Add a damping factor 

 

 

 What is the effect of this damping factor? 

 Small     same as least squares 

 Large     steepest descent (with small step size) 

 Algorithm 

 If error decreases, accept        and reduce 

 If error increases, reject        and increase  
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Non-Linear Minimization 

 One of the state-of-the-art solution to compute 
the maximum likelihood estimate 

 Various open-source implementations available  

 g2o [Kuemmerle et al., 2011] 

 sba [Lourakis and Argyros, 2009] 

 iSAM [Kaess et al., 2008] 

 Other extensions: 

 Robust error functions  

 Alternative parameterizations 
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Bundle Adjustment 

 Graph SLAM: Optimize (only) the camera poses 

 

 

 Bundle Adjustment: Optimize both 6DOF 
camera poses and 3D (feature) points 

 

 
 Typically                 (why?) 
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Error Function 

 Camera pose 

 Feature point 

 Observed feature location 

 Expected feature location 
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Error Function 

 Difference between observation and 
expectation 

 
 

 Error function 
 

 

 Covariance      is often chosen isotropic and on 
the order of one pixel 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 49 



Illustration of the Structure 

 Each camera sees several points 

 Each point is seen by several cameras 

 Cameras are independent of each other (given 
the points), same for the points 
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Primary Structure 

 Characteristic structure 
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Primary Structure 

 Insight:        and         are block-diagonal 
(because each constraint depends only on one 
camera and one point) 

 

 

 

 This can be efficiently solved using the Schur 
Complement 
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Schur Complement  
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 Given: Linear system 

 

 

 If D is invertible, then (using Gauss elimination) 

 

 

 Reduced complexity, i.e., invert  one           and  
          matrix instead of one  
matrix 

 

 

 

 



Example Hessian 
(Lourakis and Argyros, 2009) 
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From Sparse Maps to Dense Maps 

 So far, we only looked at sparse 3D maps 

 We know where the (sparse) cameras are 

 We know where the (sparse) 3D feature points are 

 How can we turn these models into volumetric 
3D models?  

 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 56 



From Sparse Maps to Dense Maps 

 Today: Estimation of depth dense images  
(stereo cameras, laser triangulation, structured 
light/Kinect) 

 Next week: Dense map representations  and 
data fusion 
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Human Stereo Vision 



Stereo Correspondence Constraints 
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 Given a point in the left image, where can the 
corresponding point be in the right image? 



Reminder: Epipolar Geometry 

 A point in one image “generates” a line in 
another image (called the epipolar line) 

 Epipolar constraint 
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Epipolar plane 

Baseline Epipole Epipole 

Epipolar  
line 

Epipolar  
line 



Epipolar Plane 

 All epipolar lines intersect at the epipoles 

 An epipolar plane intersects the left and right 
image planes in epipolar lines 
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Epipolar plane 

Baseline Epipole Epipole 

Epipolar  
line 

Epipolar  
line 



Epipolar Constraint 

 This is useful because it reduces the 
correspondence problem to a 1D search along 
an epipolar line 
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Example: Converging Cameras 
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Example: Parallel Cameras 
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Rectification 

 In practice, it is convenient if the image 
scanlines (rows) are the epipolar lines 

 Reproject image planes onto a common plane 
parallel to the baseline (two 3x3 homographies) 

 Afterwards pixel motion is horizontal 
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Example: Rectification 
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Basic Stereo Algorithm 

 For each pixel in the left image 

 Compare with every pixel on the same epipolar line 
in the right image 

 Pick pixel with minimum matching cost (noisy) 

 Better: match small blocks/patches (SSD, SAD, NCC) 
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left image 

right image 



Block Matching Algorithm 

Input: Two images and camera calibrations 

Output: Disparity (or depth) image 

Algorithm: 

1. Geometry correction (undistortion and 
rectification) 

2. Matching cost computation along search window 

3. Extrema extraction (at sub-pixel accuracy) 

4. Post-filtering (clean up noise) 
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Example 

 Input 

 

 

 

 Output 
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What is the Influence of the Block Size? 

 Common choices are 5x5 .. 11x11 

 Smaller neighborhood: more details 

 Larger neighborhood: less noise 

 Suppress pixels with low confidence (e.g., 
check ratio best match vs. 2nd best match) 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 70 

3x3 20x20 



Problems with Stereo 

 Block matching typically fails in regions with 
low texture 

 Global optimization/regularization (speciality of our 
research group) 

 Additional texture projection 
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Example: PR2 Robot 
with Projected Texture Stereo 
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pattern projector 

wide-angle stereo pair 

narrow-angle stereo pair 

5 MP high-res camera 



Laser Triangulation 

Idea: 

 Well-defined light pattern (e.g., point or line) 
projected on scene 

 Observed by a line/matrix camera or a 
position-sensitive device (PSD) 

 Simple triangulation to compute distance 
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Laser Triangulation 
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 Function principle 

 

 

 

 

 
 Depth triangulation 

 

(note: same for stereo disparities)  

Laser 
C

C
D

 

Pin-hole baseline 

disparity 

focal length depth 



Example: Neato XV-11 
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 K. Konolige, “A low-cost laser distance sensor”, 
ICRA 2008 

 Specs: 360deg, 10Hz, 30 USD  

laser 

camera 



How Does the Data Look Like? 
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Laser Triangulation 

 Stripe laser + 2D camera 

 Often used on conveyer belts (volume sensing) 

 Large baseline gives better depth resolution 
but more occlusions  use two cameras 
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Structured Light 

 Multiple stripes / 2D pattern 

 Data association more difficult 
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Structured Light 

 Multiple stripes / 2D pattern 

 Data association more difficult 

 Coding schemes 

 Temporal: Coded light 
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Structured Light 

 Multiple stripes / 2D pattern 

 Data association more difficult 

 Coding schemes 

 Temporal: Coded light 

 Wavelength: Color 

 Spatial: Pattern (e.g., diffraction patterns) 
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Sensor Principle of Kinect 

 Kinect projects a diffraction pattern (speckles) 
in near-infrared light 

 CMOS IR camera observes the scene 
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Infrared 
pattern 

projector Color 
camera 

Infrared 
camera 

“stereo” Baseline 



Example Data 
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 Kinect provides color (RGB) and depth (D) video 

 This allows for novel approaches for (robot) 
perception 



Sensor Principle of Kinect 
Infrared pattern  

(known) 

Infrared image  
(with distorted pattern) 

Standard 
block matcher 

(9x9) 

Depth image 
(color encodes distance from 

camera) 

Disparity image 



Sensor Principle of Kinect 

 Pattern is memorized at a known depth 

 For each pixel in the IR image 

 Extract 9x9 template from memorized pattern 

 Correlate with current IR image over 64 pixels and 
search for the maximum 

 Interpolate maximum to obtain sub-pixel accuracy 
(1/8 pixel) 

 Calculate depth by triangulation 
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Technical Specs 

 Infrared camera has 640x480 @ 30 Hz 
 Depth correlation runs on FPGA 
 11-bit depth image 
 0.8m – 5m range 
 Depth sensing does not work in direct sunlight (why?) 

 RGB camera has 640x480 @ 30 Hz 
 Bayer color filter 

 Four 16-bit microphones with DSP for beam forming @ 
16kHz 

 Requires 12V (for motor), weighs 500 grams 
 Human pose recognition runs on Xbox CPU and uses 

only 10-15% processing power @30 Hz 
(Paper: http://research.microsoft.com/apps/pubs/default.aspx?id=145347) 
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History 

 2005: Developed by PrimeSense (Israel) 

 2006: Offer to Nintendo and Microsoft, both companies declined 

 2007: Alex Kidman becomes new incubation director at Microsoft, decides 
to explore PrimeSense device. Johnny Lee assembles a team to investigate 
technology and develop game concepts  

 2008: The group around Prof. Andrew Blake and Jamie Shotton (Microsoft 
Research) develops pose recognition 

 2009:  The group around Prof. Dieter Fox (Intel Labs / Univ. of Washington) 
works on RGB-D mapping and RGB-D object recognition 

 Nov 4, 2010: Official market launch 

 Nov 10, 2010: First open-source driver available 

 2011: First programming competitions (ROS 3D, PrimeSense), First 
workshops (RSS, Euron) 

 2012: First special Issues (JVCI, T-SMC) 
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Impact of the Kinect Sensor 

 Sold >18M units, >8M in first 60 days (Guiness: 
“fastest selling consumer electronics device) 

 Has become a “standard” sensor in robotics 
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Kinect: Applications 
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Open Research Questions 

 How can RGB-D sensing facilitate in solving 
hard perception problems in robotics? 

 Interest points and feature descriptors? 

 Simultaneous localization and mapping? 

 Collision avoidance and visual navigation? 

 Object recognition and localization? 

 Human-robot interaction? 

 Semantic scene interpretation? 
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