

Computer Vision Group Prof. Daniel Cremers

Visual Navigation for Flying Robots Bundle Adjustment and Stereo Correspondence

Dr. Jürgen Sturm

Project Proposal Presentations

- This Thursday
- Don't forget to put title, team name, team members on first slide
- Pitch has to fit in 5 minutes (+5 minutes discussion)
- 9 x (5+5) = 90 minutes
- Recommendation: use 3-5 slides

Agenda for Today

- Map optimization
 - Graph SLAM
 - Bundle adjustment
- Depth reconstruction
 - Laser triangulation
 - Structured light (Kinect)
 - Stereo cameras

Remember: 3D Transformations

Representation as a homogeneous matrix

$$M = \begin{pmatrix} R & \mathbf{t} \\ \mathbf{0}^\top & 1 \end{pmatrix} \in \mathrm{SE}(3) \subset \mathbb{R}^{4 \times 4}$$

Representation as a twist coordinates

$$\boldsymbol{\xi} = (v_x \ v_y \ v_z \ \omega_x \ \omega_y \ \omega_z)^\top \in \mathbf{R}^6$$

Pro: minimal **Con:** need to convert to matrix for concatenation and inversion

Remember: 3D Transformations

From twist coordinates to twist

$$\hat{\boldsymbol{\xi}} = \begin{pmatrix} 0 & -\omega_z & \omega_y & v_x \\ \omega_z & 0 & -\omega_x & v_y \\ -\omega_y & \omega_x & 0 & v_z \\ 0 & 0 & 0 & 0 \end{pmatrix} \in \operatorname{se}(3)$$

Exponential map between se(3) and SE(3)

$$M = \exp \hat{\boldsymbol{\xi}} \qquad \hat{\boldsymbol{\xi}} = \log M$$
$$M = \exp[\boldsymbol{\xi}]^{\wedge} \qquad \boldsymbol{\xi} = [\log M]^{\vee}$$

alternative notation:

Remember: Rodrigues' formula

• **Given:** Twist coordinates

$$\boldsymbol{\xi} = (\boldsymbol{\omega}^{\top}, \boldsymbol{v}^{\top})^{\top} = (\omega_x, \omega_y, \omega_z, v_x, v_y, v_z)^{\top}$$
$$= (t \bar{\boldsymbol{\omega}}^{\top}, \boldsymbol{v}^{\top})^{\top} \text{ with } \|\bar{\boldsymbol{\omega}}\| = 1, t = \|\boldsymbol{\omega}\|$$

Return: Homogeneous transformation

$$R = I + [\bar{\boldsymbol{\omega}}]_{\times} \sin(t) + [\bar{\boldsymbol{\omega}}]_{\times}^{2} (1 - \cos t)$$
$$\mathbf{t} = (I - R)[\bar{\boldsymbol{\omega}}]_{\times} \boldsymbol{v} + \bar{\boldsymbol{\omega}} \bar{\boldsymbol{\omega}}^{\top} \boldsymbol{v} t$$
$$M = \begin{pmatrix} R & \mathbf{t} \\ \mathbf{0}^{\top} & 1 \end{pmatrix}$$

Notation

 Camera poses in a minimal representation (e.g., twists)

 $\mathbf{c}_1, \mathbf{c}_2, \ldots, \mathbf{c}_n$

... as transformation matrices

 M_1, M_2, \ldots, M_n

... as rotation matrices and translation vectors

$$(R_1,\mathbf{t}_1),(R_2,\mathbf{t}_2),\ldots,(R_n,\mathbf{t}_n)$$

 Idea: Estimate camera motion from frame to frame

- Idea: Estimate camera motion from frame to frame
- Motion concatenation (for twists)

$$\mathbf{\hat{c}}_j = \log\left(\exp\mathbf{\hat{c}}_i\exp\mathbf{\hat{z}}_{ij}\right)$$

Motion composition operator (in general)

 Idea: Estimate camera motion from frame to frame

 Idea: Estimate camera motion from frame to frame

Loop Closures

- Idea: Estimate camera motion from frame to frame
- Problem:
 - Estimates are inherently noisy
 - Error accumulates over time \rightarrow drift

 Idea: Estimate camera motion from frame to frame

- Idea: Estimate camera motion from frame to frame
- Two ways to compute \mathbf{c}_n : $\mathbf{c}_n = \mathbf{c}_{n-1} \oplus \mathbf{z}_{(n-1)n}$

Loop Closures

 Solution: Use loop-closures to minimize the drift / minimize the error over all constraints

[Thrun and Montemerlo, 2006; Olson et al., 2006]

- Use a graph to represent the model
- Every node in the graph corresponds to a pose of the robot during mapping
- Every edge between two nodes corresponds to a spatial constraint between them
- Graph-based SLAM: Build the graph and find the robot poses that minimize the error introduced by the constraints

Example: Graph SLAM on Intel Dataset

Visual Navigation for Flying Robots

- Interleaving process of front-end and back-end
- A consistent map helps to determine new constraints by reducing the search space

Problem Definition

• Given: Set of observations $\mathbf{z}_{ij} \in \mathbb{R}^6$

■ Wanted: Set of camera poses $\mathbf{c}_1, \dots, \mathbf{c}_n \in \mathbb{R}^6$ → State vector $\mathbf{x} = (\mathbf{c}_1^\top, \dots, \mathbf{c}_n^\top)^\top \in \mathbb{R}^{6n}$

Map Error

- Real observation **z**_{ij}
- Expected observation $\bar{\mathbf{z}}_{ij} = \mathbf{c}_j \ominus \mathbf{c}_i$

Difference between observation and expectation

$$\mathbf{e}_{ij} = \mathbf{z}_{ij} \ominus \mathbf{\bar{z}}_{ij}$$

 Given the correct map, this difference is the result of sensor noise...

Error Function

 Assumption: Sensor noise is normally distributed

$$\mathbf{e}_{ij} \sim \mathcal{N}(\mathbf{0}, \Sigma_{ij})$$

 Error term for one observation (proportional to negative loglikelihood)

$$f_{ij}(\mathbf{x}) = \mathbf{e}_{ij}(\mathbf{x})^{\top} \Sigma_{ij}^{-1} \mathbf{e}_{ij}(\mathbf{x})$$

• Note: error is a scalar $f_{ij}(\mathbf{x}) \in \mathbb{R}$

Error Function

Map error (over all observations)

$$f(\mathbf{x}) = \sum_{ij} f_{ij}(\mathbf{x}) = \sum_{ij} \mathbf{e}_{ij}(\mathbf{x})^\top \Sigma_{ij}^{-1} \mathbf{e}_{ij}(\mathbf{x})$$

 Minimize this error by optimizing the camera poses

$$\mathbf{x}^* = \arg\min_{\mathbf{x}} \sum_{ij} \mathbf{e}_{ij}(\mathbf{x})^\top \Sigma_{ij}^{-1} \mathbf{e}_{ij}(\mathbf{x})$$

How can we solve this optimization problem?

Non-Linear Optimization Techniques

- Gradient descend
- Gauss-Newton
- Levenberg-Marquardt

Gauss-Newton Method

- **1**. Linearize the error function
- 2. Compute its derivative
- 3. Set the derivative to zero
- 4. Solve the linear system
- 5. Iterate this procedure until convergence

Step 1: Linearize the Error Function

Error function

$$f(\mathbf{x}) = \sum_{ij} f_{ij}(\mathbf{x}) = \sum_{ij} \mathbf{e}_{ij}(\mathbf{x})^{\top} \Sigma_{ij}^{-1} \mathbf{e}_{ij}(\mathbf{x})$$

Evaluate the error function around the initial guess

$$f(\mathbf{x} + \Delta \mathbf{x}) = \sum_{ij} \mathbf{e}_{ij} (\mathbf{x} + \Delta \mathbf{x})^{\top} \Sigma_{ij}^{-1} \mathbf{e}_{ij} (\mathbf{x} + \Delta \mathbf{x})$$

Let's derive this term first...

Linearize the Error Function

 Approximate the error function around an initial guess x using Taylor expansion

$$\mathbf{e}_{ij}(\mathbf{x} + \Delta \mathbf{x}) \simeq \mathbf{e}_{ij}(\mathbf{x}) + J_{ij}\Delta \mathbf{x}$$

with

$$J_{ij}(\mathbf{x}) = \begin{pmatrix} \frac{\partial \mathbf{e}_{ij}(\mathbf{x})}{\partial \mathbf{c}_1} & \frac{\partial \mathbf{e}_{ij}(\mathbf{x})}{\partial \mathbf{c}_2} & \cdots & \frac{\partial \mathbf{e}_{ij}(\mathbf{x})}{\partial \mathbf{c}_n} \end{pmatrix}$$

Does one error function e_{ij}(x) depend on all state variables in x ?

- Does one error function e_{ij}(x) depend on all state variables in x ?
 - No, $\mathbf{e}_{ij}(\mathbf{x})$ depends only on \mathbf{c}_i and \mathbf{c}_j

- Does one error function e_{ij}(x) depend on all state variables in x ?
 - No, $\mathbf{e}_{ij}(\mathbf{x})$ depends only on \mathbf{c}_i and \mathbf{c}_j
- Is there any consequence on the structure of the Jacobian?

- Does one error function e_{ij}(x) depend on all state variables in x ?
 - No, $\mathbf{e}_{ij}(\mathbf{x})$ depends only on \mathbf{c}_i and \mathbf{c}_j
- Is there any consequence on the structure of the Jacobian?
 - Yes, it will be non-zero only in the columns corresponding to c_i and c_j
 - Jacobian is sparse

$$J_{ij}(\mathbf{x}) = \left(\mathbf{0} \cdots \frac{\partial \mathbf{e}_{ij}(\mathbf{x})}{\partial \mathbf{c}_i} \cdots \frac{\partial \mathbf{e}_{ij}(\mathbf{x})}{\partial \mathbf{c}_j} \cdots \mathbf{0}\right)$$

Linearizing the Error Function

Linearize
$$f(\mathbf{x}) = \sum_{ij} \mathbf{e}_{ij} (\mathbf{x})^T \Sigma_{ij}^{-1} \mathbf{e}_{ij} (\mathbf{x})$$

 $\simeq \mathbf{c} + 2\mathbf{b}^\top \Delta \mathbf{x} + \Delta \mathbf{x}^\top H \Delta \mathbf{x}$

with
$$\mathbf{b}^{\top} = \sum_{ij} \mathbf{e}_{ij}^{\top} \Sigma_{ij}^{-1} J_{ij}$$

$$H = \sum_{ij} J_{ij}^{\top} \Sigma_{ij}^{-1} J_{ij}$$

• What is the structure of \mathbf{b}^{\top} and H? (Remember: all J_{ij} 's are sparse)

H: sparse block structure with main diagonal

(Linear) Least Squares Minimization

1. Linearize error function

$$f(\mathbf{x} + \Delta \mathbf{x}) \simeq \mathbf{c} + 2\mathbf{b}^{\top} \Delta \mathbf{x} + \Delta \mathbf{x}^{\top} H \Delta \mathbf{x}$$

2. Compute the derivative

$$\frac{\mathrm{d}f(\mathbf{x} + \Delta \mathbf{x})}{\mathrm{d}\Delta \mathbf{x}} = 2\mathbf{b} + 2H\Delta \mathbf{x}$$

3. Set derivative to zero

$$H\Delta \mathbf{x} = -\mathbf{b}$$

4. Solve this linear system of equations, e.g., $\Delta \mathbf{x} = -H^{-1}\mathbf{b}$
Gauss-Newton Method

- **Problem:** $f(\mathbf{x})$ is non-linear!
- Algorithm: Repeat until convergence
- 1. Compute the terms of the linear system

$$\mathbf{b}^{\top} = \sum_{ij} \mathbf{e}_{ij}^T \Sigma_{ij}^{-1} J_{ij} \qquad H = \sum_{ij} J_{ij}^\top \Sigma_{ij}^{-1} J_{ij}$$

- 2. Solve the linear system to get new increment $H\Delta \mathbf{x} = -\mathbf{b}$
- 3. Update previous estimate

$$\mathbf{x} \leftarrow \mathbf{x}_{\mathbf{x}} + \Delta \mathbf{x}$$

Sparsity of the Hessian

- The Hessian is
 - positive semi-definit
 - symmetric
 - sparse
- This allows the use of efficient solvers
 - Sparse Cholesky decomposition (~100M matrix elements)
 - Preconditioned conjugate gradients (~1.000M matrix elements)
 - ... many others

Example in 1D

- Two camera poses $c_1, c_2 \in \mathbb{R}$
- State vector $\mathbf{x} = (c_1, c_2)^\top \in \mathbb{R}^2$
- One (distance) observation $z_{12} \in \mathbb{R}$

- Initial guess $c_1 = c_2 = 0$
- Observation $z_{12} = 1$
- Sensor noise $\Sigma_{12} = 0.5$

Example in 1D

Error $e_{12} = z_{12} - \bar{z}_{12}$ = $z_{12} - (c_2 - c_1) = 1 - (0 - 0) = 1$ Jacobian $J_{12} = \begin{pmatrix} \frac{\partial e_{12}}{\partial c_1} & \frac{\partial e_{12}}{\partial c_2} \end{pmatrix} = \begin{pmatrix} 1 & -1 \end{pmatrix}$ Build linear system of equations

$$b^{\top} = e_{12}^{\top} \Sigma^{-1} e_{12} = \begin{pmatrix} 2 & -2 \end{pmatrix}$$
$$H = J_{12}^{\top} \Sigma^{-1} J_{12} = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}$$

Solve the system

$$x = -H^{-1}b$$
 but det $H = 0$???

What Went Wrong?

- The constraint only specifies a relative constraint between two nodes
- Any poses for the nodes would be fine as long as their relative coordinates fit
- One node needs to be fixed
 - Option 1: Remove one row/column corresponding to the fixed pose
 - Option 2: Add to H, \mathbf{b} a linear constraint $1 \cdot \Delta c_1 = 0$
 - Option 3: Add the identity matrix to H (Levenberg-Marquardt)

Fixing One Node

The constraint only specifies a relative constraint between two nodes

 $\Delta x = -H^{-1}b$

 $\Delta x = \begin{pmatrix} 0 & 1 \end{pmatrix}^{\top}$

- Any poses for the nodes would be fine as long as their relative coordinates fit
- One node needs to be fixed (here: Option 2)

 $H = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$

additional constraint that sets $\Delta c_1 = 0$

Levenberg-Marquardt Algorithm

• Idea: Add a damping factor $(H + \lambda I)\Delta \mathbf{x} = -\mathbf{b}$ $(J^{\top}J + \lambda I)\Delta \mathbf{x} = -J^{\top}\mathbf{e}$

- What is the effect of this damping factor?
 - Small λ ?
 - Large λ ?

Levenberg-Marquardt Algorithm

Idea: Add a damping factor

$$(H + \lambda I)\Delta \mathbf{x} = -\mathbf{b}$$
$$(J^{\top}J + \lambda I)\Delta \mathbf{x} = -J^{\top}\mathbf{e}$$

- What is the effect of this damping factor?
 - Small $\lambda \rightarrow$ same as least squares
 - Large $\lambda \rightarrow$ steepest descent (with small step size)

Algorithm

- If error decreases, accept $\Delta {\bf x}$ and reduce λ
- If error increases, reject $\Delta {f x}$ and increase λ

Non-Linear Minimization

- One of the state-of-the-art solution to compute the maximum likelihood estimate
- Various open-source implementations available
 - g2o [Kuemmerle et al., 2011]
 - sba [Lourakis and Argyros, 2009]
 - iSAM [Kaess et al., 2008]
- Other extensions:
 - Robust error functions
 - Alternative parameterizations

Bundle Adjustment

Graph SLAM: Optimize (only) the camera poses

$$\mathbf{x} = (\mathbf{c}_1^{\top}, \dots, \mathbf{c}_n^{\top})^{\top} \in \mathbb{R}^{6n}$$

 Bundle Adjustment: Optimize both 6DOF camera poses and 3D (feature) points

$$\mathbf{x} = (\underbrace{\mathbf{c}_1^\top, \dots, \mathbf{c}_n^\top}_{\mathbf{c} \in \mathbb{R}^{6n}}, \underbrace{\mathbf{p}_1^\top, \dots, \mathbf{p}_m^\top}_{\mathbf{p} \in \mathbb{R}^{3m}})^\top \in \mathbb{R}^{6n+3m}$$

• Typically $m \gg n$ (why?)

Error Function

- Camera pose $\mathbf{c}_i \in \mathbb{R}^6$
- Feature point $\mathbf{p}_j \in \mathbb{R}^3$
- Observed feature location $\mathbf{z}_{ij} \in \mathbb{R}^2$
- Expected feature location

$$g(\mathbf{c}_i, \mathbf{p}_j) = R_i^{\top}(\mathbf{t}_i - \mathbf{p}_j)$$
$$h(\mathbf{c}_i, \mathbf{p}_j) = g_{x,y}(\mathbf{c}_i, \mathbf{p}_j) / g_z(\mathbf{c}_i, \mathbf{p}_j)$$

Error Function

 Difference between observation and expectation

$$\mathbf{e}_{ij} = \mathbf{z}_{ij} - h(\mathbf{c}_i, \mathbf{p}_j)$$

Error function

$$f(\mathbf{c}, \mathbf{p}) = \sum_{ij} \mathbf{e}_{ij}^{\top} \Sigma^{-1} \mathbf{e}_{ij}$$

Covariance Σ is often chosen isotropic and on the order of one pixel

Illustration of the Structure

- Each camera sees several points
- Each point is seen by several cameras
- Cameras are independent of each other (given the points), same for the points

Primary Structure

Characteristic structure

$$\begin{pmatrix} J_{\mathbf{c}}^{\top} J_{\mathbf{c}} & J_{\mathbf{c}}^{\top} J_{\mathbf{p}} \\ J_{\mathbf{p}}^{\top} J_{\mathbf{c}} & J_{\mathbf{p}}^{\top} J_{\mathbf{p}} \end{pmatrix} \begin{pmatrix} \Delta \mathbf{c} \\ \Delta \mathbf{p} \end{pmatrix} = \begin{pmatrix} -J_{\mathbf{c}}^{\top} \mathbf{e}_{\mathbf{c}} \\ -J_{\mathbf{p}}^{\top} \mathbf{e}_{\mathbf{p}} \end{pmatrix}$$
$$\begin{pmatrix} H_{\mathbf{cc}} & H_{\mathbf{cp}} \\ H_{\mathbf{pc}} & H_{\mathbf{pp}} \end{pmatrix} \begin{pmatrix} \Delta \mathbf{c} \\ \Delta \mathbf{p} \end{pmatrix} = \begin{pmatrix} -J_{\mathbf{c}}^{\top} \mathbf{e}_{\mathbf{c}} \\ -J_{\mathbf{p}}^{\top} \mathbf{e}_{\mathbf{p}} \end{pmatrix}$$

Primary Structure

 Insight: H_{cc} and H_{pp} are block-diagonal (because each constraint depends only on one camera and one point)

$$\begin{pmatrix} \boldsymbol{\Delta} \mathbf{c} \\ \boldsymbol{\Delta} \mathbf{p} \end{pmatrix} \begin{pmatrix} \boldsymbol{\Delta} \mathbf{c} \\ \boldsymbol{\Delta} \mathbf{p} \end{pmatrix} = \begin{pmatrix} -J_{\mathbf{c}}^{\top} \mathbf{e}_{\mathbf{c}} \\ -J_{\mathbf{p}}^{\top} \mathbf{e}_{\mathbf{p}} \end{pmatrix}$$

 This can be efficiently solved using the Schur Complement

Schur Complement

Given: Linear system

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix} = \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix}$$

- If D is invertible, then (using Gauss elimination) $(A - BD^{-1}C)\mathbf{x} = \mathbf{a} - BD^{-1}\mathbf{b}$ $\mathbf{y} = D^{-1}(\mathbf{b} - C\mathbf{x})$
- Reduced complexity, i.e., invert one p × p and p × p matrix instead of one (p + q) × (p + q) matrix

From Sparse Maps to Dense Maps

- So far, we only looked at sparse 3D maps
 - We know where the (sparse) cameras are
 - We know where the (sparse) 3D feature points are
- How can we turn these models into volumetric 3D models?

From Sparse Maps to Dense Maps

- Today: Estimation of depth dense images (stereo cameras, laser triangulation, structured light/Kinect)
- Next week: Dense map representations and data fusion

Human Stereo Vision

Stereo Correspondence Constraints

Given a point in the left image, where can the corresponding point be in the right image?

Reminder: Epipolar Geometry

- A point in one image "generates" a line in another image (called the epipolar line)
- Epipolar constraint $\hat{\mathbf{x}}_2^{\top} E \hat{\mathbf{x}}_1 = 0$

Dr. Jürgen Sturm, Computer Vision Group, TUM

Epipolar Plane

- All epipolar lines intersect at the epipoles
- An epipolar plane intersects the left and right image planes in epipolar lines

Epipolar Constraint

 This is useful because it reduces the correspondence problem to a 1D search along an epipolar line

Example: Converging Cameras

Example: Parallel Cameras

Rectification

- In practice, it is convenient if the image scanlines (rows) are the epipolar lines
- → Reproject image planes onto a common plane parallel to the baseline (two 3x3 homographies)
- Afterwards pixel motion is horizontal

Example: Rectification

Basic Stereo Algorithm

- For each pixel in the left image
 - Compare with every pixel on the same epipolar line in the right image
 - Pick pixel with minimum matching cost (noisy)
 - Better: match small blocks/patches (SSD, SAD, NCC)

left image Visual Navigation for Flying Robots right image Dr. Jürgen Sturm, Computer Vision Group, TUM

Block Matching Algorithm

Input: Two images and camera calibrations Output: Disparity (or depth) image

Algorithm:

- Geometry correction (undistortion and rectification)
- 2. Matching cost computation along search window
- **3**. Extrema extraction (at sub-pixel accuracy)
- 4. Post-filtering (clean up noise)

Example

Input

Output

What is the Influence of the Block Size?

- Common choices are 5x5 .. 11x11
- Smaller neighborhood: more details
- Larger neighborhood: less noise
- Suppress pixels with low confidence (e.g., check ratio best match vs. 2nd best match)

Problems with Stereo

- Block matching typically fails in regions with low texture
 - Global optimization/regularization (speciality of our research group)
 - Additional texture projection

Example: PR2 Robot with Projected Texture Stereo

wide-angle stereo pair

Laser Triangulation

Idea:

- Well-defined light pattern (e.g., point or line) projected on scene
- Observed by a line/matrix camera or a position-sensitive device (PSD)
- Simple triangulation to compute distance

Laser Triangulation

Function principle

Example: Neato XV-11

- K. Konolige, "A low-cost laser distance sensor", ICRA 2008
- Specs: 360deg, 10Hz, 30 USD

camera

Visual Navigation for Flying Robots

Dr. Jürgen Sturm, Computer Vision Group, TUM

How Does the Data Look Like?

Laser Triangulation

- Stripe laser + 2D camera
- Often used on conveyer belts (volume sensing)
- Large baseline gives better depth resolution but more occlusions → use two cameras

Visual Navigation for Flying Robots

Dr. Jürgen Sturm, Computer Vision Group, TUM

Structured Light

- Multiple stripes / 2D pattern
- Data association more difficult

Structured Light

- Multiple stripes / 2D pattern
- Data association more difficult
- Coding schemes
 - Temporal: Coded light

Structured Light

- Multiple stripes / 2D pattern
- Data association more difficult
- Coding schemes
 - Temporal: Coded light
 - Wavelength: Color
 - Spatial: Pattern (e.g., diffraction patterns)

Sensor Principle of Kinect

- Kinect projects a diffraction pattern (speckles) in near-infrared light
- CMOS IR camera observes the scene

Example Data

- Kinect provides color (RGB) and depth (D) video
- This allows for novel approaches for (robot) perception

Sensor Principle of Kinect

Sensor Principle of Kinect

- Pattern is memorized at a known depth
- For each pixel in the IR image
 - Extract 9x9 template from memorized pattern
 - Correlate with current IR image over 64 pixels and search for the maximum
 - Interpolate maximum to obtain sub-pixel accuracy (1/8 pixel)
 - Calculate depth by triangulation

Technical Specs

- Infrared camera has 640x480 @ 30 Hz
 - Depth correlation runs on FPGA
 - 11-bit depth image
 - 0.8m 5m range
 - Depth sensing does not work in direct sunlight (why?)
- RGB camera has 640x480 @ 30 Hz
 - Bayer color filter
- Four 16-bit microphones with DSP for beam forming @ 16kHz
- Requires 12V (for motor), weighs 500 grams
- Human pose recognition runs on Xbox CPU and uses only 10-15% processing power @30 Hz (Paper: <u>http://research.microsoft.com/apps/pubs/default.aspx?id=145347</u>)

History

- 2005: Developed by PrimeSense (Israel)
- 2006: Offer to Nintendo and Microsoft, both companies declined
- 2007: Alex Kidman becomes new incubation director at Microsoft, decides to explore PrimeSense device. Johnny Lee assembles a team to investigate technology and develop game concepts
- 2008: The group around Prof. Andrew Blake and Jamie Shotton (Microsoft Research) develops pose recognition
- 2009: The group around Prof. Dieter Fox (Intel Labs / Univ. of Washington) works on RGB-D mapping and RGB-D object recognition
- Nov 4, 2010: Official market launch
- Nov 10, 2010: First open-source driver available
- 2011: First programming competitions (ROS 3D, PrimeSense), First workshops (RSS, Euron)
- 2012: First special Issues (JVCI, T-SMC)

86

Impact of the Kinect Sensor

- Sold >18M units, >8M in first 60 days (Guiness: "fastest selling consumer electronics device)
- Has become a "standard" sensor in robotics

Kinect: Applications

Open Research Questions

- How can RGB-D sensing facilitate in solving hard perception problems in robotics?
 - Interest points and feature descriptors?
 - Simultaneous localization and mapping?
 - Collision avoidance and visual navigation?
 - Object recognition and localization?
 - Human-robot interaction?
 - Semantic scene interpretation?