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Project Proposal Presentations 

 This Thursday 

 Don’t forget to put title, team name, team 
members on first slide 

 Pitch has to fit in 5 minutes (+5 minutes 
discussion) 

 9 x (5+5) = 90 minutes 

 Recommendation: use 3-5 slides 
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Agenda for Today 

 Map optimization 

 Graph SLAM 

 Bundle adjustment 

 Depth reconstruction 

 Laser triangulation 

 Structured light (Kinect) 

 Stereo cameras 
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Remember: 3D Transformations 

 Representation as a homogeneous matrix 

 

 

 

 Representation as a twist coordinates 
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Pro: easy to concatenate  
and invert 
Con: not minimal 

Pro: minimal 
Con: need to convert 
to matrix for concat- 
enation and inversion 



Remember: 3D Transformations 

 From twist coordinates to twist 

 

 

 

 

 Exponential map between se(3) and SE(3) 
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alternative notation: 



Remember: Rodrigues’ formula 

 Given: Twist coordinates 

 

 

 Return: Homogeneous transformation 
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with 



Notation 

 Camera poses in a minimal representation 
(e.g., twists) 

 

 … as transformation matrices 

 

 … as rotation matrices and translation vectors 
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Incremental Motion Estimation 

 Idea: Estimate camera motion from frame to 
frame 
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Incremental Motion Estimation 
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 Idea: Estimate camera motion from frame to 
frame 

 Motion concatenation (for twists) 

 

 Motion composition operator (in general) 



Incremental Motion Estimation 

 Idea: Estimate camera motion from frame to 
frame 
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Incremental Motion Estimation 

 Idea: Estimate camera motion from frame to 
frame 
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Loop Closures 

 Idea: Estimate camera motion from frame to 
frame 

 Problem: 

 Estimates are inherently noisy 

 Error accumulates over time  drift 
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Incremental Motion Estimation 

 Idea: Estimate camera motion from frame to 
frame 
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Incremental Motion Estimation 

 Idea: Estimate camera motion from frame to 
frame 

 Two ways to compute     : 
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Loop Closures 

 Solution: Use loop-closures to minimize the 
drift / minimize the error over all constraints 
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Graph SLAM 
[Thrun and Montemerlo, 2006; Olson et al., 2006] 

 Use a graph to represent the model 

 Every node in the graph corresponds to a pose 
of the robot during mapping 

 Every edge between two nodes corresponds to 
a spatial constraint between them 

 Graph-based SLAM: Build the graph and find 
the robot poses that minimize the error 
introduced by the constraints 
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Example: Graph SLAM on Intel Dataset 
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Graph SLAM Architecture 

 Interleaving process of front-end and back-end 

 A consistent map helps to determine new 
constraints by reducing the search space 
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Constraint/graph 
generation 
(Front-end) 

Graph optimization 
(Back-end) graph 

(nodes and edges) 

camera poses 

raw sensor  
data 

map 

Focus of today 



Problem Definition 

 Given: Set of observations 

 

 Wanted: Set of camera poses 
 State vector 
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Map Error 

 Real observation 

 Expected observation 

 

 Difference between observation and expectation 

 

 

 Given the correct map, this difference is the 
result of sensor noise… 
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Error Function 

 Assumption: Sensor noise is normally 
distributed 
 

 

 Error term for one observation  
(proportional to negative loglikelihood) 

 

 

 Note: error is a scalar 
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Error Function 

 Map error (over all observations) 

 

 
 

 Minimize this error by optimizing the camera 
poses 

 

 

 How can we solve this optimization problem? 
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Non-Linear Optimization Techniques 

 Gradient descend 

 Gauss-Newton 

 Levenberg-Marquardt 
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Gauss-Newton Method 

1. Linearize the error function 

2. Compute its derivative 

3. Set the derivative to zero 

4. Solve the linear system 

5. Iterate this procedure until convergence 
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Step 1: Linearize the Error Function 

 Error function 

 
 

 

 Evaluate the error function around the initial 
guess 
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Let’s derive this term first… 



Linearize the Error Function 

 Approximate the error function around an 
initial guess      using Taylor expansion 
 
 
with 
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Derivatives of the Error Terms 

 Does one error function            depend on all 
state variables in     ? 
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Derivatives of the Error Terms 

 Does one error function            depend on all 
state variables in     ? 

 No,               depends only on       and   
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Derivatives of the Error Terms 

 Does one error function            depend on all 
state variables in     ? 

 No,               depends only on       and   

 Is there any consequence on the structure of 
the Jacobian? 
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Derivatives of the Error Terms 

 Does one error function            depend on all 
state variables in     ? 

 No,               depends only on       and   

 Is there any consequence on the structure of 
the Jacobian? 

 Yes, it will be non-zero only in the columns 
corresponding to       and 

 Jacobian is sparse 
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Linearizing the Error Function 

Linearize 

 
 
 

with 

 
 

 What is the structure of       and     ? 
(Remember: all       ‘s are sparse) 
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Illustration of the Structure 

Non-zero only  
at       and  



Illustration of the Structure 

Non-zero only  
at       and  

Non-zero on the main  
diagonal at       and 



Illustration of the Structure 

Non-zero on the main  
diagonal at       and 

... and 
at the 
blocks  
ij,ji 

Non-zero only  
at       and  



Illustration of the Structure 

+ + … + 

+ + … + 

b: dense vector 

H: sparse block structure  
with main diagonal 



(Linear) Least Squares Minimization 

1. Linearize error function 

 

2. Compute the derivative 

 
 

3. Set derivative to zero 

 

4. Solve this linear system of equations, e.g.,  
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Gauss-Newton Method 

Problem:          is non-linear! 

Algorithm: Repeat until convergence 

1. Compute the terms of the linear system 

 

2. Solve the linear system to get new increment 

 

3. Update previous estimate 
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Sparsity of the Hessian 

 The Hessian is  

 positive semi-definit 

 symmetric 

 sparse 

 This allows the use of efficient solvers 

 Sparse Cholesky decomposition (~100M matrix 
elements) 

 Preconditioned conjugate gradients (~1.000M 
matrix elements) 

 … many others 
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Example in 1D 

 Two camera poses 

 State vector 

 One (distance) observation 

 

 Initial guess 

 Observation 

 Sensor noise 
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Example in 1D 

 Error 

 

 Jacobian 

  Build linear system of equations 

 

 
 Solve the system 
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but ??? 



What Went Wrong? 

 The constraint only specifies a relative 
constraint between two nodes 

 Any poses for the nodes would be fine as long 
as their relative coordinates fit 

 One node needs to be fixed 

 Option 1: Remove one row/column corresponding 
to the fixed pose 

 Option 2: Add to          a linear constraint 

 Option 3: Add the identity matrix to       (Levenberg-
Marquardt) 
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Fixing One Node 

 The constraint only specifies a relative 
constraint between two nodes 

 Any poses for the nodes would be fine as long 
as their relative coordinates fit 

 One node needs to be fixed (here: Option 2) 
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additional constraint 
that sets  



Levenberg-Marquardt Algorithm 

 Idea: Add a damping factor 

 

 

 What is the effect of this damping factor? 

 Small    ? 

 Large    ? 
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Levenberg-Marquardt Algorithm 

 Idea: Add a damping factor 

 

 

 What is the effect of this damping factor? 

 Small     same as least squares 

 Large     steepest descent (with small step size) 

 Algorithm 

 If error decreases, accept        and reduce 

 If error increases, reject        and increase  
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Non-Linear Minimization 

 One of the state-of-the-art solution to compute 
the maximum likelihood estimate 

 Various open-source implementations available  

 g2o [Kuemmerle et al., 2011] 

 sba [Lourakis and Argyros, 2009] 

 iSAM [Kaess et al., 2008] 

 Other extensions: 

 Robust error functions  

 Alternative parameterizations 
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Bundle Adjustment 

 Graph SLAM: Optimize (only) the camera poses 

 

 

 Bundle Adjustment: Optimize both 6DOF 
camera poses and 3D (feature) points 

 

 
 Typically                 (why?) 
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Error Function 

 Camera pose 

 Feature point 

 Observed feature location 

 Expected feature location 
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Error Function 

 Difference between observation and 
expectation 

 
 

 Error function 
 

 

 Covariance      is often chosen isotropic and on 
the order of one pixel 
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Illustration of the Structure 

 Each camera sees several points 

 Each point is seen by several cameras 

 Cameras are independent of each other (given 
the points), same for the points 
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Primary Structure 

 Characteristic structure 
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Primary Structure 

 Insight:        and         are block-diagonal 
(because each constraint depends only on one 
camera and one point) 

 

 

 

 This can be efficiently solved using the Schur 
Complement 
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Schur Complement  
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 Given: Linear system 

 

 

 If D is invertible, then (using Gauss elimination) 

 

 

 Reduced complexity, i.e., invert  one           and  
          matrix instead of one  
matrix 

 

 

 

 



Example Hessian 
(Lourakis and Argyros, 2009) 
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From Sparse Maps to Dense Maps 

 So far, we only looked at sparse 3D maps 

 We know where the (sparse) cameras are 

 We know where the (sparse) 3D feature points are 

 How can we turn these models into volumetric 
3D models?  
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From Sparse Maps to Dense Maps 

 Today: Estimation of depth dense images  
(stereo cameras, laser triangulation, structured 
light/Kinect) 

 Next week: Dense map representations  and 
data fusion 
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Human Stereo Vision 



Stereo Correspondence Constraints 
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 Given a point in the left image, where can the 
corresponding point be in the right image? 



Reminder: Epipolar Geometry 

 A point in one image “generates” a line in 
another image (called the epipolar line) 

 Epipolar constraint 
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Epipolar plane 

Baseline Epipole Epipole 

Epipolar  
line 

Epipolar  
line 



Epipolar Plane 

 All epipolar lines intersect at the epipoles 

 An epipolar plane intersects the left and right 
image planes in epipolar lines 
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Epipolar plane 

Baseline Epipole Epipole 

Epipolar  
line 

Epipolar  
line 



Epipolar Constraint 

 This is useful because it reduces the 
correspondence problem to a 1D search along 
an epipolar line 
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Example: Converging Cameras 
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Example: Parallel Cameras 
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Rectification 

 In practice, it is convenient if the image 
scanlines (rows) are the epipolar lines 

 Reproject image planes onto a common plane 
parallel to the baseline (two 3x3 homographies) 

 Afterwards pixel motion is horizontal 
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Example: Rectification 
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Basic Stereo Algorithm 

 For each pixel in the left image 

 Compare with every pixel on the same epipolar line 
in the right image 

 Pick pixel with minimum matching cost (noisy) 

 Better: match small blocks/patches (SSD, SAD, NCC) 
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right image 



Block Matching Algorithm 

Input: Two images and camera calibrations 

Output: Disparity (or depth) image 

Algorithm: 

1. Geometry correction (undistortion and 
rectification) 

2. Matching cost computation along search window 

3. Extrema extraction (at sub-pixel accuracy) 

4. Post-filtering (clean up noise) 
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Example 

 Input 

 

 

 

 Output 
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What is the Influence of the Block Size? 

 Common choices are 5x5 .. 11x11 

 Smaller neighborhood: more details 

 Larger neighborhood: less noise 

 Suppress pixels with low confidence (e.g., 
check ratio best match vs. 2nd best match) 
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3x3 20x20 



Problems with Stereo 

 Block matching typically fails in regions with 
low texture 

 Global optimization/regularization (speciality of our 
research group) 

 Additional texture projection 
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Example: PR2 Robot 
with Projected Texture Stereo 
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pattern projector 

wide-angle stereo pair 

narrow-angle stereo pair 

5 MP high-res camera 



Laser Triangulation 

Idea: 

 Well-defined light pattern (e.g., point or line) 
projected on scene 

 Observed by a line/matrix camera or a 
position-sensitive device (PSD) 

 Simple triangulation to compute distance 
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Laser Triangulation 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 74 

 Function principle 

 

 

 

 

 
 Depth triangulation 

 

(note: same for stereo disparities)  

Laser 
C

C
D

 

Pin-hole baseline 

disparity 

focal length depth 



Example: Neato XV-11 
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 K. Konolige, “A low-cost laser distance sensor”, 
ICRA 2008 

 Specs: 360deg, 10Hz, 30 USD  

laser 

camera 



How Does the Data Look Like? 
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Laser Triangulation 

 Stripe laser + 2D camera 

 Often used on conveyer belts (volume sensing) 

 Large baseline gives better depth resolution 
but more occlusions  use two cameras 
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Structured Light 

 Multiple stripes / 2D pattern 

 Data association more difficult 
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Structured Light 

 Multiple stripes / 2D pattern 

 Data association more difficult 

 Coding schemes 

 Temporal: Coded light 
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Structured Light 

 Multiple stripes / 2D pattern 

 Data association more difficult 

 Coding schemes 

 Temporal: Coded light 

 Wavelength: Color 

 Spatial: Pattern (e.g., diffraction patterns) 
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Sensor Principle of Kinect 

 Kinect projects a diffraction pattern (speckles) 
in near-infrared light 

 CMOS IR camera observes the scene 
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Infrared 
pattern 

projector Color 
camera 

Infrared 
camera 

“stereo” Baseline 



Example Data 
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 Kinect provides color (RGB) and depth (D) video 

 This allows for novel approaches for (robot) 
perception 



Sensor Principle of Kinect 
Infrared pattern  

(known) 

Infrared image  
(with distorted pattern) 

Standard 
block matcher 

(9x9) 

Depth image 
(color encodes distance from 

camera) 

Disparity image 



Sensor Principle of Kinect 

 Pattern is memorized at a known depth 

 For each pixel in the IR image 

 Extract 9x9 template from memorized pattern 

 Correlate with current IR image over 64 pixels and 
search for the maximum 

 Interpolate maximum to obtain sub-pixel accuracy 
(1/8 pixel) 

 Calculate depth by triangulation 
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Technical Specs 

 Infrared camera has 640x480 @ 30 Hz 
 Depth correlation runs on FPGA 
 11-bit depth image 
 0.8m – 5m range 
 Depth sensing does not work in direct sunlight (why?) 

 RGB camera has 640x480 @ 30 Hz 
 Bayer color filter 

 Four 16-bit microphones with DSP for beam forming @ 
16kHz 

 Requires 12V (for motor), weighs 500 grams 
 Human pose recognition runs on Xbox CPU and uses 

only 10-15% processing power @30 Hz 
(Paper: http://research.microsoft.com/apps/pubs/default.aspx?id=145347) 

 
 
 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 85 

http://research.microsoft.com/apps/pubs/default.aspx?id=145347
http://research.microsoft.com/apps/pubs/default.aspx?id=145347
http://research.microsoft.com/apps/pubs/default.aspx?id=145347


History 

 2005: Developed by PrimeSense (Israel) 

 2006: Offer to Nintendo and Microsoft, both companies declined 

 2007: Alex Kidman becomes new incubation director at Microsoft, decides 
to explore PrimeSense device. Johnny Lee assembles a team to investigate 
technology and develop game concepts  

 2008: The group around Prof. Andrew Blake and Jamie Shotton (Microsoft 
Research) develops pose recognition 

 2009:  The group around Prof. Dieter Fox (Intel Labs / Univ. of Washington) 
works on RGB-D mapping and RGB-D object recognition 

 Nov 4, 2010: Official market launch 

 Nov 10, 2010: First open-source driver available 

 2011: First programming competitions (ROS 3D, PrimeSense), First 
workshops (RSS, Euron) 

 2012: First special Issues (JVCI, T-SMC) 
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Impact of the Kinect Sensor 

 Sold >18M units, >8M in first 60 days (Guiness: 
“fastest selling consumer electronics device) 

 Has become a “standard” sensor in robotics 
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Kinect: Applications 
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Open Research Questions 

 How can RGB-D sensing facilitate in solving 
hard perception problems in robotics? 

 Interest points and feature descriptors? 

 Simultaneous localization and mapping? 

 Collision avoidance and visual navigation? 

 Object recognition and localization? 

 Human-robot interaction? 

 Semantic scene interpretation? 
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