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Motivation: Flying Through Forests 
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Motion Planning Problem 

 Given obstacles, a robot, and its motion 
capabilities, compute collision-free robot 
motions from the start to goal. 
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Motion Planning Problem 

What are good performance metrics? 
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Motion Planning Problem 

What are good performance metrics? 

 Execution speed / path length 

 Energy consumption 

 Planning speed 

 Safety (minimum distance to obstacles) 

 Robustness against disturbances 

 Probability of success 

 … 
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Motion Planning Examples 

Motion planning is sometimes also called the  
piano mover’s problem  
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Local Obstacle Map 

Robot 

Robot Architecture 
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Sensors Actuators 

Physical 
World 

Collision Avoidance 

Localization Position Control 

.. .. 

Path Planner 

Path Tracking 

Global Map (SLAM) Executive 



Agenda for Today 

 Configuration spaces 

 Roadmap construction 

 Search algorithms 

 Path optimization and re-planning 

 Path execution 
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Configuration Space 

 Work space 

 Typically 3D pose (position + orientation)  6 DOF 

 Configuration space 

 Reduced pose (position + yaw)  4 DOF 

 Full pose   6 DOF 

 Pose + velocity  12 DOF 

 Joint angles of manipulation robot 

 … 

 Planning takes place in configuration space 
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Configuration Space 

 The configuration space (C-space) is the  
space of all possible configurations 

 C-space topology is usually not Cartesian 

 C-space is described as a topological manifold 
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Notation 

 Configuration space 

 Configuration 

 Free space 

 Obstacle space 

 

 Properties 
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Free Space Example 

 What are admissible configurations for the 
robot? Equiv.: What is the free space? 

 “Point” robot 
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robot 

obstacle 



Example 

 What are admissible configurations for the 
robot? Equiv.: What is the free space? 

 “Point” robot 
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robot 

obstacle 



Example 

 What are admissible configurations for the 
robot? Equiv.: What is the free space? 

 Circular robot 
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? 

robot footprint 



Example 

 What are admissible configurations for the 
robot? Equiv.: What is the free space? 

 Circular robot 
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obstacle in configuration  
space 

robot footprint in work space 
(disk) 

robot footprint in  
configuration space (point) 



Example 

 What are admissible configurations for the 
robot? Equiv.: What is the free space? 

 Large circular robot 
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Computing the Free Space 

 Free configuration space is obtained by sliding 
the robot along the edge of the obstacle 
regions "blowing them up" by the robot radius 

 This operation is called the Minowski sum 
 
 
where  
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Example: Minowski Sum 
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 Triangular robot and rectangular obstacle 



Example 

 Polygonal robot, translation only 

 
 

 

 

 

 

 C-space is obtained by sliding the robot along 
the edge of the obstacle regions 
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Configuration space Work space 

Reference point 



Basic Motion Planning Problem 

 Given 

 Free space 

 Initial configuration 

 Goal configuration 
 

 Goal: Find a continuous path  
 
 

 
with 
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Motion Planning Sub-Problems 

1. C-Space discretization  
(generating a graph / roadmap) 

2. Search algorithm 
(Dijkstra’s algorithm, A*, …) 

3. Re-planning 
(D*, …)  

4. Path tracking 
(PID control, potential fields, funnels, …) 
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C-Space Discretizations 

Two competing paradigms 

 Combinatorial planning 
(exact planning) 

 Sampling-based planning 
(probabilistic/randomized planning) 
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Combinatorial Methods 

 Mostly developed in the 1980s 

 Extremely efficient for low-dimensional 
problems 

 Sometimes difficult to implement 

 Usually produce a road map in  

 Assume polygonal environments 
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Roadmaps 

A roadmap is a graph in           where 

 Each vertex is a configuration 

 Each edge is a path                             for which 
         and         are vertices 
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(Desired) Properties of Roadmaps 

 Accessibility 
From anywhere in         , it is easy to compute a 
path that reaches at least one of the vertices 

 Connectivity-preserving 
If there exists a path between      and      in         
then there must also exist a path in the road 
map 
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Roadmap Construction 

We consider here three combinatorial methods: 

 Trapezoidal decomposition 

 Shortest path roadmap 

 Regular grid 

 … but there are many more! 

Afterwards, we consider two sampling-based 
methods: 

 Probabilistic roadmaps (PRMs) 

 Rapidly exploring random trees (RRTs) 
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Roadmap Construction 

 Decompose horizontally in convex regions 
using plane sweep 

 Sort vertices in x direction. Iterate over vertices 
while maintaining a vertically sorted list of 
edges 
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Roadmap Construction 

 Place vertices  

 in the center of each trapezoid 

 on the edge between two neighboring trapezoids 

 Resulting road map 
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Quick check on properties: 
- Accessibility 
- Connectivity-preserving? 



Example Query 

Compute path from      to   

 Identify start and goal trapezoid 

 Connect start and goal location to center vertex 

 Run search algorithm (e.g., Dijkstra) 
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Properties of Trapezoidal Decomposition 

+ Easy to implement 

+ Efficient computation 

+ Scales to 3D 
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- Does not generate 
shortest path 



Shortest-Path Roadmap 

 Contains all vertices and edges that optimal 
paths follow when obstructed 

 Imagine pulling a tight string between      and   
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 Vertices = all sharp corners (>180deg, red) 

 Edges 

1. Two consecutive sharp corners on the same 
obstacle (light blue) 

2. Bitangent edges (when line connecting two 
vertices extends into free space, dark blue) 

 

 

 

Roadmap Construction 
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Example Query 

Compute path from      to   

 Connect start and goal location to all visible 
roadmap vertices 

 Run search algorithm (e.g., Dijkstra) 
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Example Query 
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+ Easy to construct in 
2D 

+ Generates shortest 
paths 

- Optimal planning in 
3D or more dim. is 
NP-hard 



Approximate Decompositions 

 Construct a regular grid 

 High memory consumption (and number of 
tests) 

 Any ideas? 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 36 

qI 
qG 

qI 
qG 



Approximate Decompositions 

 Construct a regular grid 

 Use quadtree/octtree to save memory 

 Sometimes difficult to determine status of cell 
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Approximate Decompositions 
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qI 
qG 

qI 
qG 

+ Easy to construct 

+ Most used in practice 

- High number of tests 

 



Summary: Combinatorial Planning 

 Pro: Find a solution when one exists (complete) 

 Con: Become quickly intractable for higher 
dimensions 

 

 Alternative: Sampling-based planning 
Weaker guarantees but more efficient 
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Sampling-based Methods 

 Abandon the concept of explicitly 
characterizing          and          and leave the 
algorithm in the dark when exploring  

 The only light is provided by a collision-
detection algorithm that probes      to see 
whether some configuration lies in  

 We will have a look at 

 Probabilistic road maps (PRMs) 

 Rapidly exploring random trees (RRTs)  
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Probabilistic Roadmaps (PRMs) 
[Kavraki et al., 1992] 

 Vertex: Take random sample from     , check 
whether sample is in 

 Edge: Check whether line-of-sight between two 
nearby vertices is collision-free 

 

 Options for “nearby”: k-nearest neighbors or 
all neighbors within specified radius 

 Add vertices and edges until roadmap is dense 
enough 
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PRM Example 

1. Sample vertex  

2. Find neighbors 

3. Add edges 
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Step 3: Check edges for collisions, e.g.,  
using discretized line search 



Probabilistic Roadmaps 
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Cobs Cobs 

Cobs Cobs 

qI 

qG 

Cobs 

Cobs 

Cobs 

qI 

qG 

+ Probabilistic. complete 

+ Scale well to higher 
dimensional C-spaces 

+ Very popular, many 
extensions 

 

- Do not work well for 
some problems (e.g., 
narrow passages) 

- Not optimal, not 
complete 



Rapidly Exploring Random Trees 
[Lavalle and Kuffner, 1999] 

 Idea: Grow tree from start to goal location 
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Rapidly Exploring Random Trees 

 Algorithm 

1. Initialize tree with first node 

2. Pick a random target location (every 100th 
iteration, choose       ) 

3. Find closest vertex in roadmap  

4. Extend this vertex towards target location 

5. Repeat steps until goal is reached 
 

 Why not pick       every time?  

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 45 



Rapidly Exploring Random Trees 

 Algorithm 

1. Initialize tree with first node 

2. Pick a random target location (every 100th  
iteration, choose       ) 

3. Find closest vertex in roadmap  

4. Extend this vertex towards target location 

5. Repeat steps until goal is reached 
 

 Why not pick       every time?  

 This will fail and run into        instead of exploring 
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Rapidly Exploring Random Trees 
[Lavalle and Kuffner, 1999] 

 RRT: Grow trees from start and goal location 
towards each other, stop when they connect 
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RRT Examples 

 2-DOF example 

 
 

 

 3-DOF example (2D translation + rotation) 
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Non-Holonomic Robots 

 Some robots cannot move freely on the 
configuration space manifold 

 Example: A car can not move sideways 

 2-DOF controls (speed and steering) 

 3-DOF configuration space (2D translation + 
rotation) 
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Non-Holonomic Robots 

 RRTs can naturally consider such constraints 
during tree construction 

 Example: Car-like robot 
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Rapidly Exploring Random Trees 
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+ Probabilistic. complete  

+ Balance between 
greedy search and 
exploration 

+ Very popular, many 
extensions 

 

 

- Metric sensitivity 

- Unknown rate of 
convergence 

- Not optimal, not 
complete 



Summary: Sampling-based Planning 

 More efficient in most practical problems but 
offer weaker guarantees 

 Probabilistically complete (given enough time 
it finds a solution if one exists, otherwise, it 
may run forever) 

 Performance degrades in problems with 
narrow passages 
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Motion Planning Sub-Problems 

1. C-Space discretization  
(generating a graph / roadmap) 

2. Search algorithms 
(Dijkstra’s algorithm, A*, …) 

3. Re-planning 
(D*, …)  

4. Path tracking 
(PID control, potential fields, funnels, …) 
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Search Algorithms 

 Given: Graph G consisting of vertices and edges 
(with associated costs) 

 Wanted: find the best (shortest) path between 
two vertices 

 

 What search algorithms do you know? 
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Uninformed Search 

 Breadth-first  

 Complete 

 Optimal if action costs equal 

 Time and space 

 Depth-first 

 Not complete in infinite spaces 

 Not optimal  

 Time  

 Space 
(can forget explored subtrees) 
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Example: Dijkstra’s Algorithm 

 Extension of breadth-first with arbitrary (non-
negative) costs 
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Informed Search 

 Idea 

 Select nodes for further expansion based on an 
evaluation function 

 First explore the node with lowest value 

 What is a good evaluation function? 
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Informed Search 

 Idea 

 Select nodes for further expansion based on an 
evaluation function 

 First explore the node with lowest value 

 What is a good evaluation function? 

 Often a combination of 

 Path cost so far 

 Heuristic function 
(e.g., estimated distance to goal, but can also 
encode additional domain knowledge) 
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Informed Search 

 Greedy best-first search 

 Simply expand the node closest to the goal 

 

 Not optimal, not complete 
 

 A* search 

 Combines path cost with estimated goal distance 

 

 Optimal and complete (if           never 
overestimates actual cost) 
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What is a Good Heuristic Function? 

 Choice is problem/application-specific 

 Two popular choices 

 Manhattan distance (neglecting obstacles) 

 Euclidean distance (neglecting obstacles) 

 Value iteration / Dijkstra (from the goal backwards) 
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Comparison Search Algorithms 
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Problems on A* on Grids 

1. The shortest path is often very close to 
obstacles (cutting corners) 
 Uncertain path execution increases the risk of 

collisions 

 Uncertainty can come from delocalized robot, 
imperfect map, or poorly modeled dynamic 
constraints 

2. Trajectories are aligned to grid structure 
 Path looks unnatural 

 Paths are longer than the true shortest path in 
continuous space 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 62 



Problems on A* on Grids 

3. When the path turns out to be blocked during 
traversal, it needs to be re-planned from 
scratch 

 In unknown or dynamic environments, this can 
occur very often 

 Replanning in large state spaces is costly 

 Can we re-use (repair) the initial plan? 

 
Let’s look at solutions to these problems… 
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Map Smoothing 

 Problem: Path gets close to obstacles 

 Solution: Convolve the map with a kernel (e.g., 
Gaussian) 

 

 
 

 Leads to non-zero probability around obstacles 

 Evaluation function 
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Example: Map Smoothing 
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Path Smoothing 

 Problem: Paths are aligned to grid structure 
(because they have to lie in the roadmap) 

 Paths look unnatural and are sub-optimal 

 Solution: Smooth the path after generation 

 Traverse path and find pairs of nodes with direct 
line of sight; replace by line segment 

 Refine initial path using non-linear minimization 
(e.g., optimize for continuity/energy/execution 
time) 

 … 
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Example: Path Smoothing 

 Replace pairs of nodes by line segments 

 

 

 

 Non-linear optimization 
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D* Search 

 Problem: In unknown, partially known or 
dynamic environments, the planned path may 
be blocked and we need to replan 

 Can this be done efficiently, avoiding to replan 
the entire path? 
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D* Search 

 Idea: Incrementally repair path keeping its 
modifications local around robot pose 

 Many variants:  

 D* (Dynamic A*) [Stentz, ICRA ’94] [Stentz, IJCAI ‘95] 

 D* Lite [Koenig and Likhachev, AAAI ‘02] 

 Field D* [Ferguson and Stenz, JFR ‘06] 
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D* Search 

Main concepts 

 Invert search direction (from goal to start) 

 Goal does not move, but robot does 

 Map changes (new obstacles) have only local 
influence close to current robot pose 

 Mark the changed node and all dependent 
nodes as unclean (=to be re-evaluated) 

 Find shortest path to start (using A*) while re-
using previous solution 
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D* Example 

 Situation at start 
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Start 
 
Goal 
 
Expanded nodes (goal 
distance calculated) 

Breadth- 
First- 

Search 

D* Lite 

A* 



D* Example 

 After discovery of blocked cell 
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D* Lite 

A* Breadth- 
First- 

Search 

Blocked cell 
 
Updated nodes 

All other nodes remain unaltered, the 
shortest path can reuse them. 



D* Search 

 D* is as optimal and complete as A* 

 D* and its variants are widely used in practice 

 Field D* was running on Mars rovers Spirit and 
Opportunity  
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D* Lite for Footstep Planning 
[Garimort et al., ICRA ‘11] 
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Real-Time Motion Planning 

 What is the maximum time needed to re-plan in 
case of an obstacle detection? 
 

 What if the robot has to react quickly to 
unforeseen, fast moving objects? 
 

 Do we really need to re-plan for every obstacle on 
the way?  
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Real-Time Motion Planning 

 What is the maximum time needed to re-plan in 
case of an obstacle detection? 
In principle, re-planning with D* can take arbitrarily long 

 What if the robot has to react quickly to 
unforeseen, fast moving objects? 
Need a collision avoidance algorithm that runs in constant 
time! 

 Do we really need to re-plan for every obstacle on 
the way?  
Could trigger re-planning only if path gets obstructed (or 
robot predicts that re-planning reduces path length by p%) 
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Local Obstacle Map 

Robot 

Robot Architecture 
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Sensors Actuators 

Physical 
World 

Collision Avoidance 

Localization Position Control 

.. .. 

Path Planner 

Path Tracking 

Global Map (SLAM) Executive 



Layered Motion Planning 

 An approximate global planner computes 
paths ignoring the kinematic and dynamic 
vehicle constraints (not real-time) 

 An accurate local planner accounts for the 
constraints and generates feasible local 
trajectories in real-time (collision avoidance) 
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Local Planner 

 Given: Path to goal (sequence of via points), 
range scan of the local vicinity, dynamic 
constraints 

 Wanted: Collision-free, safe, and fast motion 
towards the goal (or next via point) 

 Typical approaches: 

 Potential fields 

 Dynamic window approach 
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Navigation with Potential Fields 

 Treat robot as a particle under the influence of 
a potential field 

 Pro: 

 easy to implement 

 Con:  

 suffers from local minima 

 no consideration of  
dynamic constraints 
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Dynamic Window Approach 
[Simmons, 96], [Fox et al., 97], [Brock & Khatib, 99] 

 Consider a 2D planar robot  
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Dynamic Window Approach 
[Simmons, 96], [Fox et al., 97], [Brock & Khatib, 99] 

 Consider a 2D planar robot + 2D environment 
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Dynamic Window Approach 
[Simmons, 96], [Fox et al., 97], [Brock & Khatib, 99] 

 Consider additionally dynamic constraints  
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Dynamic Window Approach 
[Simmons, 96], [Fox et al., 97], [Brock & Khatib, 99] 

 Navigation function (potential field) 
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Dynamic Window Approach 
[Simmons, 96], [Fox et al., 97], [Brock & Khatib, 99] 

 Navigation function (potential field) 
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goalnfnfvelNF 
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Dynamic Window Approach 
[Simmons, 96], [Fox et al., 97], [Brock & Khatib, 99] 

 Navigation function (potential field) 
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goalnfnfvelNF 
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Dynamic Window Approach 
[Simmons, 96], [Fox et al., 97], [Brock & Khatib, 99] 

 Discretize dynamic window and evaluate 
navigation function (note: window has fixed size 
= real-time!) 

 Find the maximum and execute motion 
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Example: Dynamic Window Approach 
[Brock and Khatib, ICRA ‘99] 
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Problems of DWAs  

 DWAs suffer from local minima (need tuning), 
e.g., robot does not slow down early enough 
to enter doorway: 

 

 

 
 

 Can you think of a solution? 

 Note: General case requires global planning 

Dr. Jürgen Sturm, Computer Vision Group, TUM Visual Navigation for Flying Robots 



Lessons Learned Today 

 Motion planning problem and configuration 
spaces 

 Roadmap construction 

 Search algorithms and path optimization 

 Local planning for path execution 
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