

Which scene to show next on the big screen?

Idea: Using a Saliency Map to turn the **Quadcopter towards**, interesting" Points

Input Image

Extract Features (ie. color channels, edges)

ē ō S Normalize & Combine

Retrieving points that are interesting in several aspects:

Image: I(r, c), extracted Features $F_i(r, c)$

Normalized Features:
$$N_i(r, c) = \frac{1}{\sum_{j,k} F_i(j,k)} F_i(r, c)$$

Saliency Map: $S(r, c) = \frac{1}{n} \sum_{i=1}^n N_i(r, c)$

Finding the most interesting point : $(r_{sal}, c_{sal}) = \max_{r,c} (S(r, c))$

→ Resulting salient points: outstanding in a certain way

Examples

Having decided on the next most interesting point to face:

Having decided on the next most interesting point to face:

Control angle between next point of interest and vertical center line to zero! e.g. P-Controller:

$$u_{\alpha} = K_{p} \alpha$$
 with $\alpha = \arctan\left(\frac{c_{sal} - \frac{c_{max}}{2}}{f}\right)$

Challenges

Robot should keep x/y position over marker

- → switching between cameras necessary
- → possible difficulties in position control

Future Work

Build up a map and avoiding collisions → Visit the interesting points instead of only looking at them!