Dragon Sheep

Project Proposal

Motivation | Application

Task: Autonomously circle a human with variable distance, altitude and speed.

Problem Specification

- Use opencv to detect the person (HoG)
- Determine location of quadrocopter with bounding box of human
- Treat bounding box as a marker with a known size in the real world.
- Calculate pose estimation from virtual marker.
- Specify a goal position and orientation relative to the current location and the human
- Recover automatically when human is lost

Goal Positioning

Rotation from current angle to angle facing origin

Rotation specifying goal distance

goal
human (0, 0, 0)

Translation to closest point on circle of radius r

State Graph

Sigma $=$ Measure of Uncertainty
S, T = Thresholds

Sigma < S

Approach

- Use opencv HoG detector to find the person
- Calculate pose from bounding box
- When no human is detected uncertainty rises
- When uncertainty crosses a threshold switch to search mode
- Stop moving
- Rotate until the human is found again
- If enough time passes, land the copter

Implementation Plan

1. Create bag files with a human at varying distances and locations
2. Find HoG bounding box of human and figure out the size of the box in the real world
3. Use a 4 point algorithm to get the quadrocopter location
4. Plug it into the Kalman Filter and create a goal at distance r from the human.
5. Vary the goal so the copter goes in a circle
6. Implement search mode for when the human is lost for a long period.

Future Work

- A quadrocopter rotating around the user would be useful in a number of applications such as sports, dancing, amateur movies etc.
- Using something other than HoG would be a more general approach to circling a target.

