
Visual Navigation for Flying Robots Computer Vision Group
D. Cremers, J. Sturm, N. Engelhard Institut für Informatik
Summer Term 2012 Technische Universität München

Sheet 2
Topic: Motion Models and Robot Odometry

Submission deadline: Tue, 22.05.2012, 10:15 a.m.
Hand-in via email to visnav2012@cvpr.in.tum.de

Preliminaries: Setting up the drone

To simplify the setup, we created a SVN-Repository1 with all the code needed. Make
sure to clone it into your ROS PACKAGE PATH. The SVN contains the following
folders:

• ex 2: The exercise stub for this sheet. Run rosmake ex 2 to compile it to-
gether with the joy- and ardrone joystick-nodes.

• ardrone brown: Improved version of the Ardrone driver from Brown univer-
sity. It now also sends the image from the down-facing camera if this camera
is activated. There are two ways to use this node:

– Binary version (recommended on lab computers): Just use the compiled
version in the bin-folder.

– Alternative: Build from Source by running sudo ./build sdk.sh to
compile the SDK library and subsequently rosmake to create the ROS
node.

• joy: The ROS driver for a joystick2.

• ardrone joystick: This node translates the joystick commands into cmd vel

messages which are then interpreted by the Ardrone driver. The ardrone joystick-
node expects the PS3-joystick to be at /dev/input/js0. Some laptops how-
ever treat their accelerometer also as a joystick. The PS3 joystick will then
probably be on /dev/input/js1. In this case just uncomment the third line in
the launch/teleop.launch file. If there are still problems, check the tutorial
here3.

• ar recog: The marker recognition. ./getAndBuildARToolkit.py the Toolkit
and rosmake the package. To run the node cd into bin and execute ./ar recog

image:=/ardrone/image raw small to run the marker recognition on the
down-facing camera. The ex2 stub expects the β- and ζ-marker, but of course

1https://svncvpr.informatik.tu-muenchen.de/lecturematerial-visnav
2http://www.ros.org/wiki/joy
3http://www.ros.org/wiki/joy/Tutorials/ConfiguringALinuxJoystick

1



you can also adapt the code if you want to use different markers.

• bag files: These bags contain two flights of the quadrocopter.

ROS Fuerte Users: See hints on last page

Preliminaries: First flight

(a) Read and memorize the safety warnings.

(b) Connect the battery to the quadrocopter. After a few seconds, the LEDs
should switch to green. After this happens, you can connect with your com-
puter over wireless to the quadrocopter. On the lab computer, ask Nikolas for
a wireless dongle and then run sudo ardrone-connect to connect. On your
private laptop, just use the network manager.

(c) Start the driver via rosrun ardrone brown ardrone driver.

(d) Start the ardrone joystick-node via roslaunch ardrone joystick teleop.launch.
This launch-file4 also starts the joy-node that is the interface between the joy-
stick and the ROS-Network. The connect the joystick with the computer press
the PlayStation-button in the middle of the controler. The axes and buttons
are assigned as follows:

• The R1 button toggles the emergency state of the robot. Pressing R1
while flying will stop the rotors immediately. If the LED beneath the
rotors are red (for example, after a crash), press R1 to reset the drone.

• The L1 button starts the motors of the quadrocopter. It also works
as a deadman button so that the robot will land if you release it during
flight. The quadrocopter will ascend to one meter above ground and tries
to hold this position.

• The left stick can be used to control the vx/vy-velocity. Keep in mind
that these velocities are given in the local frame of the drone!

• The right stick controls the yaw-rate and the altitude.

• The select button can be used to switch between the two cameras. This
can also be done by executing rosservice call /ardrone/togglecam.

Exercise 1: Record a bag file

In this exercise, you will take a group picture using the quadrocopter and record an
own bag file.

4http://www.ros.org/wiki/roslaunch/

2



(a) Setup your computer (as described above) and connect to the quadrocopter.
Use the joystick to control the quadrocopter. Fly a short round in the robot
lab and practice your flying skills.

(b) Use image view to watch the live images from the quadrocopter. Use this to
take a group picture of your team and add it to your report.

(c) Use rostopic list to see what topics are currently being published. Which
of these topics do you need for Exercise 2?

(d) Print the markers attached to this sheet on A4 paper and attach them in a
distance of 1m to the floor in the following orientation:

(e) Use rosbag record /topic1 /topic2 to record the relevant topics. Use
rosbag info file1.bag to see the recorded topics in your bag file and send
us the output. Important: To run the marker detection on the vertical camera,
you will also have to record the /ardrone/camera info-topic.

Exercise 2: Extended Kalman filter

In this exercise, you will learn how to use a Kalman filter to estimate the pose of
the robot from a bag file or live data. You can either use the bag file from the
repository, or your own bag file recorded in Exercise 1. We provide you with a C++
framework of an extended Kalman filter for which you will have to implement the
correction step. For simplicity, we model the quadrocopter only in the 2D plane,

i.e., its state at time t is described by xt =
(
xt yt ψt

)>
and its odometry is given

by ut =
(
xt yt ψt

)>
.

3



(a) Start rviz and add a grid, tf and marker display as in the previous exercise
sheet.

(b) Compile the Kalman filter using rosmake ex 2.

(c) Start the Kalman filter by running rosrun ex 2 visnav 2. Replay the bag
file using rosbag play and watch the result in RVIZ. Take a screen shot of
RVIZ after a few seconds with the covariance ellipse.

(d) Assume that the quadrocopter drifts more (say two times more) than this
in the global x-direction, for example, because there is strong wind in this
direction. Modify the process noise matrix Q accordingly in the source code
and re-run the experiment. Take another screen shot (on the same bag file)
and send us the result.

(e) What would be a good way to determine the noise values empirically? Describe
briefly an experimental setup that could be used to determine these values.

(f) The framework detects markers in the environment and provides (in the case

of a detection) an observation z =
(
x y ψ

)>
relative to the frame of the

quadrocopter. Specify the observation function z = h(x) and compute its

derivative (Jacobian) H = ∂h(x)
∂x

.

(g) Implement the correction step in the Kalman filter using the observation func-
tion and the Jacobian. Take care when you compute the difference between
angles (as required for the computation of zt − h(µt) in the correction step).
One simple solution is to normalize the angle afterwards, for example, using
ψnormalized = atan2(sin(ψ), cos(ψ)).

Submission instructions

A complete submission consists both of a PDF file with the solutions/answers to the
questions on the exercise sheet and a TGZ (or ZIP) file containing the source code
that you used to solve the given problems. Make sure that your TGZ file contains
all files necessary to compile and run your code, but it should not contain any build
files or binaries (make clean, rm -rf bin). Please submit your solution via email
to visnav2012@cvpr.in.tum.de.

Hints: ROS Fuerte

Although not officially supported, here are some hints for the ROS Fuerte users:

• To compile ex 2, you will have to adapt the CMakeLists.txt and manifest.xml.

– CMakeLists.txt: add
find package(Eigen REQUIRED)

4



include directories(${EIGEN INCLUDE DIRS})

– manifest.xml: replace
<depend package=”eigen” />
with
<rosdep name=”eigen” />

• If you have problems to link the OpenCV libraries, check the manifest.xml

of your opencv2-pkg. You will find something like
<cpp cflags="‘pkg-config opencv-2.3.1 --cflags‘" lflags="‘pkg-config

opencv-2.3.1 --libs‘"/> Make sure that the pkg-config opencv-2.3.1

--libs creates the right linker-flags. (Something like -lopencv contrib -lopencv legacy

-lopencv objdetect ... )

Hints: Compiling ar recog on the laptop

Some of the participants had problems to compile the ar recog on their own ma-
chine. There is one solution which worked at least on one computer and is worth a
try: It can be found here5. Copy the ARToolKit-2.72.1.tgz directly to the src-
folder (don’t use the script). Untar and apply the patch. During ./Configure, the
answers were ”3, yes(!), no, no”. Then make and rosmake ar recog.

5http://ubuntuforums.org/showthread.php?t=1690625&page=2

5






